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Abstract— We address the problem of tracking 3D object
poses from touch during in-hand manipulations. Specifically, we
look at tracking small objects using vision-based tactile sensors
that provide high-dimensional tactile image measurements at
the point of contact. While prior work has relied on a-priori
information about the object being localized, we remove this
requirement. Our key insight is that an object is composed
of several local surface patches, each informative enough to
achieve reliable object tracking. Moreover, we can recover
the geometry of this local patch online by extracting local
surface normal information embedded in each tactile image.
We propose a novel two-stage approach. First, we learn a
mapping from tactile images to surface normals using an image
translation network. Second, we use these surface normals
within a factor graph to both reconstruct a local patch map
and use it to infer 3D object poses. We demonstrate reliable
object tracking for over 100 contact sequences across unique
shapes with four objects in simulation and two objects in the
real-world.

I. INTRODUCTION

We focus on the problem of tracking 3D object poses
during in-hand manipulations using tactile image measure-
ments from vision-based tactile sensors [1, 2]. Specifically,
we look at tracking small objects without prior geometric
models. For instance, a dexterous robot operating in a real-
world household environment will need to manipulate novel
household objects for which CAD models may not be
available. We address the question: Can an object be tracked
precisely enough for in-hand manipulation using only local
measurements of its geometry?

Prior work has looked at the object tracking problem
primarily in the context of planar pushing [3–6]. However,
the problem of 3D in-hand manipulation poses additional
challenges. Firstly, the motion is less constrained such that
different object motions can explain the same measurements.
Second, physics priors, such as quasi-static planar pushing
models, are less informative in the 3D case. Hence, prior
work on in-hand object tracking using tactile feedback has
relied on a-priori information about the object being local-
ized, such as 3D global models or a database generated by
a simulator [7–10].

Our key insight is that the tactile object tracking problem
can be efficiently decomposed in two ways. First, we can
decompose an object into many smaller local surface patches,
which can be treated independently. Second, most of the the
information needed to infer the local surface patch geometry
is already embedded in corresponding tactile images.

Code and supplementary material can be found on https://psodhi.
github.io/tactile-in-hand
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Fig. 1: Tracking latent 3D object poses from a tactile image sequence during
in-hand manipulation. We solve this as an inference over a factor graph that
does not rely on having prior object models.

We find that reliable tracking is achievable with only
a local patch—a fused map created from a sequence of
key frame images within a continuous contact episode. For
instance, even though two objects can have very different
global geometries, they can contain very similar local patches
that suffice for tracking.

To both create the local patch and track motion relative to
it, we must fuse multiple tactile image measurements online
while inferring the latent object poses. We formulate this
as an inference problem over a factor graph that offers a
flexible and efficient way to fuse such information while in-
corporating other priors derived from physical and geometric
constraints [11, 12].

What makes for a good representation for a local patch?
An idealized tactile image captures the surface normals of
the gel’s reflective layer, based on the color and intensity
of illumination at each pixel. Hence, it is natural to learn a
mapping from image to gel surface normals. While objects
may have varying global shapes, the learned surface normal
mapping can generalize across these different shapes, be-
cause the relationship between pixel intensities and surface
normals depends only on the sensor configuration and the
local contact geometry. Hence, we infer the surface normals
at each pixel in the tactile image, then integrate those normals
to create a 3D model of the visible section of the local patch.

We propose a novel two-stage approach for tracking
objects in-hand without any prior object model information
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(Fig. 1). First, we learn a mapping from tactile images to
surface normals using an image translation network. Second,
we use these surface normals within a factor graph to both
reconstruct a local patch map and use it to infer 3D object
poses. Our key contributions are:

1) A factor graph formulation for 3D in-hand tactile track-
ing that does not rely on prior object models.

2) A factor that works across different global object shapes
by relying on local patches generated from learned
surface normals.

3) Empirical evaluation on both simulation and real-world
trials.

II. RELATED WORK

Factor graphs for localization Localization and map-
ping problems are increasingly formulated as optimization
objectives that leverage the inherent sparsity of the problem
to give tractable and more accurate solutions over filtering
approaches [13]. Factor graphs are a popular way for solving
such optimization objectives [3, 11, 12, 14, 15]. They offer
a flexible way to fuse multiple measurements while being
computationally efficient to optimize. Factors in the graph
encode local potentials on variables such as observation
models between measurements and states as well as other
priors such as physics and geometry. We formulate our
problem using a factor graph based framework in this paper.

Vision-based touch sensing The advent of vision-based
tactile sensors [1, 2, 16, 17] has enabled high-dimensional
tactile image measurements that capture the local deforma-
tion at the point of contact. Recent work has also looked at
creating accurate simulation models for such sensors [18–
20]. These sensors are being explored for various tactile ma-
nipulation applications. One class of approaches use tactile
images directly as local feedback to solve for control actions
on tasks such as object insertion [21], box packing [22], and
in-hand manipulations [1, 23]. However, such representations
tend to overfit to the particular task or require significant
amount of data to generalize across tasks. Our work focuses
on extracting a state representation like the global object
pose that is easy to use and generalizes across different
downstream control and planning tasks.

Estimation from touch Prior work on estimating states
from touch during manipulation has included filtering meth-
ods [24–27], learning-only methods [28, 29], methods utiliz-
ing prior model information [8–10], and graph-based opti-
mization for planar pushing [3–6]. In particular, graph-based
optimization offers benefits such as being more accurate
than filtering, an ability to incorporate analytic as well as
learned models, and can be solved in real-time making use
of efficient, incremental solvers [30–32] in literature.

Of these different approaches, the work in [7–10] is most
closely related in terms of the final objective of tracking 3D
object poses during in-hand manipulations.These, however,
require prior object model information either as offline
models [7, 9, 10] or a database from a simulator [8]. In
contrast, we do not require a prior model of the object being
tracked. Instead, we build a local patch map on the fly for

the current contact episode and use that within a factor graph
framework.

III. PROBLEM FORMULATION

We begin by formalizing the estimation problem as factor
graph optimization. A factor graph is a bipartite graph with
two types of nodes: variables x ∈ X and factors φ(·) :
X → R. Variable nodes are the latent states to be estimated,
and factor nodes encode potentials on these variables from
observations, physics, or geometry (Fig. 2).

We solve for the maximum a posteriori (MAP) objective
x̂ by maximizing product of all factor graph potentials, i.e.,

x̂ = argmax
x

∏
i

φi(xi) (1)

To solve this inference objective efficiently, we assume
φt(x) to be Gaussian factors corrupted by zero-mean nor-
mally distributed noise. Under Gaussian noise model as-
sumptions, MAP inference is equivalent to a nonlinear least-
squares objective [12], i.e.,

φi(xi) ∝ exp

{
−1

2
||fi(xi; zi)||2Σi

}
⇒ x̂ = argmin

x

1

2

∑
i

||fi(xi; zi)||2Σi

(2)

For the in-hand object tracking problem, we define states
in the graph to be the 6-DOF object and end-effector poses
at every time step t = 1 . . . T , i.e. xt = [ot et]

T , where
ot, et ∈ SE(3). Factors in the graph include image-to-image
factors fim2im(·), image-to-patch factors fim2pc(·), velocity
smoothness priors fvel(·), end-effector pose priors feff (·)
and vision priors for re-localization at the beginning of a
contact episode fvis(·). At every time step, new variables
and factors are added to the graph. Writing out Eq. 2 for our
problem,

x̂1:T = argmin
x1:T

T∑
t=1

{ ||fim2im(ot−1, ot, et−1, et)||2Σim2im
+

||fim2pc(ot, et)||2Σim2pc
+ ||fvel(ot−2, ot−1, ot)||2Σvel

+

||feff (et)||2Σeff
+ ||fvis(ot)||2Σvis

}
(3)

Individual cost terms in Eq. 3 are described in detail in
Section IV-C. Eq. 3 is the optimization objective that we
must solve for every time step. Instead of resolving from
scratch every time step, we make use of efficient, incremental
solvers [31] to solve this in real-time.

IV. APPROACH

We present a two-stage approach: First, we learn a map-
ping from tactile images to surface normals (Section IV-
A) which can be integrated to create a 3D reconstruction
(Section IV-B). Second, we use these surface normals to
create a 3D local patch map online within a factor graph
for inferring the latent 3D object poses (Section IV-C).

A. Learning surface normals

Here we discuss how we learn to predict surface normals
using tactile color images from the Digit sensor [1]. Color
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Fig. 2: Overview of our factor graph formulation, where variables are object poses and factors are constraints on poses. We first predict learned surface
normals from tactile images used to reconstruct a 3D point cloud. We then create a set of factors. Image-to-image factors (blue) encode relative pose
between two point clouds. Image-to-patch factors (red) encode relative pose between point cloud and a fused local patch. We also include global pose
priors as unary factors on end-effector (yellow) and first object pose (pink).

images are generated by illuminating the gel surface with
three light sources (Fig. 3(a)), such that each light has a
unique color and direction. When pressing an object into
the gel, the gel surface conforms to the object. Under an
idealized model of the sensor, the color and intensity of light
reaching the camera due to diffused reflection from a point
on the surface is directly related to the surface normal of the
gel at that point. Hence, the RGB intensity values of image
pixel are expected to contain significant information about
the corresponding local surface normals of the object.

To infer surface normal images from tactile images we
train an image translation network, pix2pix [33]. The pix2pix
model is based on a generator-discriminator network archi-
tecture that enables it to learn mappings from a low amount
of training data. It also enables us to learn a generalized
mapping, i.e. we test on objects unseen during training. To
train the model, we use a dataset of ground truth pairs of
color and surface normal images z = {Ic, In}. We extract
datasets in two ways. For simulation dataset, we generate
surface normals by adding a normal shader to the Tacto
simulator [18] based on Pyrender [34]. For the real dataset,
we follow a similar procedure as [2, 7] of using a ball
bearing of known radius whose ground truth normals can
be synthesized. We manually annotate the circular patches
in RGB images, and synthesize ground truth normals in the
foreground annotations. We also augment our dataset with
additional simulated images to improve generalization.

B. Reconstruction from normals

Given an image with local surface normal information, we
generate a 3D representation of the corresponding surface
geometry. This surface normal image N(x, y) is related to
the gradient of a corresponding depth image z(x, y) as,

∂z

∂x
=
nx
nz
,

∂z

∂y
=
ny
nz

(4)

Given depth gradients { ∂z∂x ,
∂z
∂y}, we can recover the depth

map z(x, y) by integration using a fast Poisson solver with
discrete sine transform (DST) [35] as used in prior work
[2, 7]. For the boundary conditions, we use the mean distance
to the undisturbed gel surface. A consequence of this choice
is that contact regions crossing the edge of the image will
not be correctly handled by the solver. We filter out such
images in our trials.

Finally, once we have computed the depth map, we inverse
project it to obtain a 3D point cloud. We use the OpenGL
clip projection model [36] to map from pixel to world co-
ordinates, i.e.

[
xw yw zw

]
= V P

[
xpix ypix zdepth

]
, where

P is the projection matrix based on near, far plane values of
the projection frustum, and V is the camera view matrix.

C. Factor graph optimization

Once we have the surface normal images, we integrate
those along with other priors as factors within a factor graph.
The factor graph optimizer then solves for the joint objective
in Eq. 3. We look at each of the cost terms in Eq. 3 in detail.

Image-to-image factors: In some cases, it suffices to
look at consecutive tactile images and infer the relative
transformation between them. Color images from the tactile
sensor at the current and previous time step are converted
into point clouds {Pt−1,Pt} in their respective end-effector
or sensor frame. The two point clouds are registered against
each other using a point-to-plane iterative closest point (ICP)
algorithm. The resultant relative transformation is added as
a binary factor between consecutive poses in the graph. This
is expressed as the fim2im(.) term in Eq. 3, i.e.,

||fim2im(ot-1, et-1, ot, et)||2Σim2im
:= ||T graph

t-1,t 	 T reg
t-1,t||2Σim2im

(5)

where T graph
t-1,t = (et-1o

−1
t-1 ) 	 (eto

−1
t ) are current relative

estimates from the graph and T reg
t-1,t = argminT

∑
i ||p

(i)
t −



Tp
(i)
t-1||22 is the measured transformation from ICP regis-

tration. Both T graph
t-1,t , T reg

t-1,t use gel center as their origin.
(p

(i)
t−1, p

(i)
t ) ∈ (Pt−1,Pt) are pairs of point correspondences

in the two point clouds. 	 denotes difference between two
SE(3) manifold elements.

Image-to-patch factors: Image-to-image factors fail
whenever the tactile image changes by a non-trivial amount
leading to large registration errors. This happens whenever
the object undergoes a larger transformation or moves in
and out of the gel. To stabilize tracking in these situations
we introduce a local patch model by fusing together multiple
point clouds and register new tactile point cloud data against
this patch. The local patch is maintained by fusing together
images at specific key frames within the current contact
episode, rather than fusing all available frames. We choose
these key frames at fixed intervals given uniform motions
but one can also select these based on a field-of-view overlap
threshold. The current cloud Pt is registered against the local
patch map cloud Pmap, and the relative transformation is
added as factors to the graph,

||fim2pc(ot, et)||2Σim2pc
:= ||T graph

map,t 	 T
reg
map,t||2Σim2pc

(6)

where T graph
map,t = ote

−1
t are current estimates from the graph

and T reg
map,t = argminT

∑
i ||p

(i)
t − Tp

(i)
map||22 is the mea-

sured transformation from ICP registration. (p
(i)
t , p

(i)
map) ∈

(Pt,Pmap) are pairs of point correspondences in the current
point cloud and local patch map.

Constant velocity priors: We add a prior that assumes
objects move at constant velocity, which has the effect
of smoothing tracked trajectories. This is a ternary factor
between triplets of object poses,

||fvel(ot-2, ot-1, ot)||2Σvel
:= ||o−1

t-2ot-1 	 o
−1
t-1ot||2Σvel

(7)

End-effector priors: We model uncertainty about end-
effector locations as unary priors on end-effector variables,

||feff (et)||2Σeff
:= ||et 	 ẽmc

t ||2Σeff
(8)

where, ẽmc
t = emc

t ⊕ N (0,Σeff ) are poses from the motion
capture system with added Gaussian noise. For a robot end-
effector, these pose measurements would instead come from
the robot kinematics.

Vision prior: We add a global vision pose prior for only
the object pose at the start of an episode,

||fvis(ot)||2Σvis
:= ||ot 	 õvist ||2Σvis

(9)

where, õvist are poses with added Gaussian noise N (0,Σvis).
For re-localization during multi-contact episodes, we can add
such a factor at the start pose of every new contact episode.

V. RESULTS AND EVALUATION

We evaluate our approach qualitatively and quantitatively
on a number of episodes where an object, unknown a priori,
must be tracked from a sequence of tactile measurements.
We compare against a set of baselines on two fronts: a)
on surface normal predictions from images and b) on the
final tracking error of object poses. We use PyTorch [37] for
training surface normal models, and GTSAM C++ library

(a)

(b)

Fig. 3: Real-world experimental setup showing: (a) a Sphere object mounted
on a workbench with a close-up of the Digit sensor, and (b) a contact episode
with the sensor moved around the object.

[38] for factor graph optimization. We specifically use the
iSAM2 [31] solver for efficient, real-time optimization.

A. Experimental setup

Simulator: We collected simulation data using the
Tacto [18] simulator where one can load the Digit sensor, an
object and render high-resolution tactile image readings in
real-time. The simulator uses PyBullet [39] as the underlying
physics engine and Pyrender [34] as the back-end rendering
engine for generating images. We generated trials by using a
position controller to move the object on the sensor surface.
We collect data for a diverse set of objects: Sphere, Cube,
Toy human and Toy brick.

Real-world: For real-world episode, we used a Digit [1]
sensor to get tactile measurements. We mounted the object
on a workbench and mounted the Digit on a movable plate,
both of which were tracked by an OptiTrack motion capture
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Fig. 4: Training and evaluation of the pix2pix (unet) model that maps input
color images to predicted surface normal images.

TABLE I: Learned surface normal performance (validation loss)

Model type
Object Shapes

Sim Sphere Cube Real sphere Toy brick Toy human

pix2pix (unet) 0.4e-3 0.5e-3 1.0e-3 1.1e-3 0.9e-3
pix2pix (resnet) 0.6e-3 1.2e-3 1.6e-3 1.1e-3 1.0e-3
MLP 3-layer 1.4e-3 0.5e-3 5.8e-3 5.1e-3 6.7e-3
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Fig. 5: Qualitative pose tracking performance on simulated trials. (a) Object being tracked. (b) Local patch map reconstructed online. (c) Estimated 3D
pose coordinates (light) against ground truth (dark). Rotations in orange (x), purple (y), green (z). Translations in grey.
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Fig. 6: Final tracking error box plots on simulated trials: (top) rotation and (bottom) translation errors in semi-log scale.

system to get ground truth poses. We collect real-world data
for two objects: a Sphere (ball-bearing) of 1/2” diameter and
a Pyramid 1/2” tall with 1.75” side length.

B. Surface normal reconstructions

We first analyze the accuracy of learned surface normals
from color images collected by the Digit tactile sensor. For
simulation episodes, we only train on two simple objects:
50 images of Sphere and 50 images of Cube. We tested
the model on two different held-out shapes: Toy brick and
Toy human. For real episodes, we only had ground truth
normals for the real Sphere. Hence, we expanded the training
dataset to include both the training data from simulation
and the real Sphere data. We tested the model on held-out
real Pyramid object. For baselines, we picked two different
pix2pix architectures, unet and resnet. We also trained a
baseline 3-layer MLP 5-32-32-3 with tanh activation on an
L2 loss, mapping a single color pixel (r,g,b,x,y) to a surface
normal (nx,ny,nz), similar to prior work [7].

Qualitative reconstructions: Fig. 4 shows qualitative
performance of the pix2pix (unet) model on both real and
simulated images. We can see the model generalizes to fairly

different shapes such as the Toy human and Toy brick, even
though it is trained on simple objects. Moreover, fine-tuning
this model with very little real data, i.e., 50 images of the
real Sphere, enables it to generalize to unseen geometries in
the real-world such as different local patches of a Pyramid.

Quantitative model performance: Table I compares
mean-squared pixel loss on the validation dataset for different
model choices. We see that pix2pix, for both unet and resnet
architecture, has a fairly low MSE loss and generalizes to
unseen shapes such as the Toy human and Toy brick. On
the other hand, the per-pixel MLP baseline incurs a high
MSE loss. In general, the per-pixel MLP is likely to be
insufficient for non-ideal tactile sensors with effects such
as self-shadowing of the gel. Having convolutional layers,
such as with the pix2pix architectures, can address such
confounding effects since these are typically localized in the
image, e.g. shadows are cast by nearby object features since
object depth is small relative to the image size.

C. Factor graph optimization

We now look at the final task performance of tracking
3D object poses using tactile image measurements. We
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Fig. 7: Qualitative pose tracking performance on real trials. (a) Object being tracked. (b) Local patch map reconstructed online. (c) Estimated 3D pose
coordinates (light) against ground truth (dark). Rotations in orange (x), purple (y), green (z). Translations in grey.
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Fig. 8: Final tracking error box plots on real trials: (top) rotation and
(bottom) translation errors.

compare 4 objectives, each of which use different factors:
ConstVel uses only a constant velocity prior, ImageToImage
uses Image-to-image factors, PatchGraph (ours) uses Image-
to-patch factors and GroundtruthPatch which uses a global
object model. GroundtruthPatch assumes the object is known
apriori and hence represents the best a method can do.

Simulation tracking performance: Fig. 5 shows the
qualitative tracking performance of PatchGraph for various
objects in simulated trials. For Cube, Toy brick and Toy
human, PatchGraph is able to reliably track rotations of the
object. The local patch, constructed from online estimates,
appears to be consistent with the local object geometry, thus
explaining the good tracking performance. The object that
was most difficult to track was Toy brick, as evidenced by
the distortions in the patch, owing to jerkiness of the in-
contact motions. We also note that tracking rotations for a
Sphere has high errors, which is expected since rotation of
a sphere are unobservable from tactile images.

Fig. 6 shows the quantitative rotation and translation
tracking performance against baselines on all objects, with
20 distinct contact sequences per object. Overall, Patch-
Graph has the lowest errors matching closely to that of
GroundtruthPatch that has the global object model. This
lends credence to our claim that a local patch suffices for
reliable object tracking. ConstVel understandably has the
highest variance among any baselines. ImageToImage fails

to outperform PatchGraph on any of the datasets. Toy brick
appears to be the most challenging among datasets, where
GroundtruthPatch has a clear performance gap.

Real tracking performance: Fig. 7 shows qualitative
tracking performance of PatchGraph for various objects in
real trials. Fig. 7(b) shows the local patches which appear
consistent with the local object geometry, and is a key piece
to reliable tracking. Fig. 7(c) shows good rotation tracking
for Pyramid and translation tracking for Sphere.

Fig. 8 shows quantitative rotation and translation tracking
performance against baselines on all objects, with 10 distinct
contact sequences per object. The main observation is that
ImageToImage performs much worse than ImageToPatch,
particularly in translation errors for Sphere. This is primarily
because point clouds generated from individual images are
not as geometrically discriminative as the fused local patch,
causing ImageToImage factors alone to diverge quickly.
PatchGraph keeps translation errors under 4mm and rota-
tion errors under 0.2rad, which looks promising for use in
dexterous object manipulations.

VI. CONCLUSION

We presented a factor graph-based approach for track-
ing 3D object poses from tactile image sequences during
in-hand manipulations. We showed reliable tracking on 4
simulated objects and 2 real objects without relying on any
a priori object information. We achieved this by exploiting
two decompositions of the tracking problem. First, that a
complex object can be treated as a composition of many
local patches each of which can be mapped and tracked
largely independently. Second, surface normal information
is highly localized within a tactile image and independent of
the global object shape.

A primary limitation that can cause tracking failures is
when the local patch map is not sufficiently discriminative
geometrically, e.g. flat or featureless patches, or when the
patch motions are degenerate in the observed image space,
e.g. rotations of a spherical object. As future work, it would
be interesting to explore solutions that take into account
geometric degeneracies [40, 41] as well as approaches that
can detect slip and shear [42] to disambiguate motion de-
generacies. Another interesting future direction would be
to complement the tracker with a global first pose re-
localization that is able to generalize across objects, e.g.
using visual images to predict a contact location likelihood.
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