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Abstract
A visually-grounded navigation instruction can be interpreted as a sequence of
expected observations and actions an agent following the correct trajectory would
encounter and perform. Based on this intuition, we formulate the problem of
finding the goal location in Vision-and-Language Navigation (VLN) [1] within the
framework of Bayesian state tracking – learning observation and motion models
conditioned on these expectable events. Together with a mapper that constructs a
semantic spatial map on-the-fly during navigation, we formulate an end-to-end dif-
ferentiable Bayes filter and train it to identify the goal by predicting the most likely
trajectory through the map according to the instructions. The resulting navigation
policy constitutes a new approach to instruction following that explicitly models a
probability distribution over states, encoding strong geometric and algorithmic pri-
ors while enabling greater explainability. Our experiments show that our approach
outperforms a strong LingUNet [2] baseline when predicting the goal location on
the map. On the full VLN task, i.e., navigating to the goal location, our approach
achieves promising results with less reliance on navigation constraints.

1 Introduction
One long-term challenge in AI is to build agents that can navigate complex 3D environments from
natural language instructions. In the Vision-and-Language Navigation (VLN) instantiation of this
task [1], an agent is placed in a photo-realistic reconstruction of an indoor environment and given a
natural language navigation instruction, similar to the example in Figure 1. The agent must interpret
this instruction and execute a sequence of actions to navigate efficiently from its starting point to
the corresponding goal. This task is challenging for existing models [3–9], particularly as the test
environments are unseen during training and no prior exploration is permitted in the hardest setting.
To be successful, agents must learn to ground language instructions to both visual observations and
actions. Since the environment is only partially-observable, this in turn requires the agent to relate
instructions, visual observations and actions through memory. Current approaches to the VLN task
use unstructured general purpose memory representations implemented with recurrent neural network
(RNN) hidden state vectors [1, 3–9]. However, these approaches lack geometric priors and contain
no mechanism for reasoning about the likelihood of alternative trajectories – a crucial skill for the
task, e.g., ‘Would this look more like the goal if I was on the other side of the room?’. Due to this
limitation, many previous works have resorted to performing inefficient first-person search through
the environment using search algorithms such as beam search [5, 7]. While this greatly improves
performance, it is clearly inconsistent with practical applications like robotics since the resulting
agent trajectories are enormously long – in the range of hundreds or thousands of meters.
To address these limitations, it is essential to move towards reasoning about alternative trajectories in a
representation of the environment – where there are no search costs associated with moving a physical
robot – rather than in the environment itself. Towards this, we extend the Matterport3D simulator [1]
to provide depth outputs, enabling us to investigate the use of a semantic spatial map [10–13] in the
context of the VLN task for the first time. We propose an instruction-following agent incorporating
three components: (1) a mapper that builds a semantic spatial map of its environment from first-
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Walk out of the bathroom, turn left, and go on to the bottom of the stairs and wait near the coat rack.

Figure 1: Navigation instructions can be interpreted as encoding a set of latent expectable observations
and actions an agent would encounter and undertake while successfully following the directions.

person views; (2) a filter that determines the most probable trajectory(ies) and goal location(s) in the
map, and (3) a policy that executes a sequence of actions to reach the predicted goal.
From a modeling perspective, our key contribution is the filter that formulates instruction following as
a problem of Bayesian state tracking [14]. We notice that a visually-grounded navigation instruction
typically contains a description of expected future observations and actions on the path to the goal.
For example, consider the instruction ‘walk out of the bathroom, turn left, and go on to the bottom of
the stairs and wait near the coat rack’ shown in Figure 1. When following this instruction, we would
expect to immediately observe a bathroom, and at the end a coat rack near a stairwell. Further, in
reaching the goal we can anticipate performing certain actions, such as turning left and continuing
that way. Based on this intuition, we use a sequence-to-sequence model with attention to extract
sequences of latent vectors representing observations and actions from a natural language instruction.
Faced with a known starting state, a (partially-observed) semantic spatial map generated by the
mapper, and a sequence of (latent) observations and actions, we now quite naturally interpret our
instruction following task within the framework of Bayesian state tracking. Specifically, we formulate
an end-to-end differentiable histogram filter [15] with learnable observation and motion models, and
we train it to predict the most likely trajectory taken by a human demonstrator. We emphasize that
we are not tracking the state of the actual agent. In the VLN setting, the pose of the agent is known
with certainty at all times. The key challenge lies in determining the location of the natural-language-
specified goal state. Leveraging the machinery of Bayesian state estimation allows us to reason in a
principled fashion about what a (hallucinated) human demonstrator would do when following this
instruction – by explicitly modeling the demonstrator’s trajectory over multiple time steps in terms of
a probability distribution over map cells. The resulting model encodes both strong geometric priors
(e.g., pinhole camera projection) and strong algorithmic priors (e.g., explicit handling of uncertainty,
which can be multi-modal), while enabling explainability of the learned model. For example, we can
separately examine the motion model, the observation model, and their interaction during filtering.
Empirically, we show that our filter-based approach significantly outperforms a strong LingUNet [2]
baseline when tasked with predicting the goal location in VLN given a partially-observed semantic
spatial map. On the full VLN task (incorporating the learned policy as well), our approach achieves
a success rate on the test server [1] of 32.7% (29.9% SPL [16]), a credible result for a new class
of model trained exclusively with imitation learning and without data augmentation. Although our
policy network is specific to the Matterport3D simulator environment, the rest of our pipeline is
general and operates without knowledge of the simulator’s navigation graph (which has been heavily
utilized in previous work [1, 3–9]). We anticipate this could be an advantage for sim-to-real transfer
(i.e., in real robot scenarios where a navigation graph is not provided, and could be non-trivial to
generate).
Contributions. In summary, we:
- Extend the existing Matterport3D simulator [1] used for VLN to support depth image outputs.
- Implement and investigate a semantic spatial memory in the context of VLN for the first time.
- Propose a novel formulation of instruction following / goal prediction as Bayesian state tracking of

a hypothetical human demonstrator.
- Show that our approach outperforms a strong baseline for goal location prediction.
- Demonstrate credible results on the full VLN task with the addition of a simple reactive policy,

with less reliance on navigation constraints.
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2 Related work
Vision-and-Language Navigation Task. The VLN task [1], based on the Matterport3D dataset [17],
builds on a rich history of prior work on situated instruction-following tasks beginning with
SHRDLU [18]. Despite the task’s difficulty, a recent flurry of work has seen significant improvements
in success rates and related metrics [3–9]. Key developments include the use of instruction-generation
(‘speaker’) models for trajectory re-ranking and data augmentation [7, 8], which have been widely
adopted. Other work has focused on developing modules for estimating progress towards the goal [5]
and learning when to backtrack [6, 9]. However, comparatively little attention has been paid to the
memory architecture of the agent. LSTM [19] memory has been used in all previous work.
Memory architectures for navigation agents. Beyond the VLN task, various categories of memory
structures for deep neural navigation agents can be identified in the literature, including unstruc-
tured, addressable, metric and topological. General purpose unstructured memory representations,
such as LSTM memory [19], have been used extensively in both 2D and 3D environments [20–24].
However, LSTM memory does not offer context-dependent storage or retrieval, and so does not
naturally facilitate local reasoning when navigating large or complex environments [25]. To overcome
these limitations, both addressable [25, 26] and topological [27] memory representations have been
proposed for navigating in mazes and for predicting free space. However, in this work we elect to use
a metric semantic spatial map [10–13] – which preserves the geometry of the environment – as our
agent’s memory representation since reasoning about observed phenomena from alternative view-
points is an important aspect of the VLN task. Semantic spatial maps are grid-based representations
containing convolutional neural network (CNN) features which have been recently proposed in the
context of visual navigation [10], interactive question answering [13], and localization [12]. However,
there has been little work on incorporating these memory representations into tasks involving natural
language. The closest work to ours is Blukis et al. [11], however our map construction is more
sophisticated as we use depth images and do not assume that all pixels lie on the ground plane.
Furthermore, our major contribution is formulating instruction-following as Bayesian state tracking.

3 Preliminaries: Bayes filters
A Bayes filter [14] is a framework for estimating a probability distribution over a latent state s
(e.g., the pose of a robot) given a history of observations o and actions a (e.g., camera observations,
odometry, etc.). At each time step t the algorithm computes a posterior probability distribution
bel(st) = p(st | a1:t,o1:t) conditioned on the available data. This is also called the belief.
Taking as a key assumption the Markov property of states, and conditional independence between
observations and actions given the state, the belief bel(st) can be recursively updated from bel(st−1)
using two alternating steps to efficiently combine the available evidence. These steps may be referred
to as the prediction based on action at and the observation update using observation ot.
Prediction. In the prediction step, the filter processes the action at using a motion model
p(st | st−1,at) that defines the probability of a state st given the previous state st−1 and an
action at. In particular, the updated belief bel(st) is obtained by integrating (summing) over all prior
states st−1 from which action at could have lead to st, as follows:

bel(st) =

∫
p(st | st−1,at) bel(st−1) dst−1 (1)

Observation update. During the observation update, the filter incorporates information from the
observation ot using an observation model p(ot | st) which defines the likelihood of an observation
ot given a state st. The observation update is given by:

bel(st) = η p(ot | st) bel(st) (2)

where η is a normalization constant and Equation 2 is derived from Bayes rule.
Differentiable implementations. To apply Bayes filters in practice, a major challenge is to construct
accurate probabilistic motion and observation models for a given choice of belief representation
bel(st). However, recent work has demonstrated that Bayes filter implementations – including
Kalman filters [28], histogram filters [15] and particle filters [29, 30] – can be embedded into deep
neural networks. The resulting models may be seen as new recurrent architectures that encode
algorithmic priors from Bayes filters (e.g., explicit representations of uncertainty, conditionally
independent observation and motion models) yet are fully differentiable and end-to-end learnable.
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Figure 2: Proposed filter architecture. To identify likely goal locations in the partially-observed
semantic spatial mapM generated by the mapper, we first initialize the belief bel(st) with the known
starting state s0. We then recursively: (1) generate a latent observation ot and action at from the
instruction, (2) compute the prediction step using the motion model (Equation 3), and (3) compute
the observation update using the observation model (Equation 5), stopping after T time steps. The
resulting belief bel(sT ) represents the posterior probability distribution over likely goal locations.

4 Agent model

In this section, we describe our VLN agent that simultaneously: (1) builds a semantic spatial map
from first-person views; (2) determines the most probable goal location in the current map by filtering
likely trajectories taken by a human demonstrator from the start location (i.e., the ‘ghost’); and (3)
executes actions to reach the predicted goal. Each of these functions is the responsibility of a separate
module which we refer to as the mapper, filter, and policy, respectively. We begin with the mapper.

4.1 Mapper

At each time step t, the mapper updates a learned semantic spatial map Mt ∈ RM×Y×X in the
world coordinate frame from first-person views. This map is a grid-based metric representation in
which each grid cell contains a M -sized latent vector representing the visual appearance of a small
corresponding region in the environment. X and Y are the spatial dimensions of the semantic map,
which could be dynamically resized if necessary. The map maintains a representation for every world
coordinate (x, y) that has been observed by the agent, and each map cell is computed from all past
observations of the region. We define the world coordinate frame by placing the agent at the center of
the map at the start of each episode, and defining the xy plane to coincide with the ground plane.
Inputs. As with previous work on VLN task [5–7], we provide the agent with a panoramic view
of its environment at each time step2 comprised of a set of RGB images It = {It,1, It,2, . . . , It,K},
where It,k represents the image captured in direction k. The agent also receives the associated depth
images Dt = {Dt,1, Dt,2, . . . , Dt,K} and camera poses Pt = {Pt,1, Pt,2, . . . , Pt,K}. We addition-
ally assume that the camera intrinsics and the ground plane are known. In the VLN task, these inputs
are provided by the simulator, in other settings they could be provided by SLAM systems etc.
Image processing. Each image I ∈ RH×W×3 is processed with a pretrained convolutional neural
network (CNN) to extract a downsized visual feature representation v ∈ RH′×W ′×C . To extract a
corresponding depth image d ∈ RH′×W ′

, we apply 2D adaptive average pooling to the original depth
image D ∈ RH×W . Missing (zero) depth values are excluded from the pooling operation.
Feature projection. Similarly to MapNet [12], we project CNN features v onto the ground plane in
the world coordinate frame using the corresponding depth image d, the camera pose P , and a pinhole
camera model using known camera intrinsics. We then discretize the projected features into a 2D
spatial grid Ft ∈ RC×Y×X , using elementwise max pooling to handle feature collisions in a cell.
Map update. To integrate map observations Ft into our semantic spatial map Mt, we use a
convolutional implementation [31] of a Gated Recurrent Unit (GRU) [32]. In preliminary experiments
we found that using convolutions in both the input-to-state and state-to-state transitions reduced the
variance in the performance of the complete agent by sharing information across neighboring map
cells. However, since both the mapMt and the map update Ft are sparse, we use a sparsity-aware
convolution operation that evaluates only observed pixels and normalizes the output [33]. We also
mask the GRU map update to prevent bias terms from accumulating in the unobserved regions.
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4.2 Filter
At the beginning of each episode the agent is placed at a start location s∗0 = (x0, y0, θ0), where
θ represents the agent’s heading and x and y are coordinates in the world frame as previously
described. The agent is given an instructionX describing the trajectory to an unknown goal coordinate
s∗T = (xT , yT , ·). As an intermediate step towards actually reaching the goal, we wish to identify
likely goal locations in the partially-observed semantic spatial mapM generated by the mapper.
Our approach to this problem is based on the observation that a natural language navigation instruction
typically conveys a sequence of expected future observations and actions, as previously discussed.
Based on this observation, we frame the problem of determining the goal location s∗T as a tracking
problem. As illustrated in Figure 2 and described further below, we implement a Bayes filter to track
the pose s∗t of a hypothetical human demonstrator (i.e., the ‘ghost’) from the start location to the goal.
As inputs to the filter, we provided a series of latent observations ot and actions at extracted from
the navigation instruction X . The output of the filter is the belief over likely goal locations bel(sT ).
Note that in this section we use the subscript t to denote time steps in the filter, overloading the
notation from Section 4.1 in which t referred to agent time steps. We wish to make clear that in our
model the filter runs in an inner loop, re-estimating belief over trajectories taken by a demonstrator
starting from s0 each time the map is updated by the agent in the outer loop.
Belief. We define the state st = (xt, yt, θt) using the agent’s (x, y) position and heading θ. We
represent the belief over the demonstrator’s state at each time step t with a histogram, implemented as
a tensor bel(st) = bt, bt ∈ RΘ×Y×X where X , Y and Θ are the number of bins for each component
of the state, respectively. Using a histogram-based approach allows the filter to track multiple
hypotheses, meshes easily with our implementation of a grid-based semantic map, and leads naturally
to an efficient motion model implementation based on convolutions, as discussed further below.
However, our proposed approach could also be implemented as a particle filter [29, 30], for example
if discretization error was a significant concern.
Observations and actions. To transform the instruction X into a latent representation of observa-
tions o and actions a, we use a sequence-to-sequence model with attention [34]. We first tokenize the
instruction into a sequence of wordsX = {x1,x2, . . . ,xl}which are encoded using learned word em-
beddings and a bi-directional LSTM [19] to output a series of encoder hidden states {e1, e2, . . . , el}
and a final hidden state e representing the output of a complete pass in each direction. We then
use an LSTM decoder to generate a series of latent observation and action vectors {o1,o2, . . . ,oT }
and {a1,a2, . . . ,aT } respectively. Here, ot is given ot = [êot ,ht], where ht is the hidden state
of the decoder LSTM, and êot is the attended instruction representation computed using a standard
dot-product attention mechanism [35]. The action vectors at are computed analogously, using the
same decoder LSTM but with a separate learned attention mechanism. The only input to the decoder
LSTM is a positional encoding [36] of the decoding time step t. While the correct number of decoding
time steps T is unknown, in practice we always run the filter for a fixed number of time steps equal to
the maximum trajectory length in the dataset (which is 6 steps in the navigation graph).
Motion model. We implement the motion model p(st | st−1,at,M) as a convolution over the belief
bt−1. This ensures that agent motion is consistent across the state space while explicitly enforcing
locality, i.e., the agent cannot move further than half the kernel size in a single time step. Similarly to
Jonschkowski and Brock [15], the prediction step from Equation 1 is thus reformulated as:

bt = bt−1 ∗ g(at,M) (3)

where we define an action- and map-dependent motion kernel g(at,M) ∈ RΘ2×M2

given by:

g(at,M) = softmax(conv([at,M])) (4)

where conv is a small 3-layer CNN with ReLU activations operating on the semantic spatial map
M and the spatially-tiled action vector at, M is the motion kernel size and the softmax function
enforces the prior that g(at,M) represents a probability mass function. Note that we includeM in
the input so that the motion model can learn that the agent is unlikely to move through obstacles.
Observation model. We require an observation model p(ot | st,M) to define the likelihood of a
latent observation ot conditioned on the agent’s state st and the mapM. A generative observation
model like this would be hard to learn, since it is not clear how to generate high-dimensional latent
observations and normalization needs to be done across observations, not states. Therefore, we follow

2The panoramic setting is chosen for comparison with prior work – not as a requirement of our architecture.
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prior work [30] and learn a discriminative observation model that takes ot andM as inputs and
directly outputs the likelihood of this observation for each state. As detailed further in Section 4.4,
this observation model is trained end-to-end without direct supervision of the likelihood.
To implement our observation model we use LingUNet [2], a language-conditioned image-to-image
network based on U-Net [37]. Specifically, we use the LingUNet implementation from Blukis et
al. [11] with 3 cascaded convolution and deconvolution operations. The spatial dimensionality of
the LingUNet output matches the input image (in this case,M), and number of output channels is
selected to match the number of heading bins Θ. Outputs are restricted to the range [0, 1] using a
sigmoid function. The observation update from Equation 2 is re-defined as:

bt = η bt � LingUNet(ot,M) (5)
where η is a normalization constant and � represents element-wise multiplication.
Goal prediction. In summary, to identify goal locations in the partially-observed spatial mapM, we
initialize the belief b0 with the known starting state s0. We then iteratively: (1) Generate a latent
observation ot and action at, (2) Compute the prediction step using Equation 3, and (3) Compute the
observation update using Equation 5. We stop after T filter update time steps. The resulting belief bT
represents the posterior probability distribution over goal locations.
4.3 Policy
The final component of our agent is a simple reactive policy network. It operates over a global
action space defined by the complete set of panoramic viewpoints observed in the current episode
(including both visited viewpoints, and their immediate neighbors). Our agent thus memorizes the
local structure of the observed navigation graph to enable it to return to any previously observed
location in a single action. The probability distribution over actions is defined by a softmax function,
where the logit associated with each viewpoint i is given by yi = MLP([b1:T,i,vi]), where MLP is a
two-layer neural network, b1:T,i is a vector containing the belief at each time step 1 : T in a gaussian
neighborhood around viewpoint i, and vi is a vector containing the distance from the agent’s current
location to viewpoint i, and an indicator variable for whether i has been previously visited. If the
policy chooses to revisit a previously visited viewpoint, we interpret this as a stop action. Note that
our policy does not have direct access to any representation of the instruction, or the semantic map
M. Although our policy network is specific to the Matterport3D simulator environment, the rest of
our pipeline is general and operates without knowledge of the simulator’s navigation graph.
4.4 Learning
Our entire agent model is fully differentiable, from policy actions back to image pixels via the
semantic spatial map, geometric feature projection function, etc. Training data for the model consists
of instruction-trajectory pairs (X , s∗1:T ). In all experiments we train the filter using supervised
learning by minimizing the KL-divergence between the predicted belief b1:T and the true trajectory
from the start to the goal s∗1:T , backpropagating gradients through the previous belief bt−1 at each
step. Note that the predicted belief b1:T is independent of the agent’s actual trajectory s1:T given
the mapM. In the goal prediction experiments (Section 5.2), the model is trained without a policy
and so the agent’s trajectory s1:T is generated by moving towards the goal with 50% probability,
or randomly otherwise. In the full VLN experiments (Section 5.3), we train the filter concurrently
with the policy. The policy is trained with cross-entropy loss to maximize the likelihood of the
ground-truth target action, defined as the first action in the shortest path from the agent’s current
location st to the goal s∗T . In this regime, trajectories are generated by sampling an action from the
policy with 50% probability, or selecting the ground-truth target action otherwise. In both sets of
experiments we train all parameters end-to-end (except for the pretrained CNN). We have verified
that the stand-alone performance of the filter is not unduly impacted by the addition of the policy, but
we leave the investigation of more sophisticated RL training regimes to future work.
Implementation details. We provide further implementation details in the supplementary. PyTorch
code will be released to replicate all experiments.

5 Experiments
5.1 Environment and dataset
Simulator. We use the Matterport3D Simulator [1] based on the Matterport3D dataset [17] containing
RGB-D images, textured 3D meshes and other annotations captured from 11K panoramic viewpoints
densely sampled throughout 90 buildings. Using this dataset, the simulator implements a visually-
realistic first-person environment that allows the agent to look in any direction while moving between
panoramic viewpoints along edges in a navigation graph. Viewpoints are 2.25m apart on average.
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Table 1: Goal prediction results given a natural language navigation instruction and a fixed trajectory
that either moves towards the goal, or randomly, with 50:50 probability. We evaluate predictions at
each time step, although on average the goal is not seen until later time steps. Our filtering approach
that explicitly models trajectories outperforms LingUNet [2, 11] across all time steps (i.e., regardless
of map sparsity). We confirm that add heading θ to the filter state provides a robust boost.

Val-Seen Val-Unseen

Time step 0 1 2 3 4 5 6 7 Avg 0 1 2 3 4 5 6 7 Avg
Map Seen (m2) 47.2 62.5 73.3 82.1 90.7 98.3 105 112 83.9 45.6 60.3 69.8 78.0 84.9 91.1 96.7 102 78.6
Goal Seen (%) 8.82 17.2 25.9 33.7 41.2 48.8 54.5 60.2 36.3 16.0 25.2 34.6 43.2 50.5 57.0 62.8 67.6 44.6

Prediction Error (m)
Hand-coded baseline 7.42 7.33 7.19 7.18 7.15 7.13 7.09 7.11 7.20 6.75 6.53 6.40 6.37 6.29 6.20 6.15 6.12 6.35
LingUNet baseline 7.17 6.66 6.17 5.75 5.42 5.15 4.89 4.69 5.74 6.18 5.80 5.40 5.17 4.90 4.65 4.44 4.27 5.10
Filter, s = (x, y) (ours) 6.45 5.94 5.66 5.25 5.00 4.86 4.67 4.62 5.31 5.92 5.50 5.14 4.88 4.67 4.45 4.41 4.30 4.91
Filter, s = (x, y, θ) (ours) 6.10 5.75 5.30 5.06 4.81 4.71 4.59 4.46 5.09 5.69 5.28 4.90 4.60 4.40 4.26 4.14 4.05 4.67

Success Rate (<3m error)
Hand-coded baseline 17.3 17.8 18.5 18.2 18.0 19.1 18.8 18.6 18.3 18.9 20.1 21.1 21.3 21.8 22.2 22.6 22.9 21.4
LingUNet baseline 10.7 16.7 21.2 25.8 29.7 33.6 36.9 39.1 26.7 16.9 22.3 27.7 31.6 35.2 38.4 41.1 44.5 32.2
Filter, s = (x, y) (ours) 24.6 29.3 31.9 35.9 39.7 41.0 42.1 41.2 35.7 29.1 32.5 36.1 39.2 41.9 44.5 45.7 46.2 39.4
Filter, s = (x, y, θ) (ours) 30.9 34.3 38.4 41.6 43.7 44.9 44.3 46.2 40.6 34.2 38.7 42.7 46.1 48.2 48.4 49.9 51.2 44.9

Depth outputs. As the Matterport3D Simulator supports RGB output only, we extend it to support
depth outputs which are necessary to accurately project CNN features into the semantic spatial map.
Our simulator extension projects the undistorted depth images from the Matterport3D dataset onto
cubes aligned with the provided ‘skybox’ images, such that each cube-mapped pixel represents
the euclidean distance from the camera center. We then adapt the existing rendering pipeline to
render depth images from these cube-maps, converting depth values from euclidean distance back to
distance from the camera plane in the process. To fill missing depth values corresponding to shiny,
bright, transparent, and distant surfaces, we apply a simple cross-bilateral filter based on the NYUv2
implementation [38]. We additionally implement various other performance improvements, such as
caching, which boosts the frame-rate of the simulator up to 1000 FPS, subject to GPU performance
and CPU-GPU memory bandwith. We have incorporated these extensions into the original simulator
codebase.3

R2R instruction dataset. We evaluate using the Room-to-Room (R2R) dataset for Vision-and-
Language Navigation (VLN) [1]. The dataset consists of 22K open-vocabulary, crowd-sourced
navigation instructions with an average length of 29 words. Each instruction corresponds to a 5–24m
trajectory in the Matterport3D dataset, traversing 5–7 viewpoint transitions. Instructions are divided
into splits for training, validation and testing. The validation set is further split into two components:
val-seen, where instructions and trajectories are situated in environments seen during training, and
val-unseen containing instructions situated in environments that are not seen during training. All the
test set instructions and trajectories are from environments that are unseen in training and validation.

5.2 Goal prediction results
We first evaluate the goal prediction performance of our proposed mapper and filter architecture in a
policy-free setting using fixed trajectories. Trajectories are generated by an agent that moves towards
the goal with 50% probability, or randomly otherwise. As an ablation, we also report results for
our model excluding heading from the agent’s filter state, i.e., st = (x, y), to quantify the value of
encoding the agent’s orientation in the motion and observation models. We compare to two baselines
as follows:
LingUNet baseline. As a strong neural net baseline, we compare to LingUNet [2] – a language-
conditioned variant of the U-Net image-to-image architecture [37] – that has recently been applied to
goal location prediction in the context of a simulated quadrocopter instruction-following task [11].
We choose LingUNet because existing VLN models [3–9] do not explicitly model the goal location or
the map, and are thus not capable of predicting the goal location from a provided trajectory. Following
Blukis et al. [11] we train a 5-layer LingUNet module conditioned on the sentence encoding e and
the semantic mapM to directly predict the goal location distribution (as well as a path visitation
distribution, as an auxilliary loss) in a single forward pass. As we implement our observation model
using a (smaller, 3-layer) LingUNet, the LingUNet baseline resembles an ablated single-step version

3https://github.com/peteanderson80/Matterport3DSimulator
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Table 2: Results for the full VLN task on the R2R dataset. Our model achieves credible results
for a new model class trained exclusively with imitation learning (no RL) and without any data
augmentation or specialized pretraining (Aug).

Val-Seen Val-Unseen Test

Model RL Aug TL NE OS SR SPL TL NE OS SR SPL TL NE OS SR SPL

RPA [4] X 8.46 5.56 0.53 0.43 - 7.22 7.65 0.32 0.25 - 9.15 7.53 0.32 0.25 0.23
Speaker-Follower [7] X - 3.36 0.74 0.66 - - 6.62 0.45 0.36 - 14.82 6.62 0.44 0.35 0.28
RCM [3] X 10.65 3.53 0.75 0.67 - 11.46 6.09 0.50 0.43 - 11.97 6.12 0.50 0.43 0.38
Self-Monitoring [5] X - 3.18 0.77 0.68 0.58 - 5.41 0.59 0.47 0.34 18.04 5.67 0.59 0.48 0.35
Regretful Agent [6] X - 3.23 0.77 0.69 0.63 - 5.32 0.59 0.50 0.41 13.69 5.69 0.56 0.48 0.40
FAST [9] X - - - - - 21.1 4.97 - 0.56 0.43 22.08 5.14 0.64 0.54 0.41
Back Translation [8] X X 11.0 3.99 - 0.62 0.59 10.7 5.22 - 0.52 0.48 11.66 5.23 0.59 0.51 0.47

Speaker-Follower [7] - 4.86 0.63 0.52 - - 7.07 0.41 0.31 - - - - - -
Back Translation [8] 10.3 5.39 - 0.48 0.46 9.15 6.25 - 0.44 0.40 - - - - -
Ours 9.86 7.52 0.36 0.31 0.27 10.33 7.70 0.40 0.31 0.27 9.14 7.71 0.38 0.33 0.30

of our model that dispenses with the decoder generating latent observations and actions as well as the
motion model. Note that we use the same mapper architecture for our filter and for LingUNet.
Hand-coded baseline. We additionally compare to hand-coded goal prediction baseline designed
to exploit biases in the R2R dataset [1] and the provided trajectories. We first calculate the mean
straight-line distance from the start position to the goal across the entire training set, which is 7.6m.
We then select as the predicted goal the position (x, y) in the map at a radius of 7.6m from the start
position that has the greatest observed map area in an Gaussian-weighted neighborhood of (x, y).
Results. As illustrated in Table 1, our proposed filter architecture that explicitly models belief
over trajectories that could be taken by a human demonstrator outperforms a strong LingUNet
baseline at predicting the goal location. This finding holds at all time steps (i.e., regardless of the
sparsity of the map). We also confirm that adding the heading θ to the agent’s state significantly
improves our model’s performance, demonstrating the importance of relative orientation to instruction
understanding. For instance, it is unlikely for an agent following the true path to turn 180 degrees
midway through (unless this is commanded by the instruction). Similarly, without knowing heading,
the model can represent instructions such as ‘go past the table’ but not ‘go past with the table on your
left’. Finally, the poor performance of the handcoded baseline confirms that the goal location cannot
be trivially predicted from the trajectory.

5.3 Vision-and-Language Navigation results

Having established the efficacy of our approach for goal prediction from a partial map, we turn to the
full VLN task that requires our agent to take actions to actually reach the goal.
Evaluation. In VLN, an episode is successful if the final navigation error is less than 3m. We report
our agent’s average success rate at reaching the goal (SR), and SPL [16], a recently proposed summary
measure of an agent’s navigation performance that balances navigation success against trajectory
efficiency (higher is better). We also report trajectory length (TL) and navigation error (NE) in meters,
as well as oracle success (OS), defined as the agent’s success rate under an oracle stopping rule.
Results. In Table 2, we present our results in the context of state-of-the-art methods; however, as
noted by the RL and Aug columns in the table, these approaches include reinforcement learning and
complex data augmentation and pretraining strategies. These are non-trivial extensions that are the
result of a community effort [3–9] and are orthogonal to our own contribution. We also use a less
powerful CNN (ResNet-34 vs. ResNet-152 in prior work). For the most direct comparison, we
consider the ablated models in the lower panel of Table 2 to be most appropriate. We find these
results promising given this is the first work to explore such a drastically different model class
(i.e., maintaining a metric map and a probability distribution over alternative trajectories in the map).
Our model also exhibits less overfitting than other approaches – performing equally well on both seen
(val-seen) and unseen (val-unseen) environments.
Further, our filtering approach allows us greater insight into the model. We examine a qualitative
example in Figure 3. On the left, we can see the agent attends to appropriate visual and direction
words when generating latent observations and actions, supporting the intuition in Figure 1. On the
right, we can see the growing confidence our goal predictor places on the correct location as more
of the map is explored – despite the increasing number of visible alternatives. We provide further
examples (including insight into the motion and observation models) in the supplementary video.
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Figure 3: Left: Textual attention during latent observation and action generation is appropriately more
focused towards action words (‘left’, ‘right’) for the motion model, and visual words (‘bedroom’,
‘corridor’, ‘table’) for the observation model. Right: Top-down view illustrating the agent’s expanding
semantic spatial map (lighter-colored region), navigation graph (blue dots) and corresponding belief
(red heatmap and circles with white heading markers) when following this instruction. At t = 0 the
map is largely unexplored, and the belief is approximately correct but dispersed. By t = 6, the agent
has become confident about the correct goal location, despite many now-visible alternative paths.

6 Conclusion
We show that instruction following can be formulated as Bayesian state tracking in a model that
maintains a semantic spatial map of the environment, and an explicit probability distribution over
alternative possible trajectories in that map. To evaluate our approach we choose the complex problem
of Vision-and-Language Navigation (VLN). This represents a significant departure from existing
work in the area, and required augmenting the Matterport3D simulator with depth. Empirically,
we show that our approach outperforms recent alternative approaches to goal location prediction,
and achieves credible results on the full VLN task without using RL or data augmentation – while
offering reduced overfitting to seen environments, unprecedented intepretability and less reliance on
the simulator’s navigation constraints.
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