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ABSTRACT
Understanding what a software engineer (a developer, an incident
responder, a production engineer, etc.) is working on is a chal-
lenging problem – especially when considering the more complex
software engineering workflows in software-intensive organiza-
tions: i) engineers rely on a multitude (perhaps hundreds) of loosely
integrated tools; ii) engineers engage in concurrent and relatively
long running workflows; ii) infrastructure (such as logging) is not
fully aware of work items; iv) engineering processes (e.g., for inci-
dent response) are not explicitly modeled. In this paper, we explain
the corresponding ‘work-item prediction challenge’ on the grounds
of representative scenarios, report on related efforts at Facebook,
discuss some lessons learned, and review related work to call to
arms to leverage, advance, and combine techniques from program
comprehension, mining software repositories, process mining, and
machine learning.

KEYWORDS
developer workflow, loose tool integration, concurrent workflow,
process mining, machine learning, code similarity, word correlation

1 INTRODUCTION
A ‘process-unaware (information) system’ [9] does not expose pro-
cesses in a direct manner at an architectural and user level. In this
paper, we are concerned with a very similar problem in the context
of the ecosystems and processes that engineers use to develop, to de-
ploy, and to maintain software systems: the challenge of predicting
what work item a software engineer is working on:

The work-item prediction challenge

∗This paper appears in Proceedings of 28th International Conference on Program
Comprehension, ICPC 2020. The subject of the paper is covered by the first author’s
keynote at the same conference.
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The events on the timeline concern different ‘diffs’ (i.e., system changes
all the way from committing a change locally to landing the change in
production) as work items. White events are trivially associated with diffs.
Gray events require dedicated data integration for association. Black events
are hard to associate; advanced heuristics and machine learning may be of
use. That is, which of the three diffs should be associated with the DB query
and the documentation access?

Figure 1: Dark Matter in Engineering Workflows.

Abbreviation: WIP challenge.1 We speak of a challenge here be-
cause of these defining characteristics: i) engineers rely on a
multitude (perhaps hundreds) of loosely integrated tools; ii) engi-
neers engage in concurrent and relatively long running workflows;
ii) infrastructure (such as logging) is not fully aware of work items;
iv) engineering processes (e.g., for incident response) are not ex-
plicitly modeled. In combination, these characteristics give rise to
what we call ‘dark matter’; see Figure 1 for an illustration.

Being able to predict the work item along the timeline of each
developer has profound applications, for example, in the context of
incident response in engineering (with relevance for reliability, in-
tegrity, privacy, and security) or the aggregation of key performance
indicators for engineering processes.

Call to Arms. While there exists significant related work on
capturing and analyzing workflows of software engineers (e.g.,
in terms of the use of VCSs or IDEs [10, 15, 18]), this paper calls
to arms on research addressing the WIP challenge in terms of the
defining characteristics to enable work-item prediction for software
engineering workflows in software-intensive organizations. Future
work is needed to leverage, advance, and combine techniques from
program comprehension, mining software repositories, process
mining, and machine learning.

Roadmap of the Paper. We explain the WIP challenge in more
detail on the grounds of representative scenarios (Section 2), report
on related efforts at Facebook (Section 3), discuss some lessons
learned (Section 4), and review related work (Section 5).
1WIP tends to serve also as an acronym for ‘work in progress’, which is very fitting for
our purposes because predicting what work item is being worked on essentially boils
down to tracking all work in progress, at all times, as we will discuss in more detail.
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2 REPRESENTATIVE SCENARIOS
At Facebook, we have encountered the need for and engaged in
efforts towards addressing the WIP challenge on several occasions.
We now describe two different scenarios in which work-item pre-
diction is required. We inject some data points or illustrations to
underline the defining characteristics of the WIP challenge. For
non-disclosure reasons, we cannot report more specifics of any
actual WIP scenarios at Facebook, but we consider the selected
scenarios as representative of what is needed in software-intensive
organizations.

2.1 The ‘Incident Response’ Scenario
Summary. Engineers need to respond to an incident (an alert)

such as suboptimal performance of an important system compo-
nent. To this end, engineers would like to reuse workflow steps
by experienced engineers who investigated and mitigated similar
incidents in the past.

Details.

• For some types of incidents, there may exist team-specific
or more generic documentation with workflows for incident
response, but it may be outdated or too unspecific. In fact,
there are so many different kinds of incidents and the re-
sponse workflows change over time. Thus, some form of
‘automatic documentation’ is needed.

• If we were to extract workflow steps from past incident
responses, we need to identify all events associated with
a given incident ID. Available logging does not suffice for
such association in practice, due to a multitude of loosely
integrated tools. Simple heuristics are insufficient because
engineers engage in concurrent and relatively long running
workflows.

• We may attempt reverse engineering and data mining to re-
cover the incident IDs from logs. This would be a continuous
and possibly prohibitively expensive effort, given the com-
plexity and the evolution of the tool suite to be considered.

• We may instead attempt re-engineering to improve, for ex-
ample, logging, thereby improving tool integration. This
would risk reliability of the infrastructure / the ecosystem.
This would also cause disruption, as the integration would
affect engineering processes, which would also be the case,
if we were to start from the premise of explicit modeling of
engineering processes.

Illustration – Multitude of Tools. Figure 2 illustrates tool usage at
Facebook. The chart shows the number of tools used per employee
per day. The employees with more tools used per day are mostly
developers and other engineers. We note that the counting scheme
for tools is idiosyncratic; we often treat tool suites (sometimes of
significant size) as single tools because it is easier for us to count
that way; we also filter tools in some ways.

2.2 The ‘Aggregate Performance’ Scenario
Summary. Organizations aggregate performance data at differ-

ent levels by means of Key Performance Indicators (KPIs) to in-
form decision making, for example, regarding the effectiveness of

engineering practices; see [11] for some broader context on pro-
ductivity metrics. Let us consider two KPIs related to ‘diffs’ (i.e.,
system changes all the way from committing a change locally to
landing the change in production) as work items: i) ‘time spent
on reviewing a diff’; ii)‘time spent on a diff in total’. (In practice,
these KPIs would be set up in a nuanced manner, for example, by
grouping by product area.)

Details.
• Consider the KPI ‘time spent on reviewing a diff’ first. This
KPI is still implementable, if we assume that we can leverage
logging for individual review comments, review decisions,
and engagement with the reviewing UI (such as clicking,
typing, and scrolling).

• Now consider the more general KPI ‘time spent on a diff in
total’. Logging may not cover important slices of work on
a diff during ’idea formation’ (e.g., reading documentation)
or extra investigations independent of the diff’s code (e.g.,
interactive database queries).

• Concurrency of working on diffs is entirely to be expected,
especially in keeping several published diffs active for re-
views and revisions until eventually shipping them inde-
pendently or together. These workflow are also potentially
long-running; think of diff authors and reviewers residing
in different time zones.

Illustration – Concurrent and Long-Running Workflows. Figure 3
illustrates diff-related workflows of a developer over a few days. It
is clear that the developer works on several diffs concurrently, as
indicated by the overlapping distances between ‘diff created’ and
‘diff shipped’ / ‘diff abandoned’ events. In some cases, key events of
several diffs occur together on the timeline, but it is reasonable to
assume that some ‘context switching’ must have occurred prior to
these ‘checkpoints’. Note also the ‘work-in-progress’ events which
appear on the timeline at a point when the work item of interest,
i.e., the diff, did not even exist yet.

3 A SYSTEM FOR DIFF PREDICTION
We will now sketch a system for work-item prediction which we
developed and deployed at Facebook. The system is focused on
diffs as work items, but it incorporates other types of work items,
as a matter of design – notably tasks (i.e., work items for project
management and planning at Facebook). The system leverages
heuristics and machine learning.

While the system can be used, for example, to address the ‘Aggre-
gate Performance’ scenario of Section 2, it was initially developed
and deployed to address a specific security-related use case, which
is not discussed here for non-disclosure reasons.

3.1 The Prediction Architecture
The system essentially relies on a logging foundation that integrates
data for employee activity, a notion of time windows for work-item
prediction, a notion of candidate work-item IDs from which to pick,
and, ultimately, a ranking process for candidate work items per
employes.

3.1.1 Logging Foundation. Diff prediction relies on data from a
number of logs; the most important ones are these:
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Figure 2: Number of (selected) tools used per employee on a given day for many of Facebook’s employees.

Figure 3: Concurrent workflow by a developer on several diffs (y-axis) over a few days (x-axis).

• Interactive, web-based tools – some of these tools cover
development directly (e.g., the Phabricator UI, see below),
but there are hundreds of tools, which are logged generically.

• Version control (Mercurial, Git, etc.) – Checkouts are per-
formed; commits are created, amended, and rebased. These
actions are logged from the command line and the IDEs.

• Code reviewing and continuous integration (Phabricator UI
and CLI et al.) – Commits are published for review, tested
in a sandbox, commented on, revised, accepted or rejected,
landed in production or abandoned, etc.

• Task management – Tasks are created, assigned, commented
on, associated with diffs, closed, etc.

• Development tools – Build project; run test; debug code;
query a database; etc.

3.1.2 Time Windows Into Dark Matter. We aim at probabilities for
a certain employee to work on a certain work item (diff) at a certain
time. We use time windows of 10 minutes as the granularity on
the time axis for aggregating signal and learning correlations. For
each employee (engineer), we use basic logging data to determine

the windows during which the employee was active and for which
prediction is thus relevant; see Listing 1.

Listing 1: Data Model for Active Time Windows
CREATE TABLE active_time_windows (

employee BIGINT COMMENT 'Employee ID',
first_time BIGINT COMMENT 'Window first time',
last_time BIGINT COMMENT 'Window last time'

)
PARTITIONED BY (ds STRING) −− YYYY−MM−DD − for the day of the data

Throughout this section, we use such relational table schemas
to hint at the data model used by the system for diff prediction,
which is implemented in Facebook’s data warehouse while relying
on Hive, Spark, Presto, and scheduled pipeline and ML runs. All
tables are partitioned by day (see ‘ds’), i.e., work-item prediction is
is generally approached on a per-day basis.

The timewindows associate with corresponding event sequences
as of the logging foundation. (Think of join conditions based on time
boundaries.) We also refer to the time-windowed event sequences
as ‘dark-matter sequences’; see the introduction for our use of the
term ‘dark matter’.
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3.1.3 Candidate Work Items. Prediction cannot make up work
items (or IDs thereof) by itself. Instead, prediction is given access
to a set of candidate work items that can be at all expected to be
worked on during a given day by a given person.

To this end, we use high-confidence signal such as version
control- and reviewing-based interaction of employees with diffs
such as the events illustrated in Figure 3. We propagate backward
b days and forward f days. (Let’s assume here f = b = 2.) Thus,
we end up with a set of candidate diffs as modelled in Listing 2.

Listing 2: Data Model for Candidate Diffs per Employee
CREATE TABLE candidate_diffs (

employee BIGINT COMMENT 'Employee ID',
diff_number BIGINT COMMENT 'Candidate diff'

)
PARTITIONED BY (ds STRING)

3.1.4 Prediction by Ranking. On a given day, for each employee, for
each active timewindow, and for each candidate work item, we need
to determine the probability of the employee working during the
time window on the work item. Many of these probabilities should
be expected to be zero. All these probabilities, when combined,
define directly a ranking of work items per time window of the
employee. The actual prediction is determined by a combination of
heuristics, applied to the dark-matter sequences, subject to heuristic
averaging. Some of the heuristics use machine learning.

When outputting a prediction, we also record the contribution
of each heuristic, thereby contributing to an explainable model for
work-item prediction [20]. The output format for predictions is
modelled in Listing 3.

Listing 3: Data Model for Diff Predictions
CREATE TABLE diff_predictions (

employee BIGINT COMMENT 'Employee ID',
first_time BIGINT COMMENT 'Sequence first time',
last_time BIGINT COMMENT 'Sequence last time',
diff_number BIGINT COMMENT 'Candidate diff',
prediction DOUBLE COMMENT 'Probability of employee working on diff',
contributions MAP<STRING, DOUBLE> COMMENT 'Contributions of heuristics'

)
PARTITIONED BY (ds STRING)

The individual heuristics compute either a Boolean value or
a probabilistic value in the range [0, 1]. Thus, there is a table of
per-heuristic output, subject to additional partitioning as modelled
in Listing 4.

The extra partitioning simplifies the process of computing the
individual heuristics in the data warehouse in a distributed manner.
(We could also use one table for each heuristic instead.)

3.2 Selected Heuristics
Let us sketch some of the heuristics used by the system for diff
prediction.

3.2.1 Heuristic ‘Diff Analysis’ (DA). We extract ‘strong confidence’
events for authors and reviewers interacting with diffs. All those
events are labeled with ‘1.0’. There are ‘obvious’ events when diff au-
thors submit diffs or new versions thereof for reviewing or review-
ers submit reviews or parts thereof. We also incorporate so-called

Listing 4: Data Model for Diff Heuristics
CREATE TABLE diff_heuristics (

employee BIGINT COMMENT 'Sequence employee ID',
first_time BIGINT COMMENT 'Sequence first time',
last_time BIGINT COMMENT 'Sequence last time',
diff_number BIGINT COMMENT 'Candidate diff',
label DOUBLE COMMENT 'Positive (1.0) / negative (0.0) label'

)
PARTITIONED BY (

ds STRING,
heuristic STRING −− Name of heuristic

)

work-in-progress events which are about an employee’s interac-
tion with the repository and local commits — also before an actual
Phabricator diff is created. Consider the following sample workflow
of an employee:

(1) Update to master on the developer’s machine.
(2) Start editing and commit locally.
(3) Continue editing and amend locally.
(4) Split the amended commit.
(5) Submit a stack of two diffs for review.
At point (1), a checkout identifier (also referred to as ‘work-in-

progress’ identifier) is created. Each of the operations (2)–(4) creates
more checkout identifiers and also commit hashes as the result of
the mutations. Once operation (5) creates two diffs, actual diff IDs
become available. We can now travel into the past and connect
timestamps (1)–(4), in this case, with both diffs. This heuristic lever-
ages an integrated event log for version control and code review,
as modelled in Listing 5.

Listing 5: Data Model for Integrated Event Log for Diffs
CREATE TABLE diff_event_log (

id BIGINT COMMENT 'Diff event ID',
time_started BIGINT COMMENT 'Time the event (action) started',
time_ended BIGINT COMMENT 'Time the event (action) ended',
actor BIGINT COMMENT 'ID of employee acting on the diff',
event_type STRING COMMENT 'Type of diff event',
diff_number BIGINT COMMENT 'Diff number',
version_number BIGINT COMMENT 'Version number of diff',
owner BIGINT COMMENT 'ID of employee owning the diff',
data STRING COMMENT 'Extra metadata in JSON'

)
PARTITIONED BY (ds STRING)

3.2.2 Heuristic ‘Task Events’ (TE). Tasks support project manage-
ment and planning at Facebook. There are tasks for features to be
developed, incidents to be investigated, bugs to be fixed, etc. Diffs
are typically also associated with tasks eventually. Once this asso-
ciation is revealed, we count task interaction events retroactively
towards associated diffs.

3.2.3 Heuristic ‘Diff URIs’ (DU). The web-based, internal tools
used at Facebook may track work items, to some extent, through
URI parameters. For instance, diff IDs are generally represented in
this format “D(\\d+)” (using regular expression syntax here) and
this representation is also used within URIs. There is a few specific
tools, for which we are readily aware of their usage of diff IDs in
the URIs and specific positions or parameters thereof. The present
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heuristic extracts diff-ID occurrences more generically. Without
a heuristic like this, we would need to continuously invest into
extraction functionality for a multitude of evolving and new tools.
The heuristic is prone to false positives, but aims at minimizing
those by incorporating knowledge of the valid length of contempo-
rary diff IDs. (For instance, the string ‘D42’ would be considered
too short to count as a diff ID.)

3.2.4 Heuristic ‘Diff Comparison’ (DC). Based on backup system-
like support for tracking local repository changes, we track ‘file
changes’, ahead of actual commits so that they can be correlated
with diffs, eventually.

We tokenize (featurize) diffs and changes:

• filename extensions;
• filename words (directory names, basenames, parts thereof);
• symbols ‘used’ (e.g., program identifiers referenced).

For instance, filename extensions help to already group diffs
largely by language (technology); filenamewords help with aligning
changes based on the affected regions in the file tree. We leverage
similarity metrics (cosine et al.) and clustering for comparison, in
fact, similarity analysis.

3.2.5 Heuristic ‘Word Indexing’ (IX). The ‘Diff URIs’ (DU) heuristic
suffices when diff IDs are explicitly mentioned in URIs. We devise
the ‘Word Indexing’ (IX) heuristic to better address the defining
characteristics of theWIP challenge to involve amultitude of loosely
integrated tools along concurrent, long-running workflows.

Consider the following (obfuscated) URI, which we keep trivial
for ease of explanation, but it should be noted that URIs for inter-
nal tool usage at Facebook can be rather complex, as significant
session/context data is captured by the URIs:

https://internal.acme.com/tools/tool-42/resources/123/?task=T4711

The heuristic relies on tokenization of URIs. That is, the following
words would be extracted for the example: tool, 42, resources, 123,
task, T4711. The heuristic performs word indexing and, in fact,
word-correlation learning such that, for example, we may infer that
‘T4711’ associates generally (probabilistically) with a certain diff
ID, if ‘T4711’ co-occurs with the diff ID in enough time windows
elsewhere. This is explained in Section 3.3 in more detail.

3.2.6 Heuristic Averaging. The heuristics are combined to compute
a final prediction by weighted averaging. We use larger weights
for higher confidence signal (such as the DA heuristic) and lower
weights for lower confidence signal, to account for noise (false
positives), subject to the overall assumption that low weights are
still sufficient to create a rank for work items and a combination of
low weights may also increase the rank.

Figure 4 shows two basic metrics for the selected heuristics,
as they affect the final predictions – this is a sample for a recent
day and some group of employees. The nonzero column counts
how many time windows are labeled by the heuristic. The signif-
icant column counts how many times a significance threshold is
passed, subject to internal validation for reducing false positives.
We mention in passing that we use yet other metrics, for example,
a quantification of whether a work item is included exclusively
due to a specific heuristic or a distribution of the distance between

Figure 4: A Sample of Two Basic Heuristics Metrics.

high-confidence signal (DA and TE) and low-confidence signal (DC
and IX) per pairs of work item and employee.

3.3 Word-Correlation Learning
Let us discuss the IX heuristic for word-correlation learning, as
introduced in Section 3.2.5, in more detail, as this component ad-
dresses the defining characteristics of the WIP challenge in a rela-
tively advanced manner.

3.3.1 Tokenization. The tokens (words) extracted from URIs due
to tool usage are the starting point for word indexing; see Listing 6.

Listing 6: Data Model forWords in URIs due to Tool Usage
CREATE TABLE uri_words (

employee BIGINT COMMENT 'Employee ID for tool usage',
time BIGINT COMMENT 'Time the tool was used',
uri_words ARRAY(STRING) COMMENT 'Words in a URI for tool use'

)
PARTITIONED BY (ds STRING)

3.3.2 Word Frequency. Many of the URI words (tokens) extracted
from the URIs for tool usage are ‘noise’ in the sense that they
occur all too often and we need to filter the set of words to ever be
considered for prediction. To this end, we aggregate, over time, the
frequency of words; see Listing 7.

Listing 7: Data Model forWord Frequency
CREATE TABLE word_frequency (

uri_word STRING COMMENT 'Word in a URI for tool use',
word_days BIGINT COMMENT 'Number of employee days the word appears in',
all_days BIGINT COMMENT 'Total number of available employee days',
inverse_frequency DOUBLE COMMENT 'IDF computed from above numbers'

)
PARTITIONED BY (ds STRING)

In particular, we compute an inverse document (-like) frequency
with all documents corresponding to the days seen by our analysis
versus those days where the word occurs. We omit here details
how exactly we apply filters, but we use this frequency table in
an obvious sense to focus on words of interest and to maintain
scalability of the prediction process. Here we note that several 100K
new words show up every day in our dataset.
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3.3.3 Co-Occurrence with Diff IDs. We determine co-occurrences
of diff IDs for candidate diffs with other words within URIs. We
build a corresponding index of such word overlaps per day from a
number of past days and we track the employee for whose dark-
matter sequence the co-occurrence occurred; see Listing 8.

Listing 8: Data Model for Overlaps of diff IDs and Other Words
CREATE TABLE diff_id_overlaps (

employee BIGINT COMMENT 'Employee ID',
first_time BIGINT COMMENT 'Sequence first time',
last_time BIGINT COMMENT 'Sequence last time',
diff_number BIGINT COMMENT 'Candidate diff',
word STRING COMMENT 'Word that co−occurs',
index_employee BIGINT COMMENT 'Employ with overlap in index',
index_time BIGINT COMMENT 'Overlap time in index',
index_ds STRING COMMENT 'Overlap day in index'

)
PARTITIONED BY (ds STRING)

3.3.4 Word-Indexing Features. At this point, we can extract fea-
tures from word overlaps; see Listing 9 for some examples of count-
based features.

Listing 9: Data Model forWord Index Features
CREATE TABLE word_index_features (

employee BIGINT COMMENT 'Employee ID',
first_time BIGINT COMMENT 'Sequence first time',
last_time BIGINT COMMENT 'Sequence last time',
diff_number BIGINT COMMENT 'Candidate diff',
ft_ct_total_overlaps INT COMMENT

'Total number of overlaps of diff ID with other words.'
ft_ct_overlaps_more_distinct INT COMMENT

'Number of distinct triples (word, employee, ds) from among
all the overlaps. In particular, this does not count repeated visits
to the same word within the sequence.',

ft_ct_overlapping_words INT COMMENT
'Number of distinct words from among all the overlaps. This counts
how many related words there are, without looking at how closely
related each individual word is.',

ft_ct_overlapping_employee_days INT COMMENT
'Number of distinct employee/ds pairs from among all the overlaps.
This counts how many times the sequence and candidate can be related,
without looking at how many words they are related by each time.',

ft_min_overlap_employee_day_freq INT COMMENT
'Smallest employee−day frequency of an overlapping sequence word.
That is, from all the overlaps, find the sequence word that is rarest
in general (by employee−day frequency, i.e., by counting the number of
employee/ds pairs in which it appears in the past).',

. . .
)
PARTITIONED BY (ds STRING)

For each feature, one may have an intuition as to why the feature
could be possibly helpful for work-item prediction. For instance,
ft_min_overlap_employee_day_freq is included because overlapping
words that are rarer in the ‘entire’ past of an employee may be more
meaningful.

3.3.5 Prediction with Decision Trees. We leverage a decision tree
(DT) algorithm, in fact, GBDT with permutation-based feature im-
portance. We rely on a weak supervision approach as follows. For

Figure 5: Feature Importance of the GBDT Model.

positive labeling, we use high-confidence events. For negative la-
beling, essentially, we select dark-matter sequences without high-
confidence events, but instead with high confidence of no diff-
related work based on an observable, prolonged hiatus regarding
diffs in terms of absence of high-confidence events, despite though
being active overall.

In Figure 5, we illustrate feature importance. For instance, the im-
portance of ft_ct_overlapping_employee_days is evident, while our
hopes for ft_min_overlap_employee_day_freq are shattered. (Dis-
claimer: feature importance is shown here at some point during
development, feature engineering, and feature selection.)

4 LESSONS LEARNED
Based on our work on work-item prediction at Facebook (diffs and
other types of work items), we share some lessons learned. For non-
disclosure reasons, we cannot report empirical results on work-item
prediction. Instead, we focus here on more general findings.

4.1 The Dominance of Event Log Integration
Events of interest are scattered over diverse available logs. Thus,
filtering, abstraction, cleaning, alignment, and quality checking
efforts are crucial. In our experience, this work combined with
recovering the semantics of the given data dominates efforts on
work-item prediction. Some of these integration efforts can be
technically involved and require significant computational and
storage investments. For instance, diff prediction required an extra
component to perform chasing from diffs to local commits based
on version control data — this turned out to be a non-trivial graph-
based computation.

4.2 The Effort of Managing Prediction DAGs
We implement prediction architectures as directed acyclic graphs
(DAG) with tables as nodes and scheduled pipeline and ML runs in
the data warehouse as edges. For instance, the DAG for diff predic-
tion includes many dozens of tables and scheduled runs. (Arguably,
splitting up data into tables and computations into scheduled runs is
subject to some design choices. Also, some of the tables are reused
or reusable.) We suffice with offline, day-by-day prediction and
thus, all computation is scheduled for daily execution.

The challenge is that a prediction architecture has significant
internal and upstream dependencies; we are affected by delays, fail-
ures, or changes in the data semantics. It requires continuous effort
and rigorous engineering (e.g., monitoring, data-quality checking,
responding to alerts) to keep the overall DAG up and running.
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4.3 Limits of Human-Based Validation
A naive approach to human-based validation would require subjects
to accept or reject triples of the form time window, employee, and
work item, thereby providing labeled data for machine learning and
enabling measurements of model performance (e.g., precision and
recall) in the most direct manner. The costs of such an approach are
arguably prohibitive in an industrial setting. Also, it is relatively
hard to sufficiently help the subjects to make an informed decision.
There are more indirect means of human-based validation, which
also can be used for weak supervision. i) Gamification (For instance,
’Hello X, were you working on diff D123, when you were running
the database query Q456 at 2:42pm yesterday? Please, answer with
Yes or No.’) ii) Efficiency (Can we measure that, for example, the
incident response time is lower, on average, when responders use
predicted work items as opposed to using more basic means of
identifying work items based on, for example, simple queries for
high-confidence events?) iii) Relevance (Can we measure how often
an incident responder relies on predicted work items?)

4.4 The Need for Internal Validation
Especially because human-based validation is so limited, we need
to use internal validation. To this end, some quantitative means
are used: i) Predictions associate a significant number of time win-
dows with specific work items. ii) A significant number of the
time windows in i) do not contain high-confidence events, but only
low-confidence events for the some work item. iii) With increas-
ing life time of a work item (say, the span between first and last
high-confidence event), the probability increases that there are in-
terruptions in time windows being associated with the work item.
These forms help in establishing basic properties of prediction. That
is, prediction finds work items, the findings are not just based on
proximity, and association of time windows with work items is on
and off over time.

4.5 The Value of Similarity Measures
When we started our efforts on work-item prediction, we were
enthusiastic about clustering work items (diffs) to correlate events
(such as file changes or database queries, debugging sessions, or
code searches) with eventual diffs. Perhaps obviously, clustering
turned out to be the wrong tool for the problem because any discov-
erable clustering semantics within developer ‘utterances’ turns out
to be too coarse-grained to be useful in distinguishing, for example,
diffs of the same developer, especially when clustering is performed
for all developers at once. Also, the size of many utterances is just
too small to be useful for clustering; consider, for example, short
debugging sessions or trivial database queries. It turned out that
relatively simple similarity measures (e.g., cosine) are more effective
for correlating ‘utterances’ with diffs.

4.6 Systematic Dark Matter Elimination
In our work, we included additional heuristics based on an ad-hoc
process. In the case of diff prediction, we started from obvious, high-
confidence events (such as ‘publish a diff’); we advanced towards
inclusion of correlated events (such as ‘commit a version locally’),
subject to some data integration; eventually, we leveraged some
data mining and machine learning components. While the inclusion

of any heuristic was driven by domain knowledge, the process is
prone to premature optimization and gaps or delays regarding
(internal) validation. We are now looking for a more data science-
driven approach, where each decision to include an additional or to
advance an existing heuristic can be supported by an appropriate
analysis.

5 RELATEDWORK
Let us review related to work so that we connect the WIP challenge
and the sketched efforts at Facebook to prior art. Related work is
from the areas of program comprehension, mining software repos-
itories, process mining, and machine learning. We group related
work entries by some common themes.

5.1 Developer Workflow Mining
Summary. Work in this group tends to involve explicit models

of developer workflow; making such an assumption would make
the WIP challenge only harder. None of the scenarios that we have
in mind require an explicit model. Further, some of the work in
this group touches upon the issue of using multiple tools, but the
more general characteristics of a multitude of loosely integrated
tools along concurrent, long-running workflows are not addressed.
However, work in this group submits important techniques for
event modeling and data mining, overall.

Visualizing IDE sessions [14]. The approach is inspiring in terms
of setting up some basic concepts such as IDE sessions (to provide
scope), events and classifying them more abstractly (e.g., inspec-
tion, editing, and navigation), and navigation paths to express that
different entities are manipulated. The frequency of events and
navigation paths are visualized by size/width. Colors are used to
encode classification properties.

Process mining for mining software repositories [18]. In one of the
case studies, the paper uses the ProM tool for process mining to
extract the bug life cycle in a software project. Much of the work is
concerned with preprocessing data sources for use with the ProM
tool for process mining.

Identification of usage smells in IDEs [5]. This work helps assess-
ing the usability of an IDE. Event sequences are analyzed through
stages of pattern mining (mostly counting common sequences with
some degree of variation), pattern filtering (e.g., to remove too short
sequences), and pattern clustering (to compress the large number
of patterns to be amenable to visual inspection).

Workflow mining from IDE usage [10]. The Disco tool is used to
extract the actual workflows in terms of graphs with events and
frequency-annotated transitions. Events are classified in some in-
teresting ways (e.g., discrete versus continuous events). Workflows
are determined in an experiment-based manner such that developer
subjects solve certain tasks with the given IDE.

Prediction or recommendation of developer behavior in the IDE [4].
Temporal Latent Dirichlet Allocation (Temporal LDA) for topic
modeling is applied to IDE interaction data. In this manner, high-
level task behavior such as structured navigation is discovered
based on interpreting sequences of lower level interaction events
and commands.
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Developer behavior across GitHub and StackOverflow [23]. The
accounts are associated and cross-site developer behaviors are ana-
lyzed through T-graph analysis, topic-based clustering (based on
LDA) and cross-site tagging.

Discovering software processes from OSSD Web repositories [12].
A general methodology is presented, combining techniques for text
analysis, link analysis, and patterns of repository usage and update.
This work presents a process entity taxonomy and relies on the
construction of a social graph to better capture who is working
with whom how. Probabilistic relational modeling (PRM) is used to
model what the developers are doing and how they are doing it.

Correlation of code changes with reviewer input [2]. This correla-
tion is measured while assuming a certain process for code review
with involvement of a task management system. The work does
not use any advanced information retrieval techniques, but it relies
instead on carefully collected datasets and subject-based ground
truth. A significant percentage of code changes is classified as not
responding to reviewer comments.

5.2 Case ID Recovery in Process Mining
Summary. Work in this group applies to process-unaware sys-

tems [9] in so far that case IDs (say, work-item IDs – for our pur-
poses) are not assumed. However, other characteristics of the WIP
challenge (the multitude of evolving tools, the significance of con-
current workflows, the limitations of logging) are not taken into
account.

Key alignment by composite key conditions [16]. The work aims at
integrating separate logs using different kinds of keys. Alignment
of the keys relies on composite key conditions of some specific
format, which assumes key attributes, equality, conjunction, and
disjunction, so that entries from different logs are assigned to the
same workflow instance, when the conditions hold. The conditions
do not need to be designed manually, but they can be explored
semi-automatically by a heuristic, thereby providing a form of case
ID learning.

Case ID assignment based time proximity [8] et al. The probability
of certain events to follow certain other events can be inferred
from an (unlabeled) log. Once such a probability matrix has been
estimated, assignment of case IDs is essentially an optimization
problem. This approach is of limited use in a setting, like the one of
the WIP challenge, with concurrent and long-running workflows
and an event log that necessarily contains much ‘noise’ in terms of
irrelevant events.

Case IDs in a mobile app context [6]. The service log, which logs
requests of the app, is translated to an event log while filling in
missing case IDs on the grounds of several heuristics: some form of
time proximity, spatial continuity, grouping of requests by source,
and an overall time bound (due to app specifics). The work caters
for multiple versions of the underlying process, thereby addressing
system evolution to some extent.

5.3 Machine Learning in Process Mining
Summary. Work in this group discusses machine learning in

the process mining context. The work does not directly address the
defining characteristics of the WIP challenge, but the work inspires
potential advances of any WIP solution to better address event

abstractions, ML concept drifts, and representations for embeddings,
or to enable additional applications such as anomaly detection.

Event abstraction [21]. Supervised learning is leveraged for event
abstraction based on annotations with high-level interpretations
of low-level events while relying on extensions of the XES event-
stream format and using conditional random fields for machine
learning. (Without event abstraction, raw events may be too fine-
grained for process discovery to return useful results.)

Discovering and understanding potential concept drifts [3]. (This
term is used in machine learning to refer to situations when the
relation between the input data and the target variable, which the
model is trying to predict, changes over time in unforeseen ways,
thereby letting accuracy of the predictions degrade over time.) This
work provides a generic framework and specific techniques for
discovering and understanding potential concept drifts in process
mining. In particular, the effects of ’noise’ (random replacements or
insertions of incorrect symbols or missing symbols) and imbalance
(largely different priorities of certain branches) are addressed.

Representation learning [13]. The work is based on the observa-
tion that, we quote, “real-life event logs present a large number of
cases, potentially representing a highly varied set of distinct event
sequences, and usually also containing information on resources
and a diverse set of other event- or case-related attributes”. As a
consequence, featurized event data suffers from a dimensionality
problem, which the paper addresses by representation learning
architectures for activities, traces, logs, and process models.

Anomaly detection [17]. Neural networks are applied to address
a general objective in process mining: verification of the absence
of certain undesirable properties or the compliance with certain
desirable properties [1, 7, 22].

6 CONCLUDING REMARKS
In this paper, we have established the work-item prediction chal-
lenge, as it applies to software engineering workflows in software-
intensive organizations.

The defining characteristics of the challenge are these: i) engi-
neers rely on a multitude (perhaps hundreds) of loosely integrated
tools; ii) engineers engage in concurrent and relatively long running
workflows; ii) infrastructure (such as logging) is not fully aware of
work items; iv) engineering processes (e.g., for incident response)
are not explicitly modeled.

In practice, an ensemble of heuristic- and ML-based components
is needed to predict work items on the timelines of employees.
We have described related efforts at Facebook, where diffs (system
changes), as a type of work item, are predicted. Such prediction is
readily useful in the context of incident response in engineering
(with relevance for reliability, integrity, privacy, and security) or
the aggregation of key performance indicators for engineering
processes.

We have provided an extended related work discussion which
connects thework-item prediction challenge to research in the areas
of program comprehension, mining software repositories, process
mining, and machine learning. This discussion documents the need
for and the potential of leveraging, advancing, and combining exist-
ing techniques to tackle the work-item prediction challenge more
efficiently in practice.
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