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Abstract
The benefit of multi-task learning over single-
task learning relies on the ability to use relations
across tasks to improve performance on any sin-
gle task. While sharing representations is an im-
portant mechanism to share information across
tasks, its success depends on how well the struc-
ture underlying the tasks is captured. In some
real-world situations, we have access to metadata,
or additional information about a task, that may
not provide any new insight in the context of a
single task setup alone but inform relations across
multiple tasks. While this metadata can be useful
for improving multi-task learning performance,
effectively incorporating it can be an additional
challenge. We posit that an efficient approach to
knowledge transfer is through the use of multiple
context-dependent, composable representations
shared across a family of tasks. In this framework,
metadata can help to learn interpretable represen-
tations and provide the context to inform which
representations to compose and how to compose
them. We use the proposed approach to obtain
state-of-the-art results in Meta-World, a challeng-
ing multi-task benchmark consisting of 50 distinct
robotic manipulation tasks.

1. Introduction
Reinforcement learning (RL) has made large strides over the
last several years (Mnih et al., 2013; Silver et al., 2017; Rad-
ford et al., 2019). While these improvements are significant,
much of this success has been restricted to the single task
setting (Teh et al., 2017; Yu et al., 2020b). In contrast, hu-
mans are adept at multi-tasking by acquiring new skills and
composing known skills to solve complex tasks (Parascan-
dolo et al., 2018; Allen et al., 2020). For autonomous agents
to adapt effectively in the real world, they need to mas-
ter multiple tasks in a sample efficient manner. Multi-task
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reinforcement learning (MTRL) is a promising approach
to train effective real-world agents (Tanaka & Yamamura,
2003; Rusu et al., 2016; Borsa et al., 2016; Rajeswaran et al.,
2016; El Bsat et al., 2017; Andreas et al., 2017; Igl et al.,
2020; D’Eramo et al., 2020; Yu et al., 2020a).

One limitation of existing MTRL methods is the inability to
leverage side information (or metadata), like the description
of a task, to learn generalizable skills and transfer com-
mon knowledge across tasks. Such metadata is often avail-
able in real-world tasks but is not leveraged in the typical
MTRL setting. This metadata can take the form of natural
language task descriptions or instructions, which are often
incorporated only for human usage to communicate informa-
tion about tasks. These natural language descriptions have
been utilized in single-task RL setups like goal-oriented
RL (Chevalier-Boisvert et al., 2019; Luketina et al., 2019;
Jiang et al., 2019). We show that this information can also
be used to learn context-dependent, composable represen-
tations shared across a family of tasks, with the metadata
acting as the context. Specifically, we show that the meta-
data can be used to learn a prior over a collection of encoders
and can be leveraged to select the encoder(s) for any given
task. The learned encoders can specialize to different as-
pects of the tasks, allowing for more efficient sharing of
knowledge across the tasks. An important additional benefit
is that the learned representations are interpretable.

The default formulation of MTRL environments is as a fam-
ily of Markov Decision Processes (MDPs) (Bellman, 1957;
Puterman, 1995). This framework does not provide a nat-
ural way to incorporate metadata. We therefore turn to the
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Figure 1. Graphical model of the Contextual MDP setting (left).
Example of different contexts that can affect the task of pouring
(right).
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Contextual Markov Decision Process formulation (Hallak
et al., 2015) to define our setting (Figure 1). We assume
access to a context (the metadata) that contains additional
task-specific information which is easily available and can
be used to improve per-task performance. This metadata is
more useful in a multi-task setting where it can be used to
infer the relationship between different tasks coming from a
specified family. As an example, given two contexts, “pour
tea into my cup” and “pour water into the mug kept on the
table”, the agent can infer the relations between the two
tasks and identify the common contexts (and subtasks) like
“pour” (Figure 1, right). Such context is less likely to be
useful to accelerate learning in the single task setup.

Sharing representations across tasks can be an effective way
for RL agents to transfer knowledge across tasks. However,
not all knowledge transfers are positive. Some aspects of
a given task could be meaningful only for that task and
irrelevant (or even detrimental) for the other tasks. This ef-
fect is commonly known as negative interference (Parisotto
et al., 2015; Teh et al., 2017). In general, choosing which
information/knowledge to transfer across the tasks, or even
deciding which tasks should be learned together is an open
problem (Standley et al., 2019). We posit that in the CMDP
setup, the context can be used to inform which representa-
tions and information should be shared across the tasks.

In this work, we propose a novel approach for the con-
textual multi-task RL setting where we encode an input
observation into multiple representations (corresponding to
different skills or objects) using a mixture of encoders. The
learning agent can use the context to decide which repre-
sentation(s) it uses for any given task, giving the agent a
fine-grained control over what information is shared across
tasks, thus alleviating negative interference. We call our
method Contextual Attention-based REpresentation learn-
ing, or CARE for short.

Key contributions of this work are 1) a simple, yet
effective, way to incorporate task metadata, or contextual
information, to improve sample efficiency and asymptotic
performance, 2) a new representation learning algorithm
for MTRL that leverages a mixture of interpretable
encoders which encodes task and object-specific infor-
mation about each state space, and 3) state-of-the-art
results on a challenging multi-task RL benchmark,
Meta-World (Yu et al., 2020b). For example videos see
https://sites.google.com/view/mtrl-care.
The implementation of the algorithms is available at
https://github.com/facebookresearch/mtrl.

2. Preliminaries
A Markov Decision Process (MDP) (Bellman, 1957; Put-
erman, 1995) is defined by a tuple 〈S,A, R, T, γ〉, where S

is the set of states, A is the set of actions, R : S ×A → R
is the reward function, T : S × A → Dist(S) is the envi-
ronment transition probability function, and γ ∈ [0, 1) is
the discount factor. At each time step, the learning agent
perceives a state st ∈ S, takes an action at ∈ A drawn
from a policy π : S × A → [0, 1], and with probability
T (st+1|st, at) enters next state st+1, receiving a numerical
reward Rt+1 from the environment. The value function of
policy π is defined as: Vπ(s) = Eπ[

∑∞
t=0 γ

tRt+1|S0 = s].
The optimal value function V ∗ is the maximum value func-
tion over the class of stationary policies.

Contextual Markov Decision Processes were first pro-
posed by Hallak et al. (2015) as an augmented form of
Markov Decision Processes that utilize side information as
a form of context, similar to in contextual bandits.
Definition 1 (Contextual Markov Decision Process). A con-
textual Markov decision process (CMDP) is defined by tuple
〈C,S,A,M〉 where C is the context space, S is the state
space, A is the action space.M is a function which maps a
context c ∈ C to MDP parametersM(c) = {Rc, T c}.

Contexts can be applied in the multi-task setting, where we
define a family of MDPs where each MDP has a shared state
space S. However, the agent only has access to a partial
state space Sc (either low-dimensional or rich, like pixels)
that is a subspace of the original state space S , focusing only
on objects relevant to the task at hand. Different MDPs can
involve different combinations of objects and skills, hence
the state space Sc and reward function Rc can differ across
MDPs. However, the objects are shared across tasks, i.e.,
the object-specific dynamics remain consistent across tasks1.
In this work, we focus on the low-dimensional setting where
Sc is a strict subset of the dimensions in S.

We attach this additional relaxation of the original CMDP
definition to define a new setting, a Block Contextual MDP
(BC-MDP)2 (Du et al., 2019; Zhang et al., 2020):
Definition 2 (Block Contextual Markov Decision Process).
A block contextual Markov decision process (BC-MDP) is
defined by tuple 〈C,S,A,M′〉 where C is the context space,
S is the state space, A is the action space. M′ is a func-
tion which maps a context c ∈ C to MDP parameters and
observation spaceM(c) = {Rc, T c,Sc}.

This brings us to our setting for evaluation, Meta-
World (Yu et al., 2020b) 3, as a natural instantiation of
a BC-MDP. Meta-World proposes a benchmark for meta-RL

1Note that the dynamics T c for each MDP are still different
because the state spaces are different.

2This is not the partial observability setting because we have
access to a task id or description that uniquely identifies the task,
and therefore what objects are referred to by the task-specific state
space.

3We use the following commit from MetaWorld for our experi-
ments: af8417bfc82a3e249b4b02156518d775f29eb289
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and multi-task RL, consisting of 50 distinct robotics manip-
ulation tasks, with some example tasks shown in Figure 2.
The state space across all tasks is of the same dimension-
ality, but those dimensions have different semantics across
tasks. For example, the same subset of dimensions can refer
to a goal position in one task and some object’s position in
the other task. We assume access to a family of N MDPs
consisting of potentially different reward functions and state
spaces of consistent dimensionality, but not necessarily with
the same semantic meaning. Unlike previous works, which
generally focus on very narrow task distributions, Meta-
World provides a diverse task distribution with 50 different
tasks involving objects like doors, cups, windows, drawers,
etc. and skills like push, pull, open, close, etc. while still
providing a shared state and action space. Evaluating on
a broad task distribution provides a better estimate of the
generalization capabilities of MTRL algorithms.

3. A Method for Learning Contextual
Attention-based Representations

In the multi-task reinforcement learning setting described in
Section 2, we propose to factorize the state representation
into sub-components that are common across the MDPs
within a defined BC-MDP family. While each task has its
own state space, there are commonalities across tasks. For
example, this can take the form of objects like “drawer” or
“door”, and skills like “open” or “close”. In this example, the
goal would be to disentangle the state into object-specific
and skill-specific representations. We train a universal pol-
icy (i.e. one shared policy for all the tasks) that uses the
task-specific metadata (or context) to choose a functional
representation (e.g. of objects and skills) for any given
task. We introduce this compositionality by incorporating a
mixture of encoders where different encoders specialize to
different aspects for the given family of tasks. In our exam-
ple, given three tasks “open a door”, “open a drawer”, and
“close a drawer”, the encoders could specialize to “open”
and “close” skills and “door” and “drawer” objects.

In this section, we describe how we use the metadata to
train the different components in CARE. It is important
to note that the role of CARE is to learn a representation
that enables the incorporation of metadata and functional
abstraction. For end-to-end reinforcement learning, it must

Figure 2. Some tasks from Meta-World. Image taken from Yu et al.
(2020b).

be paired with a policy optimization algorithm. In the scope
of this work, we use Soft Actor-Critic (SAC, (Haarnoja
et al., 2018)), but CARE can be paired with any policy
optimization method.

3.1. Incorporating Information from Metadata

In the BC-MDP setting, the different tasks share objects and
skills across the family of MDPs, but the state spaces across
tasks are context-dependent, and therefore not the same, Sc.
Our goal is to reconstruct the universal state space S. Of
course, we do not have access to the true state space, but a
useful inductive bias for the learning agent would be to learn
composable representations for objects and attend over these
representations for different tasks. One major challenge to
this approach is that knowing which objects are relevant
for each task requires object-level supervision, which is not
commonly available. We propose to sidestep this problem by
conditioning the attention on the task context, which is mod-
elled using the easily available task metadata or description.
Note that this metadata can be high-level, under-specified,
and unstructured. It does not have to explain “how to per-
form the task”; it can simply describe the task. Even in
cases where this metadata is not readily available, it can be
easily constructed. An example of a task description from
Meta-World could be “Reach a goal position”. Another
example is MuJoCo tasks from Deepmind Control (Tassa
et al., 2018b) and OpenAI Gym (Brockman et al., 2016a),
where humans identify the tasks by descriptive names like
“HalfCheetah Run” and “Maze Solver Ant”, as opposed to
task ids {1, 2, ..., n}.

Given such a high-level task description, we focus on the
case where the task context is captured using pre-trained lan-
guage models. Specifically, we use the Roberta model (Liu
et al., 2019c) to obtain a 768-dimensional representation of
the task description. This representation is projected to a
lower-dimensional space using feedforward layers, and the
resulting representation is denoted as the context zcontext.
The context is used to condition the different components
of the policy, as described below.

3.2. Contextual Attention based Representations

We posit that a useful inductive bias for the training agent
is to learn contextual representations for different tasks by
learning multiple representations and attending over those
representations using the task context. Given N tasks, we
use a mixture of k encoders to learn k state-representations.
Here, k is a hyperparameter and, in practice, it is much
smaller than the number of tasks in the family of MDPs.
Note that unlike some work on object-oriented learning, we
do not assume access to privileged information in terms
of which objects are present in the input observation or
useful to encode in a task. Moreover, while our design
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Figure 3. Architecture of the CARE model: Given an input state s, an mixture of k encoders is used to compute k encodings, denoted as
zienc∀i ∈ {1, · · · , k}. Given the metadata, a pretrained language model (followed by a feedforward network) is used to encode the task
description as a real valued context vector zcontext. This context is used to compute an attention score between zienc and zcontext. The
attention scores are normalized (to sum to 1) and are denoted as αi∀i ∈ {1, · · · , k}. The attention scores are used to compute a weighted
sum of the encoders’ representations and is denoted as zenc. It is then concatenated with the context to obtain the state encoding zs that is
given as input to the policy network. Dashed lines indicate that gradient does not flow through those components or computations.

Algorithm 1 CARE algorithm for the multi-task RL setting.
Require: SAC Components
Require: Context Encoder Network C
Require: k Encoders E1, . . . , Ek

1: for each timestep n = 1..N do
2: for each task Ti do
3: zicontext = C(metadatai)
4: zjenc = Ej(s

i
n), ∀j ∈ {1, . . . , k}

5: z̄icontext = stopgrad(zicontext)
6: αj = softmax(zjenc · z̄icontext) ∀j ∈ {1, ..., k}
7: zienc = MLP (

∑
j∈{1,...,k} z

j
enc × αj)

8: zi = zicontext :: zienc (input to the SAC algorithm)
9: UPDATESAC(D, zi). Refer to Algorithm 2.

10: UPDATECONTEXTENCODER(D, zi). Refer to Al-
gorithm 3.

11: UPDATEMIXTUREOFENCODERS(D, zi). Refer
to Algorithm 4.

12: end for
13: end for

encourages the specialization of different encoders to com-
binations of different objects and skills, we note that this
setup is incorporating a softer inductive bias than object-
oriented learning (Greff et al., 2019; Locatello et al., 2020).
Specifically, while we are conditioning the policy on object
representations, we do not explicitly model the interactions
between the encoders/objects, as is done in recent works
like Goyal et al. (2019). We factorize the representation in
terms of reusable components, unlike methods that first per-
form object detection and then model higher-order interac-
tions between the objects using attention-based mechanisms
or graph neural networks (Kipf et al., 2018; Pathak et al.,

2019; Li et al., 2020). We see our design choice as a trade-
off between imposing more useful structure on the algorithm
versus requiring less access to privileged information.

Given the k encoders, we compute the k representations
zienc∀i ∈ {1, · · · , k}. Given the context, zcontext, we com-
pute the normalized soft-attention weights for the encoder
representations (denoted as αi∀i ∈ {1, · · · , k}). We pool
the k encoder representations into a fixed-size representa-
tion by performing a weighted sum using the soft-attention
weights. The resulting encoder representation (zenc) is com-
puted as zenc =

∑k
i αi × zienc. We concatenate the en-

coder representation (zenc) with the context representation
(zcontext) to obtain the state encoding (zs). This state encod-
ing is used as an input to the policy network, and the entire
setup is trained end-to-end. Note that the language model
is not updated during training and the context representa-
tion zcontext is detached from the computation graph before
computing the attention weights. zcontext is updated using
the policy loss directly, as it is a part of the state encoding.

3.3. Downstream Evaluation

We use Soft Actor-Critic (SAC,( Haarnoja et al. (2018) for
downstream evaluation of the learned representations. SAC
is an off-policy actor-critic method that uses the maximum
entropy framework for soft policy iteration. At each itera-
tion, SAC performs soft policy evaluation and improvement
steps. For more details on SAC, refer Haarnoja et al. (2018).

The overall algorithm is described in Algorithm 1, with
the sub-function details available in the Appendix (Algo-
rithms 2, 3, 4). We note that steps 3 to 11 can be run
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concurrently for multiple tasks (as is done in our implemen-
tation). The architecture diagram is shown in Figure 3 and
the Appendix contains additional implementation details
(Appendix A) and hyper-parameters (Appendix B).

4. Experiments
We now empirically evaluate the effectiveness of the pro-
posed CARE model on Meta-World (Yu et al., 2020b) – a
multi-task RL benchmark with 50 tasks. We design our
experiments to answer the following questions: i) Is learn-
ing contextual attention-based representations an effective
mechanism for knowledge transfer in multi-task RL? Does it
perform better than methods that do not utilize this context?
ii) Is the metadata useful only when learning compositional
representations? iii) Does the metadata help to learn fac-
tored, specialized representations? iv) Does the metadata
help in zero-shot generalization to unseen environments?

4.1. How CARE compares to existing MTRL baselines

Existing works in multi-task RL come in two flavours: i)
Extend a single task RL baseline for multi-task by using
task-specific parameters (like one policy-head-per-task or
per-task entropy regularization). These approaches are gen-
erally algorithm-agnostic. ii) Specialized multi-task algo-
rithms. In this second category, we compare against the
PCGrad (Yu et al., 2020a) algorithm which is specifically
proposed for the Meta-World benchmark and achieves state-
of-the-art results, outperforming multi-task algorithms like
GradNorm (Chen et al., 2018) and Orthogonal Gradients
(CosReg) (Suteu & Guo, 2019). We also compare with
the Soft Modularization approach (Yang et al., 2020a) that
performs routing in a shared policy network to learn dif-
ferent policies for different tasks and provides state-of-the-
art results for Meta-World benchmark. Additionally, we
compare with a popular and general-purpose conditioning
method called FiLM (Perez et al., 2018). We use FiLM
layers to condition the encoder on the context (generated
using a context encoder, just like in CARE). While FiLM is
not a multi-task RL algorithm, it is used effectively in the
language-conditioned RL setups (Chevalier-Boisvert et al.,
2019; Zhong et al., 2020b).

The evaluation performance of the agent is computed as
follows: At regular intervals, the agent is evaluated 5 times
on each test environment, and the mean of the 5 runs is
taken as the success rate for the corresponding environment.
These success rates are averaged across the environments to
obtain the mean success rate at every interval. A time-series
of the mean success rates is obtained by evaluating the agent
at regular intervals. The agent is trained for multiple seeds
(10 in our case) resulting in 10 different time-series (one
per seed) of mean success rates. These 10 time-series are
averaged to compute the mean of the success rates (mean

Table 1. Evaluation performance on the MT10 test environments,
after training for 2 million steps (for each environment). Results
are averaged over 10 seeds. ME = Mixture of Encoders. CARE’s
improvement is statistically significant for baselines with *.

Agent success
(mean ± stderr)

Multi-task SAC (Yu et al., 2020b) * 0.49± 0.073
Multi-task SAC + Task Encoder * 0.54± 0.047
Multi-headed SAC (Yu et al., 2020b) * 0.61± 0.036
PCGrad (Yu et al., 2020a) * 0.72± 0.022
Soft Modularization (Yang et al., 2020b) 0.73± 0.043
SAC + FiLM (Perez et al., 2018) 0.75± 0.037
SAC + Metadata + ME (CARE) 0.84± 0.051

One SAC agent per task (upper bound) 0.90± 0.032

over the seeds). The best mean (across the time-series) is
reported as the evaluation performance.

We highlight some challenges in comparing the performance
of different models on the Meta-World suite. Generally,
RL agents are evaluated for continuous-valued episodic re-
wards (Brockman et al., 2016b; Tassa et al., 2018a) while
Meta-World uses a binary-valued success signal. While the
use of success signals is not entirely unheard of (Chevalier-
Boisvert et al., 2019), we find that with Meta-World, we
can improve the agent’s performance just by increasing the
frequency of evaluation (as shown in Table 19 in Appendix).
Evaluating the agent more often makes it more likely for
the agent to solve a given task, making it harder to compare
results across different works. For example, consider the
extreme case where the agent is evaluated after every single
update. Since we report the best (max) of the mean(success),
evaluating more frequently could improve the performance
since we are computing the max over a larger set. Thus,
evaluation frequency acts like an implicit hyperparameter.
We control for this issue in our setup by evaluating every
agent at a fixed frequency (once every 10K environment
steps, per task). Second, we find that the number of seeds
(for evaluation) plays a big role in a model’s reported perfor-
mance. For example, we report that for MT10, the standard
Multi-headed SAC achieves a mean success of 61% (10
seeds), whereas Yu et al. (2020b) reports a success rate of
88% (1 seed), leading to a 44% change in performance.
Some other models (Yang et al., 2020a) use just 3 seeds. We
account for the stochasticity of the evaluation process and
ensure a fair comparison of all the models by running all the
experiments with 10 seeds. We also report if our model’s
improvements are statistically significant or not. Additional
details about testing for statistical significance can be found
in Appendix D.

We use the same setup as other works. At regular interval,
agent is evaluated on all envs
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1. Reach a goal position.
2. Push the puck to a goal.
3. Pick and place a puck to a goal.
4. Open a door with a revolving joint.
5. Open a drawer.
6. Push and close a drawer.
7. Press a button from the top.
8. Insert a peg sideways.
9. Push and open a window.
10. Push and close a window.

(a)

1 2 3 4 5 6 7 8 9 10
Tasks

1

2

3

4

5

6

7

8

9

10

Ta
sk

s

1.0 0.650.61 0.5 0.580.580.620.610.540.49

0.65 1.0 0.880.450.520.540.570.560.440.41

0.610.88 1.0 0.47 0.5 0.530.520.540.430.41

0.5 0.450.47 1.0 0.630.660.62 0.5 0.54 0.5

0.580.52 0.5 0.63 1.0 0.880.720.650.740.73

0.580.540.530.660.88 1.0 0.750.590.760.77

0.620.570.520.620.720.75 1.0 0.580.730.71

0.610.560.54 0.5 0.650.590.58 1.0 0.560.55

0.540.440.430.540.740.760.730.56 1.0 0.95

0.490.410.41 0.5 0.730.770.710.550.95 1.0

(b)

1 2 3 4 5 6 7 8 9 10
Tasks

1

2

3

4

5

6

7

8

9

10

Ta
sk

s

1.0 0.520.210.380.380.360.470.330.360.36

0.52 1.0 0.930.550.550.450.380.510.450.45

0.210.93 1.0 0.470.470.330.290.430.330.33

0.380.550.47 1.0 1.0 0.940.56 0.7 0.940.94

0.380.550.47 1.0 1.0 0.940.56 0.7 0.940.94

0.360.450.330.940.94 1.0 0.560.56 1.0 1.0

0.470.380.290.560.560.56 1.0 0.320.560.56

0.330.510.43 0.7 0.7 0.560.32 1.0 0.560.56

0.360.450.330.940.94 1.0 0.560.56 1.0 1.0

0.360.450.330.940.94 1.0 0.560.56 1.0 1.0

(c)

1 2 3 4 5 6 7 8 9 10
Tasks

1

2

3

4

5

6

7

8

9

10

Ta
sk

s

1.0 0.540.570.610.860.570.590.880.390.71

0.54 1.0 0.770.640.580.26 0.7 0.580.830.55

0.570.77 1.0 0.750.660.530.680.670.690.66

0.610.640.75 1.0 0.680.630.720.660.570.74

0.860.580.660.68 1.0 0.680.550.910.430.82

0.570.260.530.630.68 1.0 0.430.690.270.78

0.59 0.7 0.680.720.550.43 1.0 0.590.580.63

0.880.580.670.660.910.690.59 1.0 0.38 0.8

0.390.830.690.570.430.270.580.38 1.0 0.5

0.710.550.660.740.820.780.63 0.8 0.5 1.0

(d)

Figure 4. (a): Task descriptions for MT10. (b) Cosine similarity (for MT10) between the pretrained task embeddings. (c) Cosine similarity
(for MT10) between the context representations using CARE model with k = 6 encoders. (d) Cosine similarity (for MT10) between the
context representations without using metadata with k = 6 encoders. Structure across tasks is clearly exhibited in (b) and (c), but not in
(d), which has no access to metadata.
Table 2. Evaluation performance on the MT10 test environments,
after training for 100 thousand steps (for each environment). Re-
sults averaged over 10 seeds. ME = Mixture of Encoders. CARE’s
improvement is statistically significant for baselines with *.

Agent success
(mean ± stderr)

Multi-task SAC (Yu et al., 2020b) * 0.13 ± 0.022
Multi-task SAC + Task Encoder * 0.14 ± 0.012
Multi-headed SAC (Yu et al., 2020b) * 0.17± 0.033
PCGrad (Yu et al., 2020a) * 0.20± 0.032
Soft Modularization (Yang et al., 2020b) 0.33± 0.036
SAC + FiLM (Perez et al., 2018) * 0.27± 0.037
SAC + Metadata + ME ( CARE) 0.36± 0.035

We note that these challenges are not inherent limitations
of Meta-World and issues related to seeds affect the evalua-
tion of RL algorithms in general (Henderson et al., 2017).
However, we believe that some of these challenges can be
alleviated by standardizing the evaluation protocol. Given
the usefulness of Meta-World as a multi-task RL benchmark,
these challenges should be highlighted to ensure they are
considered in the subsequent works.

Meta-World benchmark provides two setups - MT10: a
suite of 10 tasks and MT50: a suite of 50 tasks (a superset
of MT10). We use both setups for evaluation. In Table 1,
we compare the performance of the CARE model for MT10
with the different baselines and report the performance after
2M steps. Following the setup in Kaiser et al. (2019); Srini-
vas et al. (2020), we also compare the performance in the
low-sample regime with 100K steps per task in Table 2 and
500K steps per task in Table 16 (in the Appendix). We note
that the proposed CARE model consistently outperforms the
other models for the MT10 task. We also note that among
specialized multi-task algorithms, PCGrad (Yu et al., 2020a)
performs quite poorly in the low-sample regime.

Similarly, in Table 3 and Table 4, we compare the perfor-
mance of the models for MT50 after 2M and 100K steps

Table 3. Evaluation performance on the MT50 test environments,
after training for 2 million steps (for each environment). Results
are averaged over 10 seeds. ME = Mixture of Encoders. CARE’s
improvement is statistically significant for baselines with *.

Agent success
(mean ± stderr)

Multi-task SAC (Yu et al., 2020b) * 0.36± 0.013
Multi-task SAC + Task Encoder * 0.40± 0.024
Multi-headed SAC (Yu et al., 2020b) 0.45± 0.064
PCGrad (Yu et al., 2020a) 0.5± 0.017
Soft Modularization (Yang et al., 2020b) 0.5± 0.035
SAC + FiLM (Perez et al., 2018) * 0.40 ± 0.012
SAC + Metadata + ME (CARE) 0.54± 0.031

One SAC agent per task (upper bound) 0.74± 0.041

respectively. The corresponding table for 500K steps is in
the Appendix (Table 17). We note that not only does CARE
outperform the other baselines, it is much more sample
efficient than other baselines in the low-sample regime.

One additional benefit of the CARE model is that it can be
easily combined with more powerful policies and learning
algorithms. For example, we find that using multi-headed
SAC with the CARE model significantly improves the per-
formance on the MT50 setup (mean success of 0.61, with
a standard error of 0.0287). Since the CARE model fo-
cuses on learning representations, it can benefit from the
improvements in policy optimisation for multi-task RL.

In Appendix C.1 we consider some ablations with the CARE
model. First, we vary the number of encoders, showing that
increasing the number of encoders hurts performance when
shared information is no longer leveraged. We also try using
only top-k encoders (i.e. encoders with top-k highest atten-
tion scores) with hard attention, confirming the robustness
of our method to different aggregation techniques. Finally,
we design an experiment where we hardcode the mapping
between the tasks and the encoders, showing that mapping
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Table 4. Evaluation performance on the MT50 test environments,
after training for 100 thousand steps (for each environment). Re-
sults averaged over 10 seeds. ME = Mixture of Encoders. CARE’s
improvement is statistically significant for baselines with *.

Agent success
(mean ± stderr)

Multi-task SAC (Yu et al., 2020b) * 0.13± 0.0061
Multi-task SAC + Task Encoder * 0.28± 0.015
Multi-headed SAC (Yu et al., 2020b) * 0.19± 0.0071
PCGrad (Yu et al., 2020a) * 0.21± 0.0068
Soft Modularization (Yang et al., 2020b) * 0.20± 0.023
SAC + FiLM (Perez et al., 2018) * 0.16 ± 0.006
SAC + Metadata + ME ( CARE) 0.40± 0.015

Table 5. Effect of using the metadata or the ensemble of encoders
or both (proposed CARE model). Evaluation performance on the
MT10 test environments, after training for 2 million steps (for each
environment). ME = Mixture of Encoders. CARE’s improvement
is statistically significant for the baselines marked with *.

Agent success
(mean ± stderr)

SAC + ME 0.74± 0.043
SAC + Metadata 0.79± 0.041
SAC + Metadata + ME (CARE) 0.84± 0.051

encoders to specific objects and skills helps performance.

Table 6. Effect of using the metadata or the ensemble of encoders
or both (proposed CARE model). Evaluation performance on the
MT50 test environments, after training for 2 million steps (for each
environment). ME = Mixture of Encoders. CARE’s improvement
is statistically significant for the baselines marked with *.

Agent success
(mean ± stderr)

SAC + Mixture of Encoders * 0.44± 0.012
SAC + Metadata 0.48± 0.025
SAC + Metadata + ME (CARE) 0.54± 0.031

4.2. Is the metadata useful only when learning
compositional representations?

In Section 4.1, we showed that the metadata is useful for
learning compositional representations in the CARE model.
A follow-up question is whether the metadata is also useful
when using a single encoder. We address this question in
Tables 5 and 6 where we compare the performance of the
CARE model in the absence of metadata or in the absence
of mixture of encoders. We note that removing the meta-
data (first row) hurts the models more than removing the
mixture of encoders (second row). While using metadata
with just a single encoder (second row) provides comparable
performance to the other baselines, using it with a mixture

Table 7. Evaluation performance on held-out environments from
MT10, after training on remaining 8 environments for 2 million
steps for each environment. Results averaged over 10 seeds. ME =
Mixture of Encoders. CARE’s improvement is statistically signifi-
cant for baselines marked with *.

Agent success
(mean ± stderr)

PCGrad (Yu et al., 2020a) * 0.05 ± 0.076
Soft Modularization (Yang et al., 2020b) 0.1 ± 0.089
SAC + FiLM (Perez et al., 2018) 0.2 ± 0.073
SAC + Metadata + ME (CARE) 0.3 ± 0.077

of encoders leads to even better performance.

4.3. Interpreting the specialized representations

We perform a visual investigation of what information is
being shared across tasks and the role of metadata in the
information sharing. Specifically, in Figure 4 we show co-
sine similarity between the context representations under
the 10 tasks of MT10. For each task, we feed the con-
text through the pretrained language model (RoBERTa) and
refer to the resulting representation as the pretrained task
embedding. In Figure 4b, we show the cosine similarity be-
tween just these pretrained task embeddings, which are the
input to the MLP of the context encoder (Figure 3). In Fig-
ure 4c, we show the cosine similarity between the context
representations from the proposed CARE model (with 6
encoders) after training. We observe a similar structure in
both similarity matrices, that tasks with semantically similar
descriptions also have similar context encodings. For exam-
ple, task 2 and 3 require the agent to interact with the same
object. Similarly tasks 4, 5, and 6 are related by the skill
“open” and object “drawer”. We now want to observe if these
similarities can be found from just the tasks, without access
to metadata. In Figure 4d, we plot the cosine similarity
between the context representations from the CARE model
(with 6 encoders) without the use of task metadata. Some
similarities are present, but nothing as strongly correlated as
seen in Figure 4c. This result further supports our hypoth-
esis that task metadata plays an important role in inferring
similarity between tasks, and shows the interpretability of
the CARE representation.

4.4. Zero-shot generalization to unseen environments

Given the compositionality present in language, we want
to evaluate if CARE can be used for zero-shot general-
ization to unseen environments. We train the agents on
8 environments from MT10 and evaluate on two held-out
environments, “drawer-open-v1” and “window-open-v1”.
There are three training environments that directly relate to
these test environments, “drawer-close-v1”, “window-close-
v1”, “door-open-v1”, thus allowing for the possibility of
zero-shot generalization. In Table 7, we observe that CARE
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exhibits some promising performance. We note that the
comparison is unfair to PCGrad and Soft Modularization as
they do not have any means for generalizing to the unseen
task, but our motivation is to highlight the potential benefits
of using metadata for zero-shot generalization to unseen en-
vironments. We further note that CARE generalizes better
than FiLM, which also leverages metadata.

5. Related Work
Multi-task learning holds the promise of accelerating
learning across multiple tasks by sharing useful informa-
tion (Caruana, 1997; Zhang et al., 2014; Kokkinos, 2017;
Radford et al., 2019; Rajeswaran et al., 2016; Ruder, 2017;
Liu et al., 2019b; Mott et al., 2019; Vithayathil Varghese
& Mahmoud, 2020). Multi-task reinforcement learning
(MTRL) has been extensively studied with the focus on
assumptions around shared properties and structures of dif-
ferent tasks. (Calandriello et al., 2014; Borsa et al., 2016;
Maurer et al., 2016) assume that in the multi-task settings,
tasks share a common, low dimensional representation, and
therefore advocate for learning a shared representation space
across all the tasks. (Bräm et al., 2019) considered the setup
when the action space between different tasks is not aligned.
Zhang et al. (2021) describes multi-task learning algorithms
where the tasks have different dynamics but a shared reward
structure and makes the assumption of a universal dynamics
model. All of these methods for the MTRL setting only
utilize a simplistic context in the form of an ordinal task id.
Richer contexts in the form of task embeddings are learned
online from the differences in reward and dynamics across
tasks. We instead focus on the setting where side informa-
tion is available and can be utilized as a richer context than
task ids.

Several works have focused on the problem of negative
interference (Du et al., 2018b;a; Suteu & Guo, 2019; Yu
et al., 2020a) where the gradients corresponding to the dif-
ferent tasks interfere negatively with each other. Along with
slowing down training, conflicting gradients could cause
the agent to unlearn knowledge of one task to learn another
task. Despite some successes, the proposed approaches are
unsatisfactory, either because they increase the computa-
tional/memory overhead (for example, Yu et al. (2020a)
introduces an O(n2) complexity, where n is the number of
tasks) or because they require the training model to ignore
some components of the gradients, thus slowing down learn-
ing and deteriorating sample efficiency. We propose to use
the context for deciding which information should be shared
across tasks, thus alleviating negative interference.

Contextual MDPs have been previously defined and ana-
lyzed as a setting where side information is exploited for
transfer across tasks (Hallak et al., 2015; Modi et al., 2017).
Hallak et al. (2015) first defined the contextual MDP setting,

drawing connections to contextual multi-arm bandits (Lai &
Robbins, 1985; Langford & Zhang, 2008). However, they
assume that the state spaces across contexts are the same.
Modi et al. (2017) requires an assumption of smoothness
in the MDP parameters with respect to the context and ex-
amine the online learning scenario, providing an extension
of the Rmax algorithm with PAC bounds. They also as-
sume that the context is given. Klink et al. (2019) adopt
the contextual MDP setting but with an additional assump-
tion that the agent can control the context, and therefore the
task distribution. They propose an algorithm to generate a
curriculum that allows the agent to gradually progress to a
target context distribution. In our work, we relax several of
the assumptions made by these prior works and extend the
type of context explored.

Multi-task learning with metadata has been used in You
et al. (2016); Zheng et al. (2019) where the focus is on
Task Relation Discovery in the context of supervised learn-
ing. In Reinforcement Learning, our work has close ties to
language-conditioned RL, where natural language phrases
have been used as part of task descriptions in the context of
several single task RL setups like goal-oriented RL (Chao
et al., 2011; Chevalier-Boisvert et al., 2019), grounded lan-
guage acquisition (Hermann et al., 2017; Chaplot et al.,
2017), and instruction following (Tellex et al., 2011; Chen
& Mooney, 2011; Williams et al., 2018). Similar to our BC-
MDP setting, recent work (Zhong et al., 2020a) also defines
meta-environments specific to the language-conditioned set-
ting. In all these works, the language description is a part
of the problem specification and not just extra information,
while our work proposes a way to incorporate auxiliary
side information to improve sample efficiency and gener-
alization in multi-task RL. Many of these works make ad-
ditional assumptions about the language description. For
example, (Shu et al., 2017) uses “a two-word tuple template
consisting of a skill and an item” to describe the task while
the metadata for CARE can be high-level, under-specified,
and unstructured. Further, we note that the contextual set-
ting we propose includes information beyond just text, and
can also include images or features.

Several works have also focused on learning composi-
tional models for multi-task learning. Liu et al. (2019a)
trains a network with task-specific soft-attention mod-
ules. Devin et al. (2017) decompose the policy into two
components – “task-specific” (shared across all robots) and
“robot-specific” (shared across all tasks). Chang et al. (2018)
consider a family of algorithmic tasks, with different levels
of complexity. Yang et al. (2020a) performs routing in a base
policy network to generate different policies for different
tasks. Unlike our work, these works do not leverage meta-
data to learn a context on which the module decomposition
can be conditioned on.
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6. Discussion
In this work, we highlight an under-explored setting of
using contextual information to improve performance in
multi-task reinforcement learning. We show that metadata,
which is often present in multi-task settings, can be lever-
aged within the MDP framework to improve performance
by enabling more efficient sharing of information across
tasks. Further, we define a new setting, the block contex-
tual Markov decision process (BC-MDP), to handle settings
where the state space can differ across tasks. Finally, we
show that a mixture of encoders can effectively learn a
context-dependent representation that can be used with a
single policy to solve a family of tasks. We showcase our
method, CARE, on Meta-World and achieve new state-of-
the-art results.

There are two dimensions along which this work can be
extended. Here, we only explore a specific type of context
in the form of text descriptions for each task. Other forms
of context can also be considered, such as people or places.
As examples, in personalized medicine or recommendation
systems, the user can be used as a form of context to adapt
and share knowledge from other users to transfer the policy.
Similarly, in household robotics, the location and layouts of
homes will differ although the task is the same.

The relevance of this work also carries over to rich observa-
tion settings, or the high-dimensional version of the block
contextual MDP setting we examine here (Mozifian et al.,
2020). This setting is relevant in robotics, where the agent
typically has a first person view of the world. The entire state
space (the world) cannot be captured in each task. Instead,
the agent only focuses on a relevant subspace of the entire
state space at a time. This extension significantly enriches
the set of multi-task problems we can tackle and brings
us closer to the intractable partial observability (POMDP)
setting (Kaelbling et al., 1998; Zhang et al., 2019), but of-
fers more flexibility that allows for additional tractability by
limiting the partial observability settings we consider.

Acknowledgements
We thank Edward Grefenstette, Tim Rocktäschel, Danielle
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A. Additional Implementation Details
A.1. Libraries

We use the following open-source libraries: Py-
Torch (Paszke et al., 2019)4, Hydra (Yadan, 2019)5,
MetaWorld (Yu et al., 2020b)6, MTEnv (Sodhani et al.,
2021)7, MTRL (Sodhani & Zhang, 2021)8, Numpy (Har-
ris et al., 2020)9 and Pandas (pandas development
team, 2020)10. For MetaWorld, we use the following
commit-id to run our experiments: https://github.
com/rlworkgroup/metaworld/commit/
af8417bfc82a3e249b4b02156518d775f29eb289

A.2. SAC Algorithm

We use the SAC policy algorithm (Haarnoja et al., 2018) to
learn representation for the CARE model. We provide the
pseduo-code for SAC, along with the key equations. For
more details, refer to Haarnoja et al. (2018).

Algorithm 2 UPDATESAC(D, zit)
Require: SAC components i.e. Policy parameters (φ),

Value function parameters (ψ), Target value function
parameters (ψ̄) and Q-function parameters (θ)

1: at ∼ π(·|zit)
2: Execute at in the environment (for task Ti) and get the

next state st+1, reward rt and done signal dt.
3: D ← D ∪ (st, at, st+1, rt, dt, i)
4: ψ ← ψ − λV ∇̂ψJV (ψ) (Equation (2))
5: ψ̄ ← τψ + (1− τ)ψ̄
6: θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2} (Equation (5))
7: φ← φ− λπ∇̂φJπ(φ) (Equation (6))

The soft value function is trained to minimize the squared
residual error

JV (ψ) = Est∼D

[
1
2

(
Vψ(st)− Eat∼πφ [Qθ(st,at)− log πφ(at|st)]

)2] .
(1)

The gradient of Equation (1) is estimated with an unbiased
estimator

∇̂ψJV (ψ) = ∇ψVψ(st) (Vψ(st)−Qθ(st,at) + log πφ(at|st)) ,
(2)

4https://pytorch.org/
5https://github.com/facebookresearch/

hydra
6https://github.com/rlworkgroup/metaworld
7https://github.com/facebookresearch/

mtenv
8https://github.com/facebookresearch/mtrl
9https://numpy.org/

10https://pandas.pydata.org/

where the actions are sampled according to the current pol-
icy, instead of the replay buffer. The update uses a target
value network Vψ̄, where ψ̄ is an exponentially moving av-
erage of the value network weights, which has been shown
to stabilize training (Mnih et al., 2015).

The soft Q-function parameters are trained to minimize the
soft Bellman residual

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st,at)− Q̂(st,at)

)2
]
,

(3)

with

Q̂(st,at) = r(st,at) + γ Est+1∼p
[
Vψ̄(st+1)

]
, (4)

which is optimized with stochastic gradients

∇̂θJQ(θ) = ∇θQθ(at, st)
(
Qθ(st,at)− r(st,at)− γVψ̄(st+1)

)
.

(5)

The policy parameters are learned by minimizing:

Jπ(φ) = Est∼D

[
DKL

(
πφ( · |st)

∥∥∥∥ exp (Qθ(st, · ))
Zθ(st)

)]
.

(6)

A.3. CARE Components

The CARE algorithm uses two components: (i) A context
encoder network and (ii) mixture of k encoders (shown
in Figure 3). Both components are trained using the policy
loss as described in Algorithm 3 and Algorithm 4 respec-
tively. We note that for computing the encoder representa-
tion zenc, the context encoding zcontext is detached from
the computational graph.

Algorithm 3 UPDATECONTEXTENCODER(D, zit)
Require: Context Encoder Network C with ω as the pa-

rameters, SAC components
1: at ∼ π(·|zit)
2: Execute at in the environment (for task Ti) and get the

next state st+1, reward rt and done signal dt.
3: D ← D ∪ (st, at, st+1, rt, dt, i)
4: JC(ω) = JV + JQ + Jπ
5: ω ← ω − λω∇̂ωJC(ω)

B. Hyperparameter Details
In this section, we provide hyper-parameter values for each
of the methods in our experimental evaluation. In Table 8,
we provide the hyperparameter values that are common
acrss all the methods.
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Algorithm 4 UPDATEMIXTUREOFENCODERS(D, zit)
Require: k Encoders E1, . . . , Ek with ζk as the parame-

ters, SAC components
1: at ∼ π(·|zit)
2: Execute at in the environment (for task Ti) and get the

next state st+1, reward rt and done signal dt.
3: for each encoder in k = 1..K do
4: D ← D ∪ (st, at, st+1, rt, dt, i)
5: JEk(ζk) = JV + JQ + Jπ
6: ζk ← ζk − λζk∇̂ζkJEk(ζk)
7: end for

C. Additional Results
C.1. Ablations

In Table 18, we consider some ablations with the CARE
model for MT10. First, we vary the number of encoders
(k). We note that having too many encoders can hurt the
performance. Second, we consider the case where we use
initialise m encoders but use only top-k encoders at each
timestep. Top-k encoders are the ones which have the top-k
highest attention scores. The remaining m− k are not used
and are considered to be inactive. The attention scores α,
corresponding to the selected k encoders, are re-normalized
to sum to 1. In this case,

zenc =

∑m
i αi × zienc × 1top−k(i)∑m

i αi × 1top−k(i)
,

where 1top−k(i) indicates if the αi is among the top-k atten-
tion weights. We find that while this form of hard-attention
does not work as well as the soft-attention mechanism used
by CARE, the performance is still comparable to the perfor-
mance of other baselines. Finally, we consider a hand-coded
assignment of tasks to encoders. We read the task descrip-
tions, identify common skills and objects, and manually
assign these skills and objects to encoders. The tasks that
mention these skills/objects are then mapped to the corre-
sponding encoders. The resulting task-encoder mappings
are shown in Table 20. We note that this manual mapping
of encoders works very well in practice and the mapping is
interpretable by design. However, the process of creating
such mappings is time consuming and error-prone. On the
other hand, CARE can learn the mapping between tasks
and encoders while learning the representations. This ex-
periment validates the hypothesis that explicitly assigning
object and skill concepts to the encoders improves multi-
task performance, and lends credibility to the additional
hypothesis that CARE learns interpretable representations,
i.e. ones that represent objects and skills.

C.2. Effect of frequency of evaluation

We find that we can improve the agent’s performance just by
increasing the frequency of evaluation as shown in Table 19.

Table 8. Hyperparameter values that are common across all the
methods.

Hyperparameter Hyperparameter values

batch size 128 × number of tasks
network architecture feedforward network
actor/critic size three fully connected lay-

ers with 400 units
non-linearity ReLU
policy initialization standard Gaussian
exploration parameters run a uniform exploration

policy 1500 steps
# of samples / # of train
steps per iteration

1 env step / 1 training step

policy learning rate 3e-4
Q function learning rate 3e-4
optimizer Adam
policy learning rate 3e-4
beta for Adam optimizer
for policy

(0.9, 0.999)

Q function learning rate 3e-4
beta for Adam optimizer
for Q function

(0.9, 0.999)

discount .99
Episode length (horizon) 150
reward scale 1.0

Table 9. Hyperparameter values for Multi-task SAC

Hyperparameter Hyperparameter values

temperature learned and disentangled
with tasks

Table 10. Hyperparameter values for Multi-task SAC + Task En-
coder

Hyperparameter Hyperparameter values

task encoder size embedding layer + two
fully connected layers.
Embedding/hidden/output
dims = 50

temperature learned and disentangled
with tasks

Table 11. Hyperparameter values for Multi-headed SAC

Hyperparameter Hyperparameter values

network architecture multi-head (one head per
task)

temperature learned and disentangled
with tasks
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Table 12. Hyperparameter values for PCGrad

Hyperparameter Hyperparameter values

actor/critic size five fully connected layers
with 400 units

temperature learned and disentangled
with tasks

Table 13. Hyperparameter values for Soft Modularization

Hyperparameter Hyperparameter values

task encoder size two layer feedforward net-
work. Hidden/output dims
= 50

routing network size 4 layers and 4 modules per
layer.

temperature learned and disentangled
with tasks

Table 14. Hyperparameter values for FiLM

Hyperparameter Hyperparameter values

task encoder size two layer feedforward net-
work. Hidden/output dims
= 50

temperature learned and disentangled
with tasks

Table 15. Hyperparameter values for CARE

Hyperparameter Hyperparameter values

task encoder size two layer feedforward net-
work. Hidden/output dims
= 50

number of encoders 6 for MT10, 10 for MT50
temperature learned and disentangled

with tasks

In Meta-World, the agent is evaluated for a binary-valued
success signal and evaluating the agent more often makes
it more likely for the agent to solve a given task. This
effect makes it harder to compare the performance of the
algorithms from different works. We control for this issue
in our setup by evaluating every agent at a fixed frequency
(once every 10K environment steps, per task).

D. Testing for statistical significance
We perform a two-tailed, Student’s t-distribution test (Stu-
dent, 1908) under equal sample sizes, unequal variance
setup (also called Welch’s t-test). The null hypothesis is:
the mean performance of the two models (CARE and any

Table 16. Evaluation performance on the MT10 test environments,
after training for 500 thousand steps (for each environment). The
results are averaged over 10 seeds. ME = Mixture of Encoders.
CARE’s improvement is statistically significant for the baselines
marked with *.

Agent success
(mean ± stderr)

Multi-task SAC (Yu et al., 2020b) * 0.38 ± 0.041
Multi-task SAC + Task Encoder * 0.42 ± 0.031
Multi-headed SAC (Yu et al., 2020b) * 0.44 ± 0.045
PCGrad (Yu et al., 2020a) * 0.53 ± 0.030
Soft Modularization (Yang et al., 2020b) 0.64 ± 0.052
SAC + FiLM (Perez et al., 2018) * 0.57 ± 0.035
SAC + Metadata + ME (CARE) 0.66 ± 0.028

Table 17. Evaluation performance on the MT50 test environments,
after training for 500 thousand steps (for each environment). The
results are averaged over 10 seeds. The proposed method, CARE,
outperforms the other baselines. ME = Mixture of Encoders.
CARE’s improvement is statistically significant for the baselines
marked with *.

Agent success
(mean ± stderr)

Multi-task SAC * (Yu et al., 2020b) 0.28 ± 0.017
Multi-task SAC + Task Encoder * 0.37 ± 0.016
Multi-headed SAC (Yu et al., 2020b) 0.45 ± 0.064
PCGrad (Yu et al., 2020a) 0.47 ± 0.016
Soft Modularization (Yang et al., 2020b) 0.47 ± 0.012
SAC + FiLM (Perez et al., 2018) * 0.30 ± 0.012
SAC + Metadata + ME (CARE) 0.51 ± 0.036

baseline) are equal. The significance level (p) is set to 0.05.

Table 18. Evaluation performance on the MT10 test environments,
after training for 2 million steps (for each environment). The
results are averaged over 10 seeds. ME = Mixture of Encoders.
CARE’s improvement is statistically significant for the baselines
marked with *.

Agent success
(mean ± stderr)

CARE with 2 encoders 0.76± 0.043
CARE with 10 encoders * 0.71± 0.029

CARE with 10 encoders with 2 active * 0.55± 0.051
CARE with 10 encoders with 4 active * 0.69± 0.040
CARE with 10 encoders with 6 active * 0.71± 0.051
CARE with 10 encoders with 8 active * 0.67± 0.043

Manually mapping tasks to encoders 0.80± 0.037

CARE with 6 encoders 0.84± 0.051
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Table 19. Evaluation performance on the MT10 test environments,
after training for 2 million steps (for each environment). The agent
is evaluated after 1K and 10K steps. The results are averaged over
10 seeds. ME = Mixture of Encoders. We note that evaluating
the agent more frequently improves the performance across the
baselines.

Agent success (1K) success (10K)
(mean ± stderr) (mean ± stderr)

PCGrad (Yu et al.,
2020a)

0.75± 0.033 0.72± 0.022

Soft Modularization
(Yang et al., 2020b)

0.78± 0.049 0.73± 0.043

SAC + Metadata + ME
(CARE)

0.87±0.054 0.84±0.051

Table 20. Mapping between the encoders and skills/objects and
tasks for MT10 environments.

Encoder
Index

Skills or objects that
map to the encoder

Tasks that map to the en-
coder

1 skill: close drawer-close-v1,
window-close-v1

2 skill: open door-open-v1, drawer-
open-v1, window-open-
v1

3 skill: push push-v1, door-open-
v1, drawer-open-v1,
window-open-v1

4 skill: any remaining
skills

reach-v1, pick-place-v1,
button-press-topdown-
v1, peg-insert-side-v1

5 object: drawer drawer-open-v1, drawer-
close-v1

6 object: goal reach-v1, push-v1, pick-
place-v1, peg-insert-side-
v1

7 object: puck push-v1, pick-place-v1
8 object: window window-open-v1,

window-close-v1
9 object: any remaining

objects
door-open-v1, button-
press-topdown-v1,
peg-insert-side-v1


