
Published in Transactions on Machine Learning Research (10/2022)

A Simple Convergence Proof of Adam and Adagrad

Alexandre Défossez defossez@fb.com
Meta AI

Léon Bottou
Meta AI

Francis Bach
INRIA / PSL

Nicolas Usunier
Meta AI

Reviewed on OpenReview: https: // openreview. net/ forum? id= ZPQhzTSWA7

Abstract

We provide a simple proof of convergence covering both the Adam and Adagrad adaptive
optimization algorithms when applied to smooth (possibly non-convex) objective functions
with bounded gradients. We show that in expectation, the squared norm of the objective
gradient averaged over the trajectory has an upper-bound which is explicit in the constants of
the problem, parameters of the optimizer, the dimension d, and the total number of iterations
N . This bound can be made arbitrarily small, and with the right hyper-parameters, Adam
can be shown to converge with the same rate of convergence O(d ln(N)/

√
N). When used

with the default parameters, Adam doesn’t converge, however, and just like constant step-
size SGD, it moves away from the initialization point faster than Adagrad, which might
explain its practical success. Finally, we obtain the tightest dependency on the heavy ball
momentum decay rate β1 among all previous convergence bounds for non-convex Adam and
Adagrad, improving from O((1− β1)−3) to O((1− β1)−1).

1 Introduction

First-order methods with adaptive step sizes have proved useful in many fields of machine learning, be it for
sparse optimization (Duchi et al., 2013), tensor factorization (Lacroix et al., 2018) or deep learning (Goodfel-
low et al., 2016). Duchi et al. (2011) introduced Adagrad, which rescales each coordinate by a sum of squared
past gradient values. While Adagrad proved effective for sparse optimization (Duchi et al., 2013), experiments
showed that it under-performed when applied to deep learning (Wilson et al., 2017). RMSProp (Tieleman &
Hinton, 2012) proposed an exponential moving average instead of a cumulative sum to solve this. Kingma &
Ba (2015) developed Adam, one of the most popular adaptive methods in deep learning, built upon RMSProp
and added corrective terms at the beginning of training, together with heavy-ball style momentum.

In the online convex optimization setting, Duchi et al. (2011) showed that Adagrad achieves optimal regret
for online convex optimization. Kingma & Ba (2015) provided a similar proof for Adam when using a
decreasing overall step size, although this proof was later shown to be incorrect by Reddi et al. (2018), who
introduced AMSGrad as a convergent alternative. Ward et al. (2019) proved that Adagrad also converges to
a critical point for non convex objectives with a rate O(ln(N)/

√
N) when using a scalar adaptive step-size,

instead of diagonal. Zou et al. (2019b) extended this proof to the vector case, while Zou et al. (2019a)
displayed a bound for Adam, showing convergence when the decay of the exponential moving average scales
as 1− 1/N and the learning rate as 1/

√
N .

1

https://openreview.net/forum?id=ZPQhzTSWA7

Published in Transactions on Machine Learning Research (10/2022)

In this paper, we present a simplified and unified proof of convergence to a critical point for Adagrad
and Adam for stochastic non-convex smooth optimization. We assume that the objective function is
lower bounded, smooth and the stochastic gradients are almost surely bounded. We recover the stan-
dard O(ln(N)/

√
N) convergence rate for Adagrad for all step sizes, and the same rate with Adam with an

appropriate choice of the step sizes and decay parameters, in particular, Adam can converge without using
the AMSGrad variant. Compared to previous work, our bound significantly improves the dependency on the
momentum parameter β1. The best known bounds for Adagrad and Adam are respectively in O((1−β1)−3)
and O((1−β1)−5) (see Section 3), while our result is in O((1−β1)−1) for both algorithms. This improvement
is a step toward understanding the practical efficiency of heavy-ball momentum.

Outline. The precise setting and assumptions are stated in the next section, and previous work is then
described in Section 3. The main theorems are presented in Section 4, followed by a full proof for the
case without momentum in Section 5. The proof of the convergence with momentum is deferred to the
supplementary material, Section A. Finally we compare our bounds with experimental results, both on toy
and real life problems in Section 6.

2 Setup

2.1 Notation

Let d ∈ N be the dimension of the problem (i.e. the number of parameters of the function to optimize)
and take [d] = {1, 2, . . . , d}. Given a function h : Rd → R, we denote by ∇h its gradient and ∇ih the i-th
component of the gradient. We use a small constant ε, e.g. 10−8, for numerical stability. Given a sequence
(un)n∈N with ∀n ∈ N, un ∈ Rd, we denote un,i for n ∈ N and i ∈ [d] the i-th component of the n-th element
of the sequence.

We want to optimize a function F : Rd → R. We assume there exists a random function f : Rd → R such that
E [∇f(x)] = ∇F (x) for all x ∈ Rd, and that we have access to an oracle providing i.i.d. samples (fn)n∈N∗ . We
note En−1 [·] the conditional expectation knowing f1, . . . , fn−1. In machine learning, x typically represents
the weights of a linear or deep model, f represents the loss from individual training examples or minibatches,
and F is the full training objective function. The goal is to find a critical point of F .

2.2 Adaptive methods

We study both Adagrad (Duchi et al., 2011) and Adam (Kingma & Ba, 2015) using a unified formulation.
We assume we have 0 < β2 ≤ 1, 0 ≤ β1 < β2, and a non negative sequence (αn)n∈N∗ . We define three
vectors mn, vn, xn ∈ Rd iteratively. Given x0 ∈ Rd our starting point, m0 = 0, and v0 = 0, we define for all
iterations n ∈ N∗,

mn,i = β1mn−1,i +∇ifn(xn−1) (1)
vn,i = β2vn−1,i + (∇ifn(xn−1))2 (2)

xn,i = xn−1,i − αn
mn,i√
ε+ vn,i

. (3)

The parameter β1 is a heavy-ball style momentum parameter (Polyak, 1964), while β2 controls the decay
rate of the per-coordinate exponential moving average of the squared gradients. Taking β1 = 0, β2 = 1 and
αn = α gives Adagrad. While the original Adagrad algorithm did not include a heavy-ball-like momentum,
our analysis also applies to the case β1 > 0.

Adam and its corrective terms The original Adam algorithm (Kingma & Ba, 2015) uses a weighed
average, rather than a weighted sum for (1) and (2), i.e. it uses

m̃n,i = (1− β1)
n∑
k=1

βn−k1 ∇ifn(xk−1) = (1− β1)mn,i,

2

Published in Transactions on Machine Learning Research (10/2022)

We can achieve the same definition by taking αadam = α · 1−β1√
1−β2

. The original Adam algorithm further
includes two corrective terms to account for the fact that mn and vn are biased towards 0 for the first few
iterations. Those corrective terms are equivalent to taking a step-size αn of the form

αn,adam = α · 1− β1√
1− β2

· 1
1− βn1︸ ︷︷ ︸

corrective
term for mn

·
√

1− βn2︸ ︷︷ ︸
corrective

term for vn

. (4)

Those corrective terms can be seen as the normalization factors for the weighted sum given by (1) and (2)
Note that each term goes to its limit value within a few times 1/(1− β) updates (with β ∈ {β1, β2}). which
explains the (1− β1) term in (4). In the present work, we propose to drop the corrective term for mn, and
to keep only the one for vn, thus using the alternative step size

αn = α(1− β1)

√
1− βn2
1− β2

. (5)

This simplification motivated by several observations:
• By dropping either corrective terms, αn becomes monotonic, which simplifies the proof.
• For typical values of β1 and β2 (e.g. 0.9 and 0.999), the corrective term for mn converges to its limit

value much faster than the one for vn.
• Removing the corrective term for mn is equivalent to a learning-rate warmup, which is popular

in deep learning, while removing the one for vn would lead to an increased step size during early
training. For values of β2 close to 1, this can lead to divergence in practice.

We experimentally verify in Section 6.3 that dropping the corrective term for mn has no observable effect
on the training process, while dropping the corrective term for vn leads to observable perturbations. In the
following, we thus consider the variation of Adam obtained by taking αn provided by (5).

2.3 Assumptions

We make three assumptions. We first assume F is bounded below by F∗, that is,

∀x ∈ Rd, F (x) ≥ F∗. (6)

We then assume the `∞ norm of the stochastic gradients is uniformly almost surely bounded, i.e. there is
R ≥

√
ε (
√
ε is used here to simplify the final bounds) so that

∀x ∈ Rd, ‖∇f(x)‖∞ ≤ R−
√
ε a.s., (7)

and finally, the smoothness of the objective function, e.g., its gradient is L-Liptchitz-continuous with respect
to the `2-norm:

∀x, y ∈ Rd, ‖∇F (x)−∇F (y)‖2 ≤ L ‖x− y‖2 . (8)

We discuss the use of assumption (7) in Section 4.2.

3 Related work

Early work on adaptive methods (McMahan & Streeter, 2010; Duchi et al., 2011) showed that Adagrad
achieves an optimal rate of convergence of O(1/

√
N) for convex optimization (Agarwal et al., 2009). Later,

RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015) were developed for training deep
neural networks, using an exponential moving average of the past squared gradients.

Kingma & Ba (2015) offered a proof that Adam with a decreasing step size converges for convex objectives.
However, the proof contained a mistake spotted by Reddi et al. (2018), who also gave examples of convex

3

Published in Transactions on Machine Learning Research (10/2022)

problems where Adam does not converge to an optimal solution. They proposed AMSGrad as a convergent
variant, which consisted in retaining the maximum value of the exponential moving average. When α goes
to zero, AMSGrad is shown to converge in the convex and non-convex setting (Fang & Klabjan, 2019; Zhou
et al., 2018). Despite this apparent flaw in the Adam algorithm, it remains a widely popular optimizer,
raising the question as to whether it converges. When β2 goes to 1 and α to 0, our results and previous
work (Zou et al., 2019a) show that Adam does converge with the same rate as Adagrad. This is coherent with
the counter examples of Reddi et al. (2018), because they uses a small exponential decay parameter β2 < 1/5.

The convergence of Adagrad for non-convex objectives was first tackled by Li & Orabona (2019), who proved
its convergence, but under restrictive conditions (e.g., α ≤

√
ε/L). The proof technique was improved by

Ward et al. (2019), who showed the convergence of “scalar” Adagrad, i.e., with a single learning rate, for any
value of α with a rate of O(ln(N)/

√
N). Our approach builds on this work but we extend it to both Adagrad

and Adam, in their coordinate-wise version, as used in practice, while also supporting heavy-ball momentum.

The coordinate-wise version of Adagrad was also tackled by Zou et al. (2019b), offering a convergence result
for Adagrad with either heavy-ball or Nesterov style momentum. We obtain the same rate for heavy-ball
momentum with respect to N (i.e., O(ln(N)/

√
N)), but we improve the dependence on the momentum

parameter β1 from O((1− β1)−3) to O((1− β1)−1). Chen et al. (2019) also provided a bound for Adagrad
and Adam, but without convergence guarantees for Adam for any hyper-parameter choice, and with a worse
dependency on β1. Zhou et al. (2018) also cover Adagrad in the stochastic setting, however their proof
technique leads to a

√
1/ε term in their bound, typically with ε=10−8. Finally, a convergence bound for

Adam was introduced by Zou et al. (2019a). We recover the same scaling of the bound with respect to α and
β2. However their bound has a dependency of O((1−β1)−5) with respect to β1, while we get O((1−β1)−1),
a significant improvement. Shi et al. (2020) obtain similar convergence results for RMSProp and Adam when
considering the random shuffling setup. They use an affine growth condition (i.e. norm of the stochastic
gradient is bounded by an affine function of the norm of the deterministic gradient) instead of the boundness
of the gradient, but their bound decays with the number of total epochs, not stochastic updates leading to
an overall

√
s extra term with s the size of the dataset. Finally, Faw et al. (2022) use the same affine growth

assumption to derive high probability bounds for scalar Adagrad.

Non adaptive methods like SGD are also well studied in the non convex setting (Ghadimi & Lan, 2013),
with a convergence rate of O(1/

√
N) for a smooth objective with bounded variance of the gradients. Unlike

adaptive methods, SGD requires knowing the smoothness constant. When adding heavy-ball momentum,
Yang et al. (2016) showed that the convergence bound degrades as O((1−β1)−2), assuming that the gradients
are bounded. We apply our proof technique for momentum to SGD in the Appendix, Section B and improve
this dependency to O((1 − β1)−1). Recent work by Liu et al. (2020) achieves the same dependency with
weaker assumptions. Defazio (2020) provided an in-depth analysis of SGD-M with a tight Liapunov analysis.

4 Main results

For a number of iterations N ∈ N∗, we note τN a random index with value in {0, . . . , N − 1}, so that

∀j ∈ N, j < N,P [τ = j] ∝ 1− βN−j1 . (9)

If β1 = 0, this is equivalent to sampling τ uniformly in {0, . . . , N−1}. If β1 > 0, the last few 1
1−β1

iterations
are sampled rarely, and iterations older than a few times that number are sampled almost uniformly. Our
results bound the expected squared norm of the gradient at iteration τ , which is standard for non convex
stochastic optimization (Ghadimi & Lan, 2013).

4.1 Convergence bounds

For simplicity, we first give convergence results for β1 = 0, along with a complete proof in Section 5. We
then provide the results with momentum, with their proofs in the Appendix, Section A.6. We also provide
a bound on the convergence of SGD with a O(1/(1 − β1) dependency in the Appendix, Section B.2, along
with its proof in Section B.4.

4

Published in Transactions on Machine Learning Research (10/2022)

No heavy-ball momentum
Theorem 1 (Convergence of Adagrad without momentum). Given the assumptions from Section 2.3, the
iterates xn defined in Section 2.2 with hyper-parameters verifying β2 = 1, αn = α with α > 0 and β1 = 0,
and τ defined by (9), we have for any N ∈ N∗,

E
[
‖∇F (xτ)‖2

]
≤ 2RF (x0)− F∗

α
√
N

+ 1√
N

(
4dR2 + αdRL

)
ln
(

1 + NR2

ε

)
. (10)

Theorem 2 (Convergence of Adam without momentum). Given the assumptions from Section 2.3, the
iterates xn defined in Section 2.2 with hyper-parameters verifying 0 < β2 < 1, αn = α

√
1−βn

2
1−β2

with α > 0
and β1 = 0, and τ defined by (9), we have for any N ∈ N∗,

E
[
‖∇F (xτ)‖2

]
≤ 2RF (x0)− F∗

αN
+ E

(
1
N

ln
(

1 + R2

(1− β2)ε

)
− ln(β2)

)
, (11)

with
E = 4dR2

√
1− β2

+ αdRL

1− β2
.

With heavy-ball momentum
Theorem 3 (Convergence of Adagrad with momentum). Given the assumptions from Section 2.3, the
iterates xn defined in Section 2.2 with hyper-parameters verifying β2 = 1, αn = α with α > 0 and 0 ≤ β1 < 1,
and τ defined by (9), we have for any N ∈ N∗ such that N > β1

1−β1
,

E
[
‖∇F (xτ)‖2

]
≤ 2R

√
N
F (x0)− F∗

αÑ
+
√
N

Ñ
E ln

(
1 + NR2

ε

)
, (12)

with Ñ = N − β1
1−β1

, and,

E = αdRL+ 12dR2

1− β1
+ 2α2dL2β1

1− β1
.

Theorem 4 (Convergence of Adam with momentum). Given the assumptions from Section 2.3, the it-
erates xn defined in Section 2.2 with hyper-parameters verifying 0 < β2 < 1, 0 ≤ β1 < β2, and,
αn = α(1− β1)

√
1−βn

2
1−β2

with α > 0, and τ defined by (9), we have for any N ∈ N∗ such that N > β1
1−β1

,

E
[
‖∇F (xτ)‖2

]
≤ 2RF (x0)− F∗

αÑ
+ E

(
1
Ñ

ln
(

1 + R2

(1− β2)ε

)
− N

Ñ
ln(β2)

)
, (13)

with Ñ = N − β1
1−β1

, and

E = αdRL(1− β1)
(1− β1/β2)(1− β2) + 12dR2√1− β1

(1− β1/β2)3/2√1− β2
+ 2α2dL2β1

(1− β1/β2)(1− β2)3/2 .

4.2 Analysis of the bounds

Dependency on d. The dependency in d is present in previous works on coordinate wise adaptive meth-
ods (Zou et al., 2019a;b). Note however that R is defined as the `∞ bound on the on the stochastic gradient,
so that in the case where the gradient has a similar scale along all dimensions, dR2 would be a reasonable
bound for ‖∇f(x)‖2

2. However, if many dimensions contribute little to the norm of the gradient, this would
still lead to a worse dependency in d that e.g. scalar Adagrad Ward et al. (2019) or SGD.

Diving into the technicalities of the proof to come, we will see in Section 5 that we apply Lemma 5.2 once per
dimension. The contribution from each coordinate is mostly independent of the actual scale of its gradients
(as it only appears in the log), so that the right hand side of the convergence bound will grow as d. In
contrast, the scalar version of Adagrad (Ward et al., 2019) has a single learning rate, so that Lemma 5.2 is
only applied once, removing the dependency on d. However, this variant is rarely used in practice.

5

Published in Transactions on Machine Learning Research (10/2022)

Almost sure bound on the gradient. We chose to assume the existence of an almost sure uniform `∞-
bound on the gradients given by (7). This is a strong assumption, although it is weaker than the one used
by Duchi et al. (2011) for Adagrad in the convex case, where the iterates were assumed to be almost surely
bounded. There exist a few real life problems that verifies this assumption, for instance logistic regression
without weight penalty, and with bounded inputs. It is possible instead to assume only a uniform bound on
the expected gradient ∇F (x), as done by Ward et al. (2019) and Zou et al. (2019b). This however lead to a

bound on E
[
‖∇F (xτ)‖4/3

2

]2/3
instead of a bound on E

[
‖∇F (xτ)‖2

2

]
, all the other terms staying the same.

We provide the sketch of the proof using Hölder inequality in the Appendix, Section A.7.

It is also possible to replace the bound on the gradient with an affine growth condition, i.e. the norm of
the stochastic gradient is bounded by an affine function of the norm of the expected gradient. A proof for
scalar Adagrad is provided by Faw et al. (2022). Shi et al. (2020) do the same for RMSProp, however their
convergence bound is decays as O(log(T)/

√
T) with T the number of epoch, not the number of updates,

leading to a significantly less tight bound for large datasets.

Impact of heavy-ball momentum. Looking at Theorems 3 and 4, we see that increasing β1 always
deteriorates the bounds. Taking β1 = 0 in those theorems gives us almost exactly the bound without
heavy-ball momentum from Theorems 1 and 2, up to a factor 3 in the terms of the form dR2.

As discussed in Section 3, previous bounds for Adagrad in the non-convex setting deteriorates as O((1−β1)−3)
(Zou et al., 2019b), while bounds for Adam deteriorates as O((1 − β1)−5) (Zou et al., 2019a). Our unified
proof for Adam and Adagrad achieves a dependency of O((1− β1)−1), a significant improvement. We refer
the reader to the Appendix, Section A.3, for a detailed analysis. While our dependency still contradicts the
benefits of using momentum observed in practice, see Section 6, our tighter analysis is a step in the right
direction.

On sampling of τ Note that in (9), we sample with a lower probability the latest iterations. This can be
explained by the fact that the proof technique for stochastic optimization in the non-convex case is based
on the idea that for every iteration n, either ∇F (xn) is small, or F (xn+1) will decrease by some amount.
However, when introducing momentum, and especially when taking the limit β1 → 1, the latest gradient
∇F (xn) has almost no influence over xn+1, as the momentum term updates slowly. Momentum spreads the
influence of the gradients over time, and thus, it will take a few updates for a gradient to have fully influenced
the iterate xn and thus the value of the function F (xn). From a formal point of view, the sampling weights
given by (9) naturally appear as part of the proof which is presented in Section A.6.

4.3 Optimal finite horizon Adam is Adagrad

Let us take a closer look at the result from Theorem 2. It could seem like some quantities can explode but
actually not for any reasonable values of α, β2 and N . Let us try to find the best possible rate of convergence
for Adam for a finite horizon N , i.e. q ∈ R+ such that E

[
‖∇F (xτ)‖2

]
= O(ln(N)N−q) for some choice

of the hyper-parameters α(N) and β2(N). Given that the upper bound in (11) is a sum of non-negative
terms, we need each term to be of the order of ln(N)N−q or negligible. Let us assume that this rate is
achieved for α(N) and β2(N). The bound tells us that convergence can only be achieved if limα(N) = 0
and lim β2(N) = 1, with the limits taken for N → ∞. This motivates us to assume that there exists an
asymptotic development of α(N) ∝ N−a + o(N−a), and of 1− β2(N) ∝ N−b + o(N−b) for a and b positive.
Thus, let us consider only the leading term in those developments, ignoring the leading constant (which is
assumed to be non-zero). Let us further assume that ε� R2, we have

E
[
‖∇F (xτ)‖2

]
≤ 2RF (x0)− F∗

N1−a + E

(
1
N

ln
(
R2N b

ε

)
+ N−b

1−N−b

)
, (14)

6

Published in Transactions on Machine Learning Research (10/2022)

with E = 4dR2N b/2 + dRLN b−a. Let us ignore the log terms for now, and use N−b

1−N−b ∼ N−b for N →∞ ,
to get

E
[
‖∇F (xτ)‖2

]
/ 2RF (x0)− F∗

N1−a + 4dR2N b/2−1 + 4dR2N−b/2 + dRLN b−a−1 + dRLN−a.

Adding back the logarithmic term, the best rate we can obtain is O(ln(N)/
√
N), and it is only achieved for

a = 1/2 and b = 1, i.e., α = α1/
√
N and β2 = 1 − 1/N . We can see the resemblance between Adagrad on

one side and Adam with a finite horizon and such parameters on the other. Indeed, an exponential moving
average with a parameter β2 = 1−1/N as a typical averaging window length of size N , while Adagrad would
be an exact average of the past N terms. In particular, the bound for Adam now becomes

E
[
‖∇F (xτ)‖2

]
≤ F (x0)− F∗

α1
√
N

+ 1√
N

(
4dR2 + α1dRL

)(
ln
(

1 + RN

ε

)
+ N

N − 1

)
, (15)

which differ from (10) only by a +N/(N − 1) next to the log term.

Adam and Adagrad are twins. Our analysis highlights an important fact: Adam is to Adagrad like
constant step size SGD is to decaying step size SGD. While Adagrad is asymptotically optimal, it also leads
to a slower decrease of the term proportional to F (x0)−F∗, as 1/

√
N instead of 1/N for Adam. During the

initial phase of training, it is likely that this term dominates the loss, which could explain the popularity of
Adam for training deep neural networks rather than Adagrad. With its default parameters, Adam will not
converge. It is however possible to choose α and β2 to achieve an ε critical point for ε arbitrarily small and,
for a known time horizon, they can be chosen to obtain the exact same bound as Adagrad.

5 Proofs for β1 = 0 (no momentum)

We assume here for simplicity that β1 = 0, i.e., there is no heavy-ball style momentum. Taking n ∈ N∗, the
recursions introduced in Section 2.2 can be simplified into{

vn,i = β2vn−1,i + (∇ifn(xn−1))2
,

xn,i = xn−1,i − αn∇ifn(xn−1)√
ε+vn,i

.
(16)

Remember that we recover Adagrad when αn = α for α > 0 and β2 = 1, while Adam can be obtained taking
0 < β2 < 1, α > 0,

αn = α

√
1− βn2
1− β2

, (17)

Throughout the proof we denote by En−1 [·] the conditional expectation with respect to f1, . . . , fn−1. In
particular, xn−1 and vn−1 are deterministic knowing f1, . . . , fn−1. For all n ∈ N∗, we also define ṽn ∈ Rd so
that for all i ∈ [d],

ṽn,i = β2vn−1,i + En−1

[
(∇ifn(xn−1))2

]
, (18)

i.e., we replace the last gradient contribution by its expected value conditioned on f1, . . . , fn−1.

5.1 Technical lemmas

A problem posed by the update (16) is the correlation between the numerator and denominator. This prevents
us from easily computing the conditional expectation and as noted by Reddi et al. (2018), the expected
direction of update can have a positive dot product with the objective gradient. It is however possible to
control the deviation from the descent direction, following Ward et al. (2019) with this first lemma.
Lemma 5.1 (adaptive update approximately follow a descent direction). For all n ∈ N∗ and i ∈ [d], we
have:

En−1

[
∇iF (xn−1)∇ifn(xn−1)

√
ε+ vn,i

]
≥ (∇iF (xn−1))2

2
√
ε+ ṽn,i

− 2REn−1

[
(∇ifn(xn−1))2

ε+ vn,i

]
. (19)

7

Published in Transactions on Machine Learning Research (10/2022)

Proof. We take i ∈ [d] and note G = ∇iF (xn−1), g = ∇ifn(xn−1), v = vn,i and ṽ = ṽn,i.

En−1

[
Gg√
ε+ v

]
= En−1

[
Gg√
ε+ ṽ

]
+ En−1

[
Gg

(
1√
ε+ v

− 1√
ε+ ṽ

)
︸ ︷︷ ︸

A

]
. (20)

Given that g and ṽ are independent knowing f1, . . . , fn−1, we immediately have

En−1

[
Gg√
ε+ ṽ

]
= G2
√
ε+ ṽ

. (21)

Now we need to control the size of the second term A,

A = Gg
ṽ − v√

ε+ v
√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

= Gg
En−1

[
g2]− g2

√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

|A| ≤ |Gg|
En−1

[
g2]

√
ε+ v(ε+ ṽ)︸ ︷︷ ︸
κ

+ |Gg| g2

(ε+ v)
√
ε+ ṽ︸ ︷︷ ︸

ρ

.

The last inequality comes from the fact that
√
ε+ v+

√
ε+ ṽ ≥ max(

√
ε+ v,

√
ε+ ṽ) and

∣∣En−1
[
g2]− g2

∣∣ ≤
En−1

[
g2]+ g2. Following Ward et al. (2019), we can use the following inequality to bound κ and ρ,

∀λ > 0, x, y ∈ R, xy ≤ λ

2x
2 + y2

2λ. (22)

First applying (22) to κ with

λ =
√
ε+ ṽ

2 , x = |G|√
ε+ ṽ

, y =
|g|En−1

[
g2]

√
ε+ ṽ

√
ε+ v

,

we obtain

κ ≤ G2

4
√
ε+ ṽ

+
g2En−1

[
g2]2

(ε+ ṽ)3/2(ε+ v) .

Given that ε+ ṽ ≥ En−1
[
g2] and taking the conditional expectation, we can simplify as

En−1 [κ] ≤ G2

4
√
ε+ ṽ

+
En−1

[
g2]

√
ε+ ṽ

En−1

[
g2

ε+ v

]
. (23)

Given that
√
En−1 [g2] ≤

√
ε+ ṽ and

√
En−1 [g2] ≤ R, we can simplify (23) as

En−1 [κ] ≤ G2

4
√
ε+ ṽ

+REn−1

[
g2

ε+ v

]
. (24)

Now turning to ρ, we use (22) with

λ =
√
ε+ ṽ

2En−1 [g2] , x = |Gg|√
ε+ ṽ

, y = g2

ε+ v
,

we obtain

ρ ≤ G2

4
√
ε+ ṽ

g2

En−1 [g2] +
En−1

[
g2]

√
ε+ ṽ

g4

(ε+ v)2 , (25)

8

Published in Transactions on Machine Learning Research (10/2022)

Given that ε+ v ≥ g2 and taking the conditional expectation we obtain

En−1 [ρ] ≤ G2

4
√
ε+ ṽ

+
En−1

[
g2]

√
ε+ ṽ

En−1

[
g2

ε+ v

]
, (26)

which we simplify using the same argument as for (24) into

En−1 [ρ] ≤ G2

4
√
ε+ ṽ

+REn−1

[
g2

ε+ v

]
. (27)

Notice that in (25), we possibly divide by zero. It suffice to notice that if En−1
[
g2] = 0 then g2 = 0 a.s. so

that ρ = 0 and (27) is still verified. Summing (24) and (27) we can bound

En−1 [|A|] ≤ G2

2
√
ε+ ṽ

+ 2REn−1

[
g2

ε+ v

]
. (28)

Injecting (28) and (21) into (20) finishes the proof.

Anticipating on Section 5.2, the previous Lemma gives us a bound on the deviation from a descent direction.
While for a specific iteration, this deviation can take us away from a descent direction, the next lemma tells
us that the sum of those deviations cannot grow larger than a logarithmic term. This key insight introduced
in Ward et al. (2019) is what makes the proof work.
Lemma 5.2 (sum of ratios with the denominator being the sum of past numerators). We assume we have
0 < β2 ≤ 1 and a non-negative sequence (an)n∈N∗ . We define for all n ∈ N∗, bn =

∑n
j=1 β

n−j
2 aj. We have

N∑
j=1

aj
ε+ bj

≤ ln
(

1 + bN
ε

)
−N ln(β2). (29)

Proof. Given that ln is increasing, and the fact that bj > aj ≥ 0, we have for all j ∈ N∗,
aj

ε+ bj
≤ ln(ε+ bj)− ln(ε+ bj − aj)

= ln(ε+ bj)− ln(ε+ β2bj−1)

= ln
(

ε+ bj
ε+ bj−1

)
+ ln

(
ε+ bj−1

ε+ β2bj−1

)
.

The first term forms a telescoping series, while the second one is bounded by − ln(β2). Summing over all
j ∈ [N] gives the desired result.

5.2 Proof of Adam and Adagrad without momentum

Let us take an iteration n ∈ N∗, we define the update un ∈ Rd:

∀i ∈ [d], un,i = ∇ifn(xn−1)
√
ε+ vn,i

. (30)

Adagrad. As explained in Section 2.2, we have αn = α for α > 0. Using the smoothness of F (8), we have

F (xn+1) ≤ F (xn)− α∇F (xn)Tun + α2L

2 ‖un‖2
2 . (31)

Taking the conditional expectation with respect to f0, . . . , fn−1 we can apply the descent Lemma 5.1. Notice
that due to the a.s. `∞ bound on the gradients (7), we have for any i ∈ [d],

√
ε+ ṽn,i ≤ R

√
n, so that,

α (∇iF (xn−1))2

2
√
ε+ ṽn,i

≥ α (∇iF (xn−1))2

2R
√
n

. (32)

9

Published in Transactions on Machine Learning Research (10/2022)

This gives us

En−1 [F (xn)] ≤ F (xn−1)− α

2R
√
n
‖∇F (xn−1)‖2

2 +
(

2αR+ α2L

2

)
En−1

[
‖un‖2

2

]
.

Summing the previous inequality for all n ∈ [N], taking the complete expectation, and using that
√
n ≤
√
N

gives us,

E [F (xN)] ≤ F (x0)− α

2R
√
N

N−1∑
n=0

E
[
‖∇F (xn)‖2

2

]
+
(

2αR+ α2L

2

)N−1∑
n=0

E
[
‖un‖2

2

]
.

From there, we can bound the last sum on the right hand side using Lemma 5.2 once for each dimension.
Rearranging the terms, we obtain the result of Theorem 1.

Adam. As given by (5) in Section 2.2, we have αn = α
√

1−βn
2

1−β2
for α > 0. Using the smoothness of F

defined in (8), we have

F (xn) ≤ F (xn−1)− αn∇F (xn−1)Tun + α2
nL

2 ‖un‖2
2 . (33)

We have for any i ∈ [d],
√
ε+ ṽn,i ≤ R

√∑n−1
j=0 β

j
2 = R

√
1−βn

2
1−β2

, thanks to the a.s. `∞ bound on the gradients
(7), so that,

αn
(∇iF (xn−1))2

2
√
ε+ ṽn,i

≥ α (∇iF (xn−1))2

2R . (34)

Taking the conditional expectation with respect to f1, . . . , fn−1 we can apply the descent Lemma 5.1 and
use (34) to obtain from (33),

En−1 [F (xn)] ≤ F (xn−1)− α

2R ‖∇F (xn−1)‖2
2 +

(
2αnR+ α2

nL

2

)
En−1

[
‖un‖2

2

]
.

Given that β2 < 1, we have αn ≤ α√
1−β2

. Summing the previous inequality for all n ∈ [N] and taking the
complete expectation yields

E [F (xN)] ≤ F (x0)− α

2R

N−1∑
n=0

E
[
‖∇F (xn)‖2

2

]
+
(

2αR√
1− β2

+ α2L

2(1− β2)

)N−1∑
n=0

E
[
‖un‖2

2

]
.

Applying Lemma 5.2 for each dimension and rearranging the terms finishes the proof of Theorem 2.

6 Experiments

On Figure 1, we compare the effective dependency of the average squared norm of the gradient in the
parameters α, β1 and β2 for Adam, when used on a toy task and CIFAR-10.

6.1 Setup

Toy problem. In order to support the bounds presented in Section 4, in particular the dependency in β2,
we test Adam on a specifically crafted toy problem. We take x ∈ R6 and define for all i ∈ [6], pi = 10−i. We
take (Qi)i∈[6], Bernoulli variables with P [Qi = 1] = pi. We then define f for all x ∈ Rd as

f(x) =
∑
i∈[6]

(1−Qi) Huber(xi − 1) + Qi√
pi

Huber(xi + 1), (35)

with for all y ∈ R,

Huber(y) =
{

y2

2 when |y| ≤ 1
|y| − 1

2 otherwise.

10

Published in Transactions on Machine Learning Research (10/2022)

10−6 10−5 10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

100

Parameter

E
[‖∇F

(x
τ

)‖
2 2
]

(a) Average squared norm of the gradient on a toy
task, see Section 6, for more details. For the α and
1 − β2 curves, we initialize close to the optimum to
make the F0 − F∗ term negligible.

10−6 10−5 10−4 10−3 10−2 10−1 100

101

102

Parameter

α

1− β1
1− β2

(b) Average squared norm of the gradient of a small
convolutional model Gitman & Ginsburg (2017)
trained on CIFAR-10, with a random initialization.
The full gradient is evaluated every epoch.

Figure 1: Observed average squared norm of the objective gradients after a fixed number of iterations when
varying a single parameter out of α, 1− β1 and 1− β2, on a toy task (left, 106 iterations) and on CIFAR-10
(right, 600 epochs with a batch size 128). All curves are averaged over 3 runs, error bars are negligible except
for small values of α on CIFAR-10. See Section 6 for details.

0 50 100

10−1

100

Epoch

C
ro
ss
-E

nt
ro
py

All corrections

0 50 100

10−1

100

Epoch

Dropping correction for mn

0 50 100

10−1

100

Epoch

Dropping correction for vn

0 50 100

10−1

100

101

Epoch

E
[‖∇F

(x
n

)‖
2 2
]

0 50 100

10−1

100

101

Epoch
0 50 100

10−1

101

Epoch

Figure 2: Training trajectories for varying values of α ∈ {10−4, 10−3}, β1 ∈ {0., 0.5, 0.8, 0.9, 0.99} and
β2 ∈ {0.9, 0.99, 0.999, 0.9999}. The top row (resp. bottom) gives the training loss (resp. squared norm of
the expected gradient). The left column uses all corrective terms in the original Adam algorithm, the middle
column drops the corrective term on mn (equivalent to our proof setup), and the right column drops the
corrective term on vn. We notice a limited impact when dropping the corrective term on mn, but dropping
the corrective term on vn has a much stronger impact.

Intuitively, each coordinate is pointing most of the time towards 1, but exceptionally towards -1 with a
weight of 1/√pi. Those rare events happens less and less often as i increase, but with an increasing weight.

11

Published in Transactions on Machine Learning Research (10/2022)

Those weights are chosen so that all the coordinates of the gradient have the same variance1. It is necessary
to take different probabilities for each coordinate. If we use the same p for all, we observe a phase transition
when 1− β2 ≈ p, but not the continuous improvement we obtain on Figure 1a.

We plot the variation of E
[
‖F (xτ)‖2

2

]
after 106 iterations with batch size 1 when varying either α, 1 − β1

or 1 − β2 through a range of 13 values uniformly spaced in log-scale between 10−6 and 1. When varying
α, we take β1 = 0 and β2 = 1 − 10−6. When varying β1, we take α = 10−5 and β2 = 1 − 10−6 (i.e. β2 is
so that we are in the Adagrad-like regime). Finally, when varying β2, we take β1 = 0 and α = 10−6. We
start from x0 close to the optimum by running first 106 iterations with α = 10−4, then 106 iterations with
α = 10−5, always with β2 = 1− 10−6. This allows to have F (x0)−F∗ ≈ 0 in (11) and (13) and focus on the
second part of both bounds. All curves are averaged over three runs. Error bars are plotted but not visible
in log-log scale.

CIFAR-10. We train a simple convolutional network (Gitman & Ginsburg, 2017) on the CIFAR-102 image
classification dataset. Starting from a random initialization, we train the model on a single V100 for 600
epochs with a batch size of 128, evaluating the full training gradient after each epoch. This is a proxy
for E

[
‖F (xτ)‖2

2

]
, which would be to costly to evaluate exactly. All runs use the default config α = 10−3,

β2 = 0.999 and β1 = 0.9, and we then change one of the parameter.

We take α from a uniform range in log-space between 10−6 and 10−2 with 9 values, for 1− β1 the range is
from 10−5 to 0.3 with 9 values, and for 1−β2, from 10−6 to 10−1 with 11 values. Unlike for the toy problem,
we do not initialize close to the optimum, as even after 600 epochs, the norm of the gradients indicates that
we are not at a critical point. All curves are averaged over three runs. Error bars are plotted but not visible
in log-log scale, except for large values of α.

6.2 Analysis

Toy problem. Looking at Figure 1a, we observe a continual improvement as β2 increases. Fitting a linear
regression in log-log scale of E[‖∇F (xτ)‖2

2] with respect to 1− β2 gives a slope of 0.56 which is compatible
with our bound (11), in particular the dependency in O(1/

√
1− β2). As we initialize close to the optimum,

a small step size α yields as expected the best performance. Doing the same regression in log-log scale, we
find a slope of 0.87, which is again compatible with the O(α) dependency of the second term in (11). Finally,
we observe a limited impact of β1, except when 1− β1 is small. The regression in log-log scale gives a slope
of -0.16, while our bound predicts a slope of -1.

CIFAR 10. Let us now turn to Figure 1b. As we start from random weights for this problem, we observe
that a large step size gives the best performance, although we observe a high variance for the largest α.
This indicates that training becomes unstable for large α, which is not predicted by the theory. This is
likely a consequence of the bounded gradient assumption (7) not being verified for deep neural networks.
We observe a small improvement as 1 − β2 decreases, although nowhere near what we observed on our toy
problem. Finally, we observe a sweet spot for the momentum β1, not predicted by our theory. We conjecture
that this is due to the variance reduction effect of momentum (averaging of the gradients over multiple
mini-batches, while the weights have not moved so much as to invalidate past information).

6.3 Impact of the Adam corrective terms

Using the same experimental setup on CIFAR-10, we compare the impact of removing either of the corrective
term of the original Adam algorithm (Kingma & Ba, 2015), as discussed in Section 2.2. We ran a cartesian
product of training for 100 epochs, with β1 ∈ {0, 0.5, 0.8, 0.9, 0.99}, β2 ∈ {0.9, 0.99, 0.999, 0.9999}, and
α ∈ {10−4, 10−3}. We report both the training loss and norm of the expected gradient on Figure 2. We
notice a limited difference when dropping the corrective term on mn, but dropping the term vn has an

1We deviate from the a.s. bounded gradient assumption for this experiment, see Section 4.2 for a discussion on a.s. bound
vs bound in expectation.

2https://www.cs.toronto.edu/~kriz/cifar.html

12

https://www.cs.toronto.edu/~kriz/cifar.html

Published in Transactions on Machine Learning Research (10/2022)

important impact on the training trajectories. This confirm our motivation for simplifying the proof by
removing the corrective term on the momentum.

7 Conclusion

We provide a simple proof on the convergence of Adam and Adagrad without heavy-ball style momentum.
Our analysis highlights a link between the two algorithms: with right the hyper-parameters, Adam converges
like Adagrad. The extension to heavy-ball momentum is more complex, but we significantly improve the
dependence on the momentum parameter for Adam, Adagrad, as well as SGD. We exhibit a toy problem
where the dependency on α and β2 experimentally matches our prediction. However, we do not predict the
practical interest of momentum, so that improvements to the proof are needed for future work.

Broader Impact Statement

The present theoretical results on the optimization of non convex losses in a stochastic settings impact our
understanding of the training of deep neural network. It might allow a deeper understanding of neural
network training dynamics and thus reinforce any existing deep learning applications. There would be
however no direct possible negative impact to society.

References
Alekh Agarwal, Martin J Wainwright, Peter L Bartlett, and Pradeep K Ravikumar. Information-theoretic
lower bounds on the oracle complexity of convex optimization. In Advances in Neural Information Pro-
cessing Systems, 2009.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of Adam-type
algorithms for non-convex optimization. In International Conference on Learning Representations, 2019.

Aaron Defazio. Momentum via primal averaging: Theoretical insights and learning rate schedules for non-
convex optimization. arXiv preprint arXiv:2010.00406, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul), 2011.

John Duchi, Michael I Jordan, and Brendan McMahan. Estimation, optimization, and parallelism when
data is sparse. In Advances in Neural Information Processing Systems 26, 2013.

Biyi Fang and Diego Klabjan. Convergence analyses of online adam algorithm in convex setting and two-layer
relu neural network. arXiv preprint arXiv:1905.09356, 2019.

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and Rachel
Ward. The power of adaptivity in sgd: Self-tuning step sizes with unbounded gradients and affine variance.
In Po-Ling Loh and Maxim Raginsky (eds.), Proceedings of Thirty Fifth Conference on Learning Theory,
Proceedings of Machine Learning Research. PMLR, 2022.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4), 2013.

Igor Gitman and Boris Ginsburg. Comparison of batch normalization and weight normalization algorithms
for the large-scale image classification. arXiv preprint arXiv:1709.08145, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of the Interna-
tional Conference on Learning Representations (ICLR), 2015.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for knowledge
base completion. arXiv preprint arXiv:1806.07297, 2018.

13

Published in Transactions on Machine Learning Research (10/2022)

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes.
In AI Stats, 2019.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with momen-
tum. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 18261–18271. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/d3f5d4de09ea19461dab00590df91e4f-Paper.pdf.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimization.
In COLT, 2010.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5), 1964.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In Proc. of
the International Conference on Learning Representations (ICLR), 2018.

Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. Rmsprop converges with proper hyper-parameter. In
International Conference on Learning Representations, 2020.

T. Tieleman and G. Hinton. Lecture 6.5 — rmsprop. COURSERA: Neural Networks for Machine Learning,
2012.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex land-
scapes. In International Conference on Machine Learning, 2019.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value of
adaptive gradient methods in machine learning. In Advances in Neural Information Processing Systems,
2017.

Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochastic momentum methods for
convex and non-convex optimization. arXiv preprint arXiv:1604.03257, 2016.

Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. On the convergence of adaptive
gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671, 2018.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for convergences of
Adam and RMSprop. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019a.

Fengyu Zou, Li Shen, Zenqun Jie, Ju Sun, and Wei Liu. Weighted Adagrad with unified momentum. arXiv
preprint arXiv:1808.03408, 2019b.

14

https://proceedings.neurips.cc/paper/2020/file/d3f5d4de09ea19461dab00590df91e4f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d3f5d4de09ea19461dab00590df91e4f-Paper.pdf

Published in Transactions on Machine Learning Research (10/2022)

Supplementary material for A Simple Convergence Proof of Adam and
Adagrad

Overview

In Section A, we detail the results for the convergence of Adam and Adagrad with heavy-ball momentum.
For an overview of the contributions of our proof technique, see Section A.4.

Then in Section B, we show how our technique also applies to SGD and improves its dependency in β1
compared with previous work by Yang et al. (2016), from O((1−β1)−2) to O(1−β1)−1. The proof is simpler
than for Adam/Adagrad, and show the generality of our technique.

A Convergence of adaptive methods with heavy-ball momentum

A.1 Setup and notations

We recall the dynamic system introduced in Section 2.3. In the rest of this section, we take an iteration
n ∈ N∗, and when needed, i ∈ [d] refers to a specific coordinate. Given x0 ∈ Rd our starting point, m0 = 0,
and v0 = 0, we define

mn,i = β1mn−1,i +∇ifn(xn−1),
vn,i = β2vn−1,i + (∇ifn(xn−1))2

,

xn,i = xn−1,i − αn mn,i√
ε+vn,i

.

(A.1)

For Adam, the step size is given by

αn = α(1− β1)

√
1− βn2
1− β2

. (A.2)

For Adagrad (potentially extended with heavy-ball momentum), we have β2 = 1 and

αn = α(1− β1). (A.3)

Notice we include the factor 1 − β1 in the step size rather than in (A.1), as this allows for a more elegant
proof. The original Adam algorithm included compensation factors for both β1 and β2 (Kingma & Ba,
2015) to correct the initial scale of m and v which are initialized at 0. Adam would be exactly recovered by
replacing (A.2) with

αn = α
1− β1

1− βn1

√
1− βn2
1− β2

. (A.4)

However, the denominator 1− βn1 potentially makes (αn)n∈N∗ non monotonic, which complicates the proof.
Thus, we instead replace the denominator by its limit value for n → ∞. This has little practical impact as
(i) early iterates are noisy because v is averaged over a small number of gradients, so making smaller step
can be more stable, (ii) for β1 = 0.9 (Kingma & Ba, 2015), (A.2) differs from (A.4) only for the first 50
iterations.

Throughout the proof we note En−1 [·] the conditional expectation with respect to f1, . . . , fn−1. In particular,
xn−1, vn−1 is deterministic knowing f1, . . . , fn−1. We introduce

Gn = ∇F (xn−1) and gn = ∇fn(xn−1). (A.5)

Like in Section 5.2, we introduce the update un ∈ Rd, as well as the update without heavy-ball momentum
Un ∈ Rd:

un,i = mn,i√
ε+ vn,i

and Un,i = gn,i√
ε+ vn,i

. (A.6)

15

Published in Transactions on Machine Learning Research (10/2022)

For any k ∈ N with k < n, we define ṽn,k ∈ Rd by

ṽn,k,i = βk2 vn−k,i + En−k−1

 n∑
j=n−k+1

βn−j2 g2
j,i

 , (A.7)

i.e. the contribution from the k last gradients are replaced by their expected value for know values of
f1, . . . , fn−k−1. For k = 1, we recover the same definition as in (18).

A.2 Results

For any total number of iterations N ∈ N∗, we define τN a random index with value in {0, . . . , N − 1},
verifying

∀j ∈ N, j < N,P [τ = j] ∝ 1− βN−j1 . (A.8)

If β1 = 0, this is equivalent to sampling τ uniformly in {0, . . . , N −1}. If β1 > 0, the last few 1
1−β1

iterations
are sampled rarely, and all iterations older than a few times that number are sampled almost uniformly.
We bound the expected squared norm of the total gradient at iteration τ , which is standard for non convex
stochastic optimization (Ghadimi & Lan, 2013).

Note that like in previous works, the bound worsen as β1 increases, with a dependency of the form O((1−
β1)−1). This is a significant improvement over the existing bound for Adagrad with heavy-ball momentum,
which scales as (1−β1)−3 (Zou et al., 2019b), or the best known bound for Adam which scales as (1−β1)−5

(Zou et al., 2019a).

Technical lemmas to prove the following theorems are introduced in Section A.5, while the proof of Theorems
3 and 4 are provided in Section A.6.
Theorem 3 (Convergence of Adagrad with momentum). Given the assumptions from Section 2.3, the
iterates xn defined in Section 2.2 with hyper-parameters verifying β2 = 1, αn = α with α > 0 and 0 ≤ β1 < 1,
and τ defined by (9), we have for any N ∈ N∗ such that N > β1

1−β1
,

E
[
‖∇F (xτ)‖2

]
≤ 2R

√
N
F (x0)− F∗

αÑ
+
√
N

Ñ
E ln

(
1 + NR2

ε

)
, (12)

with Ñ = N − β1
1−β1

, and,

E = αdRL+ 12dR2

1− β1
+ 2α2dL2β1

1− β1
.

Theorem 4 (Convergence of Adam with momentum). Given the assumptions from Section 2.3, the it-
erates xn defined in Section 2.2 with hyper-parameters verifying 0 < β2 < 1, 0 ≤ β1 < β2, and,
αn = α(1− β1)

√
1−βn

2
1−β2

with α > 0, and τ defined by (9), we have for any N ∈ N∗ such that N > β1
1−β1

,

E
[
‖∇F (xτ)‖2

]
≤ 2RF (x0)− F∗

αÑ
+ E

(
1
Ñ

ln
(

1 + R2

(1− β2)ε

)
− N

Ñ
ln(β2)

)
, (13)

with Ñ = N − β1
1−β1

, and

E = αdRL(1− β1)
(1− β1/β2)(1− β2) + 12dR2√1− β1

(1− β1/β2)3/2√1− β2
+ 2α2dL2β1

(1− β1/β2)(1− β2)3/2 .

A.3 Analysis of the results with momentum

First notice that taking β1 → 0 in Theorems 3 and 4, we almost recover the same result as stated in 2 and
1, only losing on the term 4dR2 which becomes 12dR2.

16

Published in Transactions on Machine Learning Research (10/2022)

Simplified expressions with momentum Assuming N � β1
1−β1

and β1/β2 ≈ β1, which is verified for
typical values of β1 and β2 (Kingma & Ba, 2015), it is possible to simplify the bound for Adam (13) as

E
[
‖∇F (xτ)‖2

]
/ 2RF (x0)− F∗

αN

+
(
αdRL

1− β2
+ 12dR2

(1− β1)
√

1− β2
+ 2α2dL2β1

(1− β1)(1− β2)3/2

)(
1
N

ln
(

1 + R2

ε(1− β2)

)
− ln(β2)

)
. (A.9)

Similarly, if we assume N � β1
1−β1

, we can simplify the bound for Adagrad (??) as

E
[
‖∇F (xτ)‖2

]
/ 2RF (x0)− F∗

α
√
N

+ 1√
N

(
αdRL+ 12dR2

1− β1
+ 2α2dL2β1

1− β1

)
ln
(

1 + NR2

ε

)
, (A.10)

Optimal finite horizon Adam is still Adagrad We can perform the same finite horizon analysis as in
Section 4.3. If we take α = α̃√

N
and β2 = 1− 1/N , then (A.9) simplifies to

E
[
‖∇F (xτ)‖2

]
/ 2RF (x0)− F∗

α̃
√
N

+ 1√
N

(
α̃dRL+ 12dR2

1− β1
+ 2α̃2dL2β1

1− β1

)(
ln
(

1 + NR2

ε

)
+ 1
)
. (A.11)

The term (1−β2)3/2 in the denominator in (A.9) is indeed compensated by the α2 in the numerator and we
again recover the proper ln(N)/

√
N convergence rate, which matches (A.10) up to a +1 term next to the

log.

A.4 Overview of the proof, contributions and limitations

There is a number of steps to the proof. First we derive a Lemma similar in spirit to the descent Lemma 5.1.
There are two differences: first, when computing the dot product between the current expected gradient and
each past gradient contained in the momentum, we have to re-center the expected gradient to its values in
the past, using the smoothness assumption. Besides, we now have to decorrelate more terms between the
numerator and denominator, as the numerator contains not only the latest gradient but a decaying sum of
the past ones. We similarly extend Lemma 5.2 to support momentum specific terms. The rest of the proof
follows mostly as in Section 5, except with a few more manipulation to regroup the gradient terms coming
from different iterations.

Compared with previous work (Zou et al., 2019b;a), the re-centering of past gradients in (A.14) is a key aspect
to improve the dependency in β1, with a small price to pay using the smoothness of F which is compensated
by the introduction of extra G2

n−k,i in (A.1). Then, a tight handling of the different summations as well as
the the introduction of a non uniform sampling of the iterates (A.8), which naturally arises when grouping
the different terms in (A.49), allow to obtain the overall improved dependency in O((1− β1)−1).

The same technique can be applied to SGD, the proof becoming simpler as there is no correlation between
the step size and the gradient estimate, see Section B. If you want to better understand the handling of
momentum without the added complexity of adaptive methods, we recommend starting with this proof.

A limitation of the proof technique is that we do not show that heavy-ball momentum can lead to a variance
reduction of the update. Either more powerful probabilistic results, or extra regularity assumptions could
allow to further improve our worst case bounds of the variance of the update, which in turn might lead to a
bound with an improvement when using heavy-ball momentum.

A.5 Technical lemmas

We first need an updated version of 5.1 that includes momentum.
Lemma A.1 (Adaptive update with momentum approximately follows a descent direction). Given x0 ∈ Rd,
the iterates defined by the system (A.1) for (αj)j∈N∗ that is non-decreasing, and under the conditions (6),

17

Published in Transactions on Machine Learning Research (10/2022)

(7), and (8), as well as 0 ≤ β1 < β2 ≤ 1, we have for all iterations n ∈ N∗,

E

∑
i∈[d]

Gn,i
mn,i√
ε+ vn,i

 ≥ 1
2

∑
i∈[d]

n−1∑
k=0

βk1E

[
G2
n−k,i√

ε+ ṽn,k+1,i

]
− α2

nL
2

4R
√

1− β1

(
n−1∑
l=1
‖un−l‖2

2

n−1∑
k=l

βk1
√
k

)
− 3R√

1− β1

(
n−1∑
k=0

(
β1

β2

)k√
k + 1 ‖Un−k‖2

2

)
. (A.12)

Proof. We use multiple times (22) in this proof, which we repeat here for convenience,

∀λ > 0, x, y ∈ R, xy ≤ λ

2x
2 + y2

2λ. (A.13)

Let us take an iteration n ∈ N∗ for the duration of the proof. We have∑
i∈[d]

Gn,i
mn,i√
ε+ vn,i

=
∑
i∈[d]

n−1∑
k=0

βk1Gn,i
gn−k,i√
ε+ vn,i

=
∑
i∈[d]

n−1∑
k=0

βk1Gn−k,i
gn−k,i√
ε+ vn,i︸ ︷︷ ︸

A

+
∑
i∈[d]

n−1∑
k=0

βk1 (Gn,i −Gn−k,i)
gn−k,i√
ε+ vn,i︸ ︷︷ ︸

B

, (A.14)

Let us now take an index 0 ≤ k ≤ n − 1. We show that the contribution of past gradients Gn−k and gn−k
due to the heavy-ball momentum can be controlled thanks to the decay term βk1 . Let us first have a look at
B. Using (A.13) with

λ =
√

1− β1

2R
√
k + 1

, x = |Gn,i −Gn−k,i| , y = |gn−k,i|√
ε+ vn,i

,

we have

|B| ≤
∑
i∈[d]

n−1∑
k=0

βk1

(√
1− β1

4R
√
k + 1

(Gn,i −Gn−k,i)2 + R
√
k + 1√

1− β1

g2
n−k,i

ε+ vn,i

)
. (A.15)

Notice first that for any dimension i ∈ [d], ε+ vn,i ≥ ε+ βk2 vn−k,i ≥ βk2 (ε+ vn−k,i), so that

g2
n−k,i

ε+ vn,i
≤ 1
βk2
U2
n−k,i (A.16)

Besides, using the L-smoothness of F given by (8), we have

‖Gn −Gn−k‖2
2 ≤ L

2 ‖xn−1 − xn−k−1‖2
2

= L2

∥∥∥∥∥
k∑
l=1

αn−lun−l

∥∥∥∥∥
2

2

≤ α2
nL

2k

k∑
l=1
‖un−l‖2

2 , (A.17)

using Jensen inequality and the fact that αn is non-decreasing. Injecting (A.16) and (A.17) into (A.15), we
obtain

|B| ≤

(
n−1∑
k=0

α2
nL

2

4R
√

1− β1β
k
1
√
k

k∑
l=1
‖un−l‖2

2

)
+
(
n−1∑
k=0

R√
1− β1

(
β1

β2

)k√
k + 1 ‖Un−k‖2

2

)

=
√

1− β1
α2
nL

2

4R

(
n−1∑
l=1
‖un−l‖2

2

n−1∑
k=l

βk1
√
k

)
+ R√

1− β1

(
n−1∑
k=0

(
β1

β2

)k√
k + 1 ‖Un−k‖2

2

)
. (A.18)

18

Published in Transactions on Machine Learning Research (10/2022)

Now going back to the A term in (A.14), we will study the main term of the summation, i.e. for i ∈ [d] and
k < n

E
[
Gn−k,i

gn−k,i√
ε+ vn,i

]
= E

[
∇iF (xn−k−1)∇ifn−k(xn−k−1)

√
ε+ vn,i

]
. (A.19)

Notice that we could almost apply Lemma 5.1 to it, except that we have vn,i in the denominator instead of
vn−k,i. Thus we will need to extend the proof to decorrelate more terms. We will further drop indices in the
rest of the proof, noting G = Gn−k,i, g = gn−k,i, ṽ = ṽn,k+1,i and v = vn,i. Finally, let us note

δ2 =
n∑

j=n−k
βn−j2 g2

j,i and r2 = En−k−1
[
δ2] . (A.20)

In particular we have ṽ − v = r2 − δ2. With our new notations, we can rewrite (A.19) as

E
[
G

g√
ε+ v

]
= E

[
G

g√
ε+ ṽ

+Gg

(
1√
ε+ v

− 1√
ε+ ṽ

)]
= E

[
En−k−1

[
G

g√
ε+ ṽ

]
+Gg

r2 − δ2
√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

]

= E
[

G2
√
ε+ ṽ

]
+ E

Gg r2 − δ2
√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)︸ ︷︷ ︸

C

 . (A.21)

We first focus on C:

|C| ≤ |Gg| r2
√
ε+ v(ε+ ṽ)︸ ︷︷ ︸
κ

+ |Gg| δ2

(ε+ v)
√
ε+ ṽ︸ ︷︷ ︸

ρ

,

due to the fact that
√
ε+ v +

√
ε+ ṽ ≥ max(

√
ε+ v,

√
ε+ ṽ) and

∣∣r2 − δ2
∣∣ ≤ r2 + δ2.

Applying (A.13) to κ with

λ =
√

1− β1
√
ε+ ṽ

2 , x = |G|√
ε+ ṽ

, y = |g| r2
√
ε+ ṽ

√
ε+ v

,

we obtain

κ ≤ G2

4
√
ε+ ṽ

+ 1√
1− β1

g2r4

(ε+ ṽ)3/2(ε+ v) .

Given that ε+ ṽ ≥ r2 and taking the conditional expectation, we can simplify as

En−k−1 [κ] ≤ G2

4
√
ε+ ṽ

+ 1√
1− β1

r2
√
ε+ ṽ

En−k−1

[
g2

ε+ v

]
. (A.22)

Now turning to ρ, we use (A.13) with

λ =
√

1− β1
√
ε+ ṽ

2r2 , x = |Gδ|√
ε+ ṽ

, y = |δg|
ε+ v

,

we obtain

ρ ≤ G2

4
√
ε+ ṽ

δ2

r2 + 1√
1− β1

r2
√
ε+ ṽ

g2δ2

(ε+ v)2 . (A.23)

19

Published in Transactions on Machine Learning Research (10/2022)

Given that ε+ v ≥ δ2, and En−k−1

[
δ2

r2

]
= 1, we obtain after taking the conditional expectation,

En−k−1 [ρ] ≤ G2

4
√
ε+ ṽ

+ 1√
1− β1

r2
√
ε+ ṽ

En−k−1

[
g2

ε+ v

]
. (A.24)

Notice that in A.23, we possibly divide by zero. It suffice to notice that if r2 = 0 then δ2 = 0 a.s. so that
ρ = 0 and (A.24) is still verified. Summing (A.22) and (A.24), we get

En−k−1 [|C|] ≤ G2

2
√
ε+ ṽ

+ 2√
1− β1

r2
√
ε+ ṽ

En−k−1

[
g2

ε+ v

]
. (A.25)

Given that r ≤
√
ε+ ṽ by definition of ṽ, and that using (7), r ≤

√
k + 1R, we have3, reintroducing the

indices we had dropped

En−k−1 [|C|] ≤
G2
n−k,i

2
√
ε+ ṽn,k+1,i

+ 2R√
1− β1

√
k + 1En−k−1

[
g2
n−k,i

ε+ vn,i

]
. (A.26)

Taking the complete expectation and using that by definition ε+ vn,i ≥ ε+βk2 vn−k,i ≥ βk2 (ε+ vn−k,i) we get

E [|C|] ≤ 1
2E
[

G2
n−k,i√

ε+ ṽn,k+1,i

]
+ 2R√

1− β1βk2

√
k + 1E

[
g2
n−k,i

ε+ vn−k,i

]
. (A.27)

Injecting (A.27) into (A.21) gives us

E [A] ≥
∑
i∈[d]

n−1∑
k=0

βk1

(
E

[
G2
n−k,i√

ε+ ṽn,k+1,i

]
−

(
1
2E
[

G2
n−k,i√

ε+ ṽn,k,i

]
+ 2R√

1− β1βk2

√
k + 1E

[
g2
n−k,i

ε+ vn−k,i

]))

= 1
2

∑
i∈[d]

n−1∑
k=0

βk1E

[
G2
n−k,i√

ε+ ṽn,k+1,i

]− 2R√
1− β1

∑
i∈[d]

n−1∑
k=0

(
β1

β2

)k√
k + 1E

[
‖Un−k‖2

2

] . (A.28)

Injecting (A.28) and (A.18) into (A.14) finishes the proof.

Similarly, we will need an updated version of 5.2.
Lemma A.2 (sum of ratios of the square of a decayed sum and a decayed sum of square). We assume we
have 0 < β2 ≤ 1 and 0 < β1 < β2, and a sequence of real numbers (an)n∈N∗ . We define bn =

∑n
j=1 β

n−j
2 a2

j

and cn =
∑n
j=1 β

n−j
1 aj. Then we have

n∑
j=1

c2
j

ε+ bj
≤ 1

(1− β1)(1− β1/β2)

(
ln
(

1 + bn
ε

)
− n ln(β2)

)
. (A.29)

Proof. Now let us take j ∈ N∗, j ≤ n, we have using Jensen inequality

c2
j ≤

1
1− β1

j∑
l=1

βj−l1 a2
l ,

so that

c2
j

ε+ bj
≤ 1

1− β1

j∑
l=1

βj−l1
a2
l

ε+ bj
.

3Note that we do not need the almost sure bound on the gradient, and a bound on E
[
‖∇f(x)‖2

∞
]
would be sufficient.

20

Published in Transactions on Machine Learning Research (10/2022)

Given that for l ∈ [j], we have by definition ε+ bj ≥ ε+ βj−l2 bl ≥ βj−l2 (ε+ bl), we get

c2
j

ε+ bj
≤ 1

1− β1

j∑
l=1

(
β1

β2

)j−l
a2
l

ε+ bl
. (A.30)

Thus, when summing over all j ∈ [n], we get
n∑
j=1

c2
j

ε+ bj
≤ 1

1− β1

n∑
j=1

j∑
l=1

(
β1

β2

)j−l
a2
l

ε+ bl

= 1
1− β1

n∑
l=1

a2
l

ε+ bl

n∑
j=l

(
β1

β2

)j−l

≤ 1
(1− β1)(1− β1/β2)

n∑
l=1

a2
l

ε+ bl
. (A.31)

Applying Lemma 5.2, we obtain (A.29).

We also need two technical lemmas on the sum of series.
Lemma A.3 (sum of a geometric term times a square root). Given 0 < a < 1 and Q ∈ N, we have,

Q−1∑
q=0

aq
√
q + 1 ≤ 1

1− a

(
1 +

√
π

2
√
− ln(a)

)
≤ 2

(1− a)3/2 . (A.32)

Proof. We first need to study the following integral:∫ ∞
0

ax

2
√
x

dx =
∫ ∞

0

eln(a)x

2
√
x

dx , then introducing y =
√
x,

=
∫ ∞

0
eln(a)y2

dy , then introducing u =
√
−2 ln(a)y,

= 1√
−2 ln(a)

∫ ∞
0

e−u
2/2du∫ ∞

0

ax

2
√
x

dx =
√
π

2
√
− ln(a)

, (A.33)

where we used the classical integral of the standard Gaussian density function.

Let us now introduce AQ:

AQ =
Q−1∑
q=0

aq
√
q + 1,

then we have

AQ − aAQ =
Q−1∑
q=0

aq
√
q + 1−

Q∑
q=1

aq
√
q , then using the concavity of

√
·,

≤ 1− aQ
√
Q+

Q−1∑
q=1

aq

2√q

≤ 1 +
∫ ∞

0

ax

2
√
x

dx

(1− a)AQ ≤ 1 +
√
π

2
√
− ln(a)

,

21

Published in Transactions on Machine Learning Research (10/2022)

where we used (A.33). Given that
√
− ln(a) ≥

√
1− a we obtain (A.32).

Lemma A.4 (sum of a geometric term times roughly a power 3/2). Given 0 < a < 1 and Q ∈ N, we have,

Q−1∑
q=0

aq
√
q(q + 1) ≤ 4a

(1− a)5/2 . (A.34)

Proof. Let us introduce AQ:

AQ =
Q−1∑
q=0

aq
√
q(q + 1),

then we have

AQ − aAQ =
Q−1∑
q=0

aq
√
q(q + 1)−

Q∑
q=1

aq
√
q − 1q

≤
Q−1∑
q=1

aq
√
q
(

(q + 1)−√q
√
q − 1

)

≤
Q−1∑
q=1

aq
√
q ((q + 1)− (q − 1))

≤ 2
Q−1∑
q=1

aq
√
q

= 2a
Q−2∑
q=0

aq
√
q + 1 , then using Lemma A.3,

(1− a)AQ ≤
4a

(1− a)3/2 .

A.6 Proof of Adam and Adagrad with momentum

Common part of the proof Let us a take an iteration n ∈ N∗. Using the smoothness of F defined in
(8), we have

F (xn) ≤ F (xn−1)− αnGTnun + α2
nL

2 ‖un‖2
2 .

Taking the full expectation and using Lemma A.1,

E [F (xn)] ≤ E [F (xn−1)]− αn
2

∑
i∈[d]

n−1∑
k=0

βk1E

[
G2
n−k,i

2
√
ε+ ṽn,k+1,i

]+ α2
nL

2 E
[
‖un‖2

2

]

+ α3
nL

2

4R
√

1− β1

(
n−1∑
l=1
‖un−l‖2

2

n−1∑
k=l

βk1
√
k

)
+ 3αnR√

1− β1

(
n−1∑
k=0

(
β1

β2

)k√
k + 1 ‖Un−k‖2

2

)
. (A.35)

Notice that because of the bound on the `∞ norm of the stochastic gradients at the iterates (7), we have for
any k ∈ N, k < n, and any coordinate i ∈ [d],

√
ε+ ṽn,k+1,i ≤ R

√∑n−1
j=0 β

j
2. Introducing Ωn =

√∑n−1
j=0 β

j
2,

22

Published in Transactions on Machine Learning Research (10/2022)

we have

E [F (xn)] ≤ E [F (xn−1)]− αn
2RΩn

n−1∑
k=0

βk1E
[
‖Gn−k‖2

2

]
+ α2

nL

2 E
[
‖un‖2

2

]
+ α3

nL
2

4R
√

1− β1

(
n−1∑
l=1
‖un−l‖2

2

n−1∑
k=l

βk1
√
k

)
+ 3αnR√

1− β1

(
n−1∑
k=0

(
β1

β2

)k√
k + 1 ‖Un−k‖2

2

)
. (A.36)

Now summing over all iterations n ∈ [N] for N ∈ N∗, and using that for both Adam (A.2) and Adagrad
(A.3), αn is non-decreasing, as well the fact that F is bounded below by F∗ from (6), we get

1
2R

N∑
n=1

αn
Ωn

n−1∑
k=0

βk1E
[
‖Gn−k‖2

2

]
︸ ︷︷ ︸

A

≤ F (x0)− F∗ + α2
NL

2

N∑
n=1

E
[
‖un‖2

2

]
︸ ︷︷ ︸

B

+ α3
NL

2

4R
√

1− β1

N∑
n=1

n−1∑
l=1

E
[
‖un−l‖2

2

] n−1∑
k=l

βk1
√
k︸ ︷︷ ︸

C

+ 3αNR√
1− β1

N∑
n=1

n−1∑
k=0

(
β1

β2

)k√
k + 1E

[
‖Un−k‖2

2

]
︸ ︷︷ ︸

D

. (A.37)

First looking at B, we have using Lemma A.2,

B ≤ α2
NL

2(1− β1)(1− β1/β2)
∑
i∈[d]

(
ln
(

1 + vN,i
ε

)
−N log(β2)

)
. (A.38)

Then looking at C and introducing the change of index j = n− l,

C = α3
NL

2

4R
√

1− β1

N∑
n=1

n∑
j=1

E
[
‖uj‖2

2

] n−1∑
k=n−j

βk1
√
k

= α3
NL

2

4R
√

1− β1

N∑
j=1

E
[
‖uj‖2

2

] N∑
n=j

n−1∑
k=n−j

βk1
√
k

= α3
NL

2

4R
√

1− β1

N∑
j=1

E
[
‖uj‖2

2

]N−1∑
k=0

βk1
√
k

j+k∑
n=j

1

= α3
NL

2

4R
√

1− β1

N∑
j=1

E
[
‖uj‖2

2

]N−1∑
k=0

βk1
√
k(k + 1)

≤ α3
NL

2

R

N∑
j=1

E
[
‖uj‖2

2

] β1

(1− β1)2 , (A.39)

using Lemma A.4. Finally, using Lemma A.2, we get

C ≤ α3
NL

2β1

R(1− β1)3(1− β1/β2)
∑
i∈[d]

(
ln
(

1 + vN,i
ε

)
−N log(β2)

)
. (A.40)

23

Published in Transactions on Machine Learning Research (10/2022)

Finally, introducing the same change of index j = n− k for D, we get

D = 3αNR√
1− β1

N∑
n=1

n∑
j=1

(
β1

β2

)n−j√
1 + n− jE

[
‖Uj‖2

2

]

= 3αNR√
1− β1

N∑
j=1

E
[
‖Uj‖2

2

] N∑
n=j

(
β1

β2

)n−j√
1 + n− j

≤ 6αNR√
1− β1

N∑
j=1

E
[
‖Uj‖2

2

] 1
(1− β1/β2)3/2 , (A.41)

using Lemma A.3. Finally, using Lemma 5.2 or equivalently Lemma A.2 with β1 = 0, we get

D ≤ 6αNR√
1− β1(1− β1/β2)3/2

∑
i∈[d]

(
ln
(

1 + vN,i
ε

)
−N ln(β2)

)
. (A.42)

This is as far as we can get without having to use the specific form of αN given by either (A.2) for Adam or
(A.3) for Adagrad. We will now split the proof for either algorithm.

Adam For Adam, using (A.2), we have αn = (1−β1)Ωnα. Thus, we can simplify the A term from (A.37),
also using the usual change of index j = n− k, to get

A = 1
2R

N∑
n=1

αn
Ωn

n∑
j=1

βn−j1 E
[
‖Gj‖2

2

]

= α(1− β1)
2R

N∑
j=1

E
[
‖Gj‖2

2

] N∑
n=j

βn−j1

= α

2R

N∑
j=1

(1− βN−j+1
1)E

[
‖Gj‖2

2

]

= α

2R

N∑
j=1

(1− βN−j+1
1)E

[
‖∇F (xj−1)‖2

2

]

= α

2R

N−1∑
j=0

(1− βN−j1)E
[
‖∇F (xj)‖2

2

]
. (A.43)

If we now introduce τ as in (A.8), we can first notice that
N−1∑
j=0

(1− βN−j1) = N − β1
1− βN1
1− β1

≥ N − β1

1− β1
. (A.44)

Introducing
Ñ = N − β1

1− β1
, (A.45)

we then have

A ≥ αÑ

2R E
[
‖∇F (xτ)‖2

2

]
. (A.46)

Further notice that for any coordinate i ∈ [d], we have vN,i ≤ R2

1−β2
, besides αN ≤ α 1−β1√

1−β2
, so that putting

together (A.37), (A.46), (A.38), (A.40) and (A.42) we get

E
[
‖∇F (xτ)‖2

2

]
≤ 2RF0 − F∗

αÑ
+ E

Ñ

(
ln
(

1 + R2

ε(1− β2)

)
−N log(β2)

)
, (A.47)

24

Published in Transactions on Machine Learning Research (10/2022)

with

E = αdRL(1− β1)
(1− β1/β2)(1− β2) + 2α2dL2β1

(1− β1/β2)(1− β2)3/2 + 12dR2√1− β1

(1− β1/β2)3/2√1− β2
. (A.48)

This conclude the proof of theorem 4.

Adagrad For Adagrad, we have αn = (1− β1)α, β2 = 1 and Ωn ≤
√
N so that,

A = 1
2R

N∑
n=1

αn
Ωn

n∑
j=1

βn−j1 E
[
‖Gj‖2

2

]

≥ α(1− β1)
2R
√
N

N∑
j=1

E
[
‖Gj‖2

2

] N∑
n=j

βn−j1

= α

2R
√
N

N∑
j=1

(1− βN−j+1
1)E

[
‖Gj‖2

2

]

= α

2R
√
N

N∑
j=1

(1− βN−j+1
1)E

[
‖∇F (xj−1)‖2

2

]

= α

2R
√
N

N−1∑
j=0

(1− βN−j1)E
[
‖∇F (xj)‖2

2

]
. (A.49)

Reusing (A.44) and (A.45) from the Adam proof, and introducing τ as in (9), we immediately have

A ≥ αÑ

2R
√
N

E
[
‖∇F (xτ)‖2

2

]
. (A.50)

Further notice that for any coordinate i ∈ [d], we have vN ≤ NR2, besides αN = (1− β1)α, so that putting
together (A.37), (A.50), (A.38), (A.40) and (A.42) with β2 = 1, we get

E
[
‖∇F (xτ)‖2

2

]
≤ 2R

√
N
F0 − F∗
αÑ

+
√
N

Ñ
E ln

(
1 + NR2

ε

)
, (A.51)

with

E = αdRL+ 2α2dL2β1

1− β1
+ 12dR2

1− β1
. (A.52)

This conclude the proof of theorem 3.

A.7 Proof variant using Hölder inequality

Following (Ward et al., 2019; Zou et al., 2019b), it is possible to get rid of the almost sure bound on the
gradient given by (7), and replace it with a bound in expectation, i.e.

∀x ∈ Rd, E
[
‖∇f(x)‖2

2

]
≤ R̃−

√
ε. (A.53)

Note that we now need an `2 bound in order to properly apply the Hölder inequality hereafter:

We do not provide the full proof for the result, but point the reader to the few places where we have used
(7). We first use it in Lemma A.1. We inject R into (A.15), which we can just replace with R̃. Then we use
(7) to bound r and derive (A.26). Remember that r is defined in (A.20), and is actually a weighted sum of
the squared gradients in expectation. Thus, a bound in expectation is acceptable, and Lemma A.1 is valid
replacing the assumption (7) with (A.53).

25

Published in Transactions on Machine Learning Research (10/2022)

Looking at the actual proof, we use (6) in a single place: just after (A.35), in order to derive an upper bound
for the denominator in the following term:

M = αn
2

∑
i∈[d]

n−1∑
k=0

βk1E

[
G2
n−k,i

2
√
ε+ ṽn,k+1,i

] . (A.54)

Let us introduce Ṽn,k+1 =
∑
i∈[d] ṽn,k+1,i. We immediately have that

M ≥ αn
2

n−1∑
k=0

βk1E

 ‖Gn−k‖2
2

2
√
ε+ Ṽn,k+1

 (A.55)

Taking X =
(
‖Gn−k‖2

2√
ε+Ṽn,k+1

) 2
3

, Y =
(√

ε+ Ṽn,k+1

) 2
3

, we can apply Hölder inquality as

E
[
|X|

3
2
]
≥

 E [|XY |]

E
[
|Y |3

] 1
3

3
2

, (A.56)

which gives us

E

 ‖Gn−k‖2
2√

ε+ Ṽn,k+1

 ≥ E
[
‖Gn−k‖

4
3
2

] 3
2√

E
[
ε+ Ṽn,k+1

] ≥ E
[
‖Gn−k‖

4
3
2

] 3
2

ΩnR̃
, (A.57)

with Ωn =
√∑n−1

j=0 β
j
2, and using the fact that E

[
ε+

∑
i∈[d] ṽn,k+1,i

]
≤ R2Ω2

n.

Thus we can recover almost exactly (A.36) except we have to replace all terms of the form E
[
‖Gn−k‖2

2

]
with

E
[
‖Gn−k‖

4
3
2

] 3
2 . The rest of the proof follows as before, with all the dependencies in α, β1, β2 remaining the

same.

B Non convex SGD with heavy-ball momentum

We extend the existing proof of convergence for SGD in the non convex setting to use heavy-ball momen-
tum (Ghadimi & Lan, 2013). Compared with previous work on momentum for non convex SGD byYang
et al. (2016), we improve the dependency in β1 from O((1− β1)−2) to O((1− β1)−1). A recent work by Liu
et al. (2020) achieve a similar dependency of O(1/(1− β1)), with weaker assumptions (without the bounded
gradients assumptions).

B.1 Assumptions

We reuse the notations from Section 2.1. Note however that we use here different assumptions than in
Section 2.3. We first assume F is bounded below by F∗, that is,

∀x ∈ Rd, F (x) ≥ F∗. (B.1)

We then assume that the stochastic gradients have bounded variance, and that the gradients of F are
uniformly bounded, i.e. there exist R and σ so that

∀x ∈ Rd, ‖∇F (x)‖2
2 ≤ R

2 and E
[
‖∇f(x)‖2

2

]
− ‖∇F (x)‖2

2 ≤ σ
2, (B.2)

and finally, the smoothness of the objective function, e.g., its gradient is L-Liptchitz-continuous with respect
to the `2-norm:

∀x, y ∈ Rd, ‖∇F (x)−∇F (y)‖2 ≤ L ‖x− y‖2 . (B.3)

26

Published in Transactions on Machine Learning Research (10/2022)

B.2 Result

Let us take a step size α > 0 and a heavy-ball parameter 1 > β1 ≥ 0. Given x0 ∈ Rd, taking m0 = 0, we
define for any iteration n ∈ N∗ the iterates of SGD with momentum as,{

mn = β1mn−1 +∇fn(xn−1)
xn = xn−1 − αmn.

(B.4)

Note that in (B.4), the scale of the typical size of mn will increases with β1. For any total number of
iterations N ∈ N∗, we define τN a random index with value in {0, . . . , N − 1}, verifying

∀j ∈ N, j < N,P [τ = j] ∝ 1− βN−j1 . (B.5)

Theorem B.1 (Convergence of SGD with momemtum). Given the assumptions from Section B.1, given τ
as defined in (B.5) for a total number of iterations N > 1

1−β1
, x0 ∈ Rd, α > 0, 1 > β1 ≥ 0, and (xn)n∈N∗

given by (B.4),

E
[
‖∇F (xτ)‖2

2

]
≤ 1− β1

αÑ
(F (x0)− F∗) + N

Ñ

αL(1 + β1)(R2 + σ2)
2(1− β1)2 , (B.6)

with Ñ = N − β1
1−β1

.

B.3 Analysis

We can first simplify (B.6), if we assume N � 1
1−β1

, which is always the case for practical values of N and
β1, so that Ñ ≈ N , and,

E
[
‖∇F (xτ)‖2

2

]
≤ 1− β1

αN
(F (x0)− F∗) + αL(1 + β1)(R2 + σ2)

2(1− β1)2 . (B.7)

It is possible to achieve a rate of convergence of the form O(1/
√
N), by taking for any C > 0,

α = (1− β1) C√
N
, (B.8)

which gives us

E
[
‖∇F (xτ)‖2

2

]
≤ 1
C
√
N

(F (x0)− F∗) + C√
N

L(1 + β1)(R2 + σ2)
2(1− β1) . (B.9)

In comparison, Theorem 3 by Yang et al. (2016) would give us, assuming now that α = (1−β1) min
{

1
L ,

C√
N

}
,

min
k∈{0,...N−1}

E
[
‖∇F (xk)‖2

2

]
≤ 2
N

(F (x0)− F∗) max
{

2L,
√
N

C

}

+ C√
N

L

(1− β1)2

(
β2

1(R2 + σ2) + (1− β1)2σ2) . (B.10)

We observe an overall dependency in β1 of the form O((1 − β1)−2) for Theorem 3 by Yang et al. (2016) ,
which we improve to O((1− β1)−1) with our proof.

Liu et al. (2020) achieves a similar dependency in (1− β1) as here, but with weaker assumptions. Indeed, in
their Theorem 1, their result contains a term in O(1/α) with α ≤ (1 − β1)M for some problem dependent
constant M that does not depend on β1.

Notice that as the typical size of the update mn will increase with β1, by a factor 1/(1−β1), it is convenient
to scale down α by the same factor, as we did with (B.8) (without loss of generality, as C can take any
value). Taking α of this form has the advantage of keeping the first term on the right hand side in (B.6)
independent of β1, allowing us to focus only on the second term.

27

Published in Transactions on Machine Learning Research (10/2022)

B.4 Proof

For all n ∈ N∗, we note Gn = ∇F (xn−1) and gn = ∇f(xn−1). En−1 [·] is the conditional expectation with
respect to f1, . . . , fn−1. In particular, xn−1 and mn−1 are deterministic knowing f1, . . . , fn−1.
Lemma B.1 (Bound on mn). Given α > 0, 1 > β1 ≥ 0, and (xn) and (mn) defined as by B.4, under the
assumptions from Section B.1, we have for all n ∈ N∗,

E
[
‖mn‖2

2

]
≤ R2 + σ2

(1− β1)2 . (B.11)

Proof. Let us take an iteration n ∈ N∗,

E
[
‖mn‖2

2

]
= E

∥∥∥∥∥
n−1∑
k=0

βk1 gn−k

∥∥∥∥∥
2

2

 using Jensen we get,

≤

(
n−1∑
k=0

βk1

)
n−1∑
k=0

βk1E
[
‖gn−k‖2

2

]
≤ 1

1− β1

n−1∑
k=0

βk1 (R2 + σ2)

= R2 + σ2

(1− β1)2 .

Lemma B.2 (sum of a geometric term times index). Given 0 < a < 1, i ∈ N and Q ∈ N with Q ≥ i,

Q∑
q=i

aqq = ai

1− a

(
i− aQ−i+1Q+ a− aQ+1−i

1− a

)
≤ a

(1− a)2 . (B.12)

Proof. Let Ai =
∑Q
q=i a

qq, we have

Ai − aAi = aii− aQ+1Q+
Q∑

q=i+1
aq (i+ 1− i)

(1− a)Ai = aii− aQ+1Q+ ai+1 − aQ+1

1− a .

Finally, taking i = 0 and Q→∞ gives us the upper bound.

Lemma B.3 (Descent lemma). Given α > 0, 1 > β1 ≥ 0, and (xn) and (mn) defined as by B.4, under the
assumptions from Section B.1, we have for all n ∈ N∗,

E
[
∇F (xn−1)Tmn

]
≥
n−1∑
k=0

βk1E
[
‖∇F (xn−k−1)‖2

2

]
− αLβ1(R2 + σ2)

(1− β1)3 (B.13)

Proof. For simplicity, we note Gn = ∇F (xn−1) the expected gradient and gn = ∇fn(xn−1) the stochastisc
gradient at iteration n.

GTnmn =
n−1∑
k=0

βk1G
T
ngn−k

=
n−1∑
k=0

βk1G
T
n−kgn−k +

n−1∑
k=1

βk1 (Gn −Gn−k)T gn−k. (B.14)

28

Published in Transactions on Machine Learning Research (10/2022)

This last step is the main difference with previous proofs with momentum (Yang et al., 2016): we replace
the current gradient with an old gradient in order to obtain extra terms of the form ‖Gn−k‖2

2. The price to
pay is the second term on the right hand side but we will see that it is still beneficial to perform this step.
Notice that as F is L-smooth so that we have, for all k ∈ N∗

‖Gn −Gn−k‖2
2 ≤ L

2

∥∥∥∥∥
k∑
l=1

αmn−l

∥∥∥∥∥
2

≤ α2L2k

k∑
l=1
‖mn−l‖2

2 , (B.15)

using Jensen inequality. We apply

∀λ > 0, x, y ∈ R, ‖xy‖2 ≤
λ

2 ‖x‖
2
2 + ‖y‖

2
2

2λ , (B.16)

with x = Gn −Gn−k, y = gn−k and λ = 1− β1

kαL
to the second term in (B.14), and use (B.15) to get

GTnmn ≥
n−1∑
k=0

βk1G
T
n−kgn−k −

n−1∑
k=1

βk1
2

((
(1− β1)αL

k∑
l=1
‖mn−l‖2

2

)
+ αLk

1− β1
‖gn−k‖2

2

)
.

Taking the full expectation we have

E
[
GTnmn

]
≥
n−1∑
k=0

βk1E
[
GTn−kgn−k

]
− αL

n−1∑
k=1

βk1
2

((
(1− β1)

k∑
l=1

E
[
‖mn−l‖2

2

])
+ k

1− β1
E
[
‖gn−k‖2

2

])
.

(B.17)

Now let us take k ∈ {0, . . . , n− 1}, first notice that

E
[
GTn−kgn−k

]
= E

[
En−k−1

[
∇F (xn−k−1)T∇fn−k(xn−k−1)

]]
= E

[
∇F (xn−k−1)T∇F (xn−k−1)

]
= E

[
‖Gn−k‖2

2

]
.

Furthermore, we have E
[
‖gn−k‖2

2

]
≤ R2 + σ2 from (B.2), while E

[
‖mn−k‖2

2

]
≤ R2+σ2

(1−β1)2 using (B.11) from
Lemma B.1. Injecting those three results in (B.17), we have

E
[
GTnmn

]
≥
n−1∑
k=0

βk1E
[
‖Gn−k‖2

2

]
− αL(R2 + σ2)

n−1∑
k=1

βk1
2

((
1

1− β1

k∑
l=1

1
)

+ k

1− β1

)
(B.18)

=
n−1∑
k=0

βk1E
[
‖Gn−k‖2

2

]
− αL

1− β1
(R2 + σ2)

n−1∑
k=1

βk1k. (B.19)

Now, using (B.12) from Lemma B.2, we obtain

E
[
GTnmn

]
≥
n−1∑
k=0

βk1E
[
‖Gn−k‖2

2

]
− αLβ1(R2 + σ2)

(1− β1)3 , (B.20)

which concludes the proof.

29

Published in Transactions on Machine Learning Research (10/2022)

Proof of Theorem B.1

Proof. Let us take a specific iteration n ∈ N∗. Using the smoothness of F given by (B.3), we have,

F (xn) ≤ F (xn−1)− αGTnmn + α2L

2 ‖mn‖2
2 . (B.21)

Taking the expectation, and using Lemma B.3 and Lemma B.1, we get

E [F (xn)] ≤ E [F (xn−1)]− α
(
n−1∑
k=0

βk1E
[
‖Gn−k‖2

2

])
+ α2Lβ1(R2 + σ2)

(1− β1)3 + α2L(R2 + σ2)
2(1− β1)2

≤ E [F (xn−1)]− α
(
n−1∑
k=0

βk1E
[
‖Gn−k‖2

2

])
+ α2L(1 + β1)(R2 + σ2)

2(1− β1)3 (B.22)

rearranging, and summing over n ∈ {1, . . . , N}, we get

α

N∑
n=1

n−1∑
k=0

βk1E
[
‖Gn−k‖2

2

]
︸ ︷︷ ︸

A

≤ F (x0)− E [F (xN)] +N
α2L(1 + β1)(R2 + σ2)

2(1− β1)3 (B.23)

Let us focus on the A term on the left-hand side first. Introducing the change of index i = n− k, we get

A = α

N∑
n=1

n∑
i=1

βn−i1 E
[
‖Gi‖2

2

]
= α

N∑
i=1

E
[
‖Gi‖2

2

] N∑
n=i

βn−i1

= α

1− β1

N∑
i=1

E
[
‖∇F (xi−1)‖2

2

]
(1− βN−i+1)

= α

1− β1

N−1∑
i=0

E
[
‖∇F (xi)‖2

2

]
(1− βN−i). (B.24)

We recognize the unnormalized probability given by the random iterate τ as defined by (B.5). The normal-
ization constant is

N−1∑
i=0

1− βN−i1 = N − β1
1− βN1
1− β ≥ N −

β1

1− β1
= Ñ ,

which we can inject into (B.24) to obtain

A ≥ αÑ

1− β1
E
[
‖∇F (xτ)‖2

2

]
. (B.25)

Injecting (B.25) into (B.23), and using the fact that F is bounded below by F∗ (B.1), we have

E
[
‖∇F (xτ)‖2

2

]
≤ 1− β1

αÑ
(F (x0)− F∗) + N

Ñ

αL(1 + β1)(R2 + σ2)
2(1− β1)2 (B.26)

(B.27)

which concludes the proof of Theorem B.1.

30

	Introduction
	Setup
	Notation
	Adaptive methods
	Assumptions

	Related work
	Main results
	Convergence bounds
	Analysis of the bounds
	Optimal finite horizon Adam is Adagrad

	Proofs for 1=0 (no momentum)
	Technical lemmas
	Proof of Adam and Adagrad without momentum

	Experiments
	Setup
	Analysis
	Impact of the Adam corrective terms

	Conclusion
	Convergence of adaptive methods with heavy-ball momentum
	Setup and notations
	Results
	Analysis of the results with momentum
	Overview of the proof, contributions and limitations
	Technical lemmas
	Proof of Adam and Adagrad with momentum
	Proof variant using Hölder inequality

	Non convex SGD with heavy-ball momentum
	Assumptions
	Result
	Analysis
	Proof

