
Tight approximation for the minimum
bottleneck generalized matching problem

Julián Mestre1 and Nicolás E. Stier Moses2

1 School of Computer Science, University of Sydney.
2 Facebook Inc.

Abstract. We study a problem arising in statistical analysis called the
minimum bottleneck generalized matching problem that involves breaking
up a population into blocks in order to carry out generalizable statistical
analyses of randomized experiments. At a high level the problem is to find
a clustering of the population such that each part is at least a given size
and has at least a given number of elements from each treatment class (so
that the experiments are statistically significant), and that all elements
within a block are as similar as possible (to improve the accuracy of the
analysis).
More formally, given a metric space (V, d), a treatment partition T =
{T1, . . . , Tk} of V , and a target cardinality vector (b0, b1, . . . , bk) ∈ Zk+1

+

such that b0 ≥
∑k

j=1 bj . The objective is to find a partition M1, . . . ,M`

of V minimizing the maximum diameter of any part such that for each
part we have |Mi| ≥ b0 and |Mi ∩ Tj | ≥ bj for all j = 1, . . . , k.
Our main contribution is to provide a tight 2-approximation for the
problem. We also show how to modify the algorithm to get the same
approximation ratio for the more general problem of finding a partition
where each part spans a given matroid.

1 Introduction

In Social Science and related fields, designing experiments on a sample of
the population so that the insights obtained from the experiments can be
generalized to the whole population is a major challenge. Statistical tech-
niques such as blocking, are used for designing sound experiments. Given
a population the objective is to break it up into homogeneous blocks of
at least a given minimum size and then randomly assign elements within
blocks to treatment and control groups. It is important that these blocks
are large enough (so that the results are statistically significant) and
homogeneous (so that there are no hidden variables that could explain
variabilities between treatment and control outcomes). While the con-
cept of blocking and randomized experiments goes back to the seminal
work of Fischer [5], the design of efficient algorithms for blocking has
attracted the attention of the Statistics community [18, 7, 8] in more re-
cent times. Indeed, the efficiency of the blocking algorithm used and the
quality of the blockings found are crucial in the context of A/B testing
in online advertising platforms where treatment effects on advertisers are
typically small [13] yet very economically relevant due to the large scale
of these platforms.
The work of Higgins et al. [8] is particularly relevant to our paper. The
authors cast the problem of finding a good blocking as an optimization
problem, which they call minimum threshold blocking : Given a metric
space (V, d) and a cardinality lower bound b, the objective is to partition
V so that each part has cardinality at least b and the maximum diameter
of any one part is minimized. Here V is the population that we want to
block and d a distance function capturing how similar any two elements in
V are (low distance implying similarity). They showed that the problem
admits a 4-approximation and that it is NP -hard to approximate within
2− ε.
While designing experiments that use a good blocking structure is highly
desirable, sometimes the treatment partition is already given to us, either
because someone else performed the experiment, because the sample size
is small, or because the dissimilarity function was not fully available at
the time the experiment was run. In these situations, when analyzing the
experimental results, we still want to partition our population so that
each part is as homogeneous as possible, and each part gets enough rep-
resentatives from each treatment class. Sävje et al. call this problem the
minimum bottleneck generalized matching3 and show how to generalize
the 4-approximation of Higgins et al. [8] to get a 4-approximation for
this more general problem.
In the Computer Science community, the problem of clustering points
to minimize the maximum radius of the clusters such that each clus-
ter has at least a given number of points has been studied by Aggar-
wal et al. [1] in the context of anonymity preserving clustering. This is
identical to the minimum threshold blocking problem except that we
need to minimize the maximum cluster radius rather than the maxi-
mum cluster diameter. The authors call this problem r-gather and they

3 Matching here refers to the concept in Statistics. It should not be confused with the
traditional concept from Graph Theory.

give an optimal 2-approximation algorithm that in term generalizes the
classical 2-approximation for k-center of Hochbaum and Shmoys [9]. Al-
though the radius and diameter objectives are not equivalent, it is known
how to modify the algorithm for r-gather to minimize the diameters of
the clusters rather than the radii [11]. Enforcing the treatment partition
constraints on the clusters, however, cannot be reduced to the r-gather
problem.
Our main contribution is a 2-approximation algorithm for the minimum
bottleneck generalized matching problem, which matches the hardness
of approximation of Higgins et al. [8] for the special case of minimum
threshold blocking. We also extend our 2-approximation algorithm to
handle more complex constraints that go beyond the treatment parti-
tion constraints and involve finding a partition whose parts span a given
matroid [17].

1.1 Related work

The problem of clustering points in a metric space has been studied
extensively in Algorithm Theory. Many objectives have been proposed
such as k-center [9, 6] where we want to minimize the maximum radius
of the clusters, k-median [15] where we want to minimize the sum of
the cluster radii, and k-means [16] where we want to minimize the total
intra-cluster variance.
In addition to different objectives, researchers have proposed side con-
straints to the clustering problem such as allowing the algorithm to leave
a small set of outliers unclustered [3], imposing capacity constraints [12]
or anonymity constraints [1] on the clusters, or a matroid constraint on
the set of centers we can pick [20].
To the best of our knowledge, none of these works deals with the bottle-
neck generalized matching problem of Sävje et al. [19]. The most closely
related work that we are aware is the work of Li et al. [14] on `-diversity
clustering: Here they want a clustering such that each cluster has at least
` points, and all of its points come from different treatment classes and
the goal is to minimize the maximum radius of any cluster. Our clus-
ter constraints are in a sense complementary; namely, instead of upper
bounding how many points we need from a treatment class, we want to
get at least a prescribed number.

2 Formal problem definition and notation

The input of the minimum bottleneck generalized matching problem is a
metric space (V, d), a treatment partition T = {T1, T2, . . . , Tk} of V , and
a target cardinality vector (b0, b1, b2, . . . , bk) ∈ Zk+1

+ such that bi ≤ |Ti|
for all i and b0 ≥

∑k
j=1 bj . The distance function d : V × V → R is

non-negative, symmetric, and obeys the triangle inequality.
Our ultimate goal is to compute a partition M = {M1,M2, . . .} of V . A
partition is said to be feasible if for all M ∈ M we have |M | ≥ b0 and
|M ∩ Tj | ≥ bj for all j ∈ [k]. Here [k] is a short hand notation for the set
{1, . . . , k}. Later we will use [0, . . . , k] to denote the set {0, 1, . . . , k}.

We define the cost of a partitionM to be the maximum diameter4 among
parts M ∈M:

cost(M) = max
M∈M

max
u,v∈M

d(u, v) .

The goal of the minimum bottleneck generalized matching problem is
to find a feasible partition M with minimum cost. Our main result is a
2-approximation algorithm for this problem. The approach is based on
ideas from an algorithm of Aggarwal et al. [1] for the r-gather problem,
where they only have a lower bound on the size of the cluster, but no
treatment partition constraints.

3 Minimum bottleneck generalized matching

In this section we prove that there is a 2-approximation for our problem.

Theorem 1. There is a polynomial time 2-approximation algorithm for
the minimum bottleneck generalized matching problem.

Let opt be the cost of the optimal solution. Suppose that we had a
polynomial time routine parametrized by a scalar g such that:

– if g ≥ opt the routine returns a solution with cost ≤ 2g, and

– if g < opt the routine either reports “failure” or returns a solution
with cost ≤ 2g.

We can use this parametrized routine to design a polynomial time 2-
approximation algorithm as follows. For each pair u, v ∈ V , run the
routine with g = d(u, v) and return the best solution found.

Note that one of these choices of g must equal opt, so for that choice
we are guaranteed a solution with cost 2opt. Returning the best solution
found can only yield a better result. Therefore, the correctness of the 2-
approximation hinges on the existence of the parametrized routine. The
rest of this section is devoted to developing this routine.

3.1 Description of the parametrized routine

Our routine attempts to build a feasible solution of cost at most 2g in
three steps. First we pick a set of centers. Second, we build, if possible,
a partial cluster around each of the centers that fulfills the treatment
partition cardinality constraints. Third, we augment this partial solution
by assigning the remaining points to a nearby cluster. Only the second
step may not be possible to be carried out, in which case we declare
“failure”.

4 The diameter is defined as the maximum distance between nodes in a set.

Finding centers. The first step of the parametrized routine is to select
a set of centers c1, . . . , c` such that every element in V has a center at
distance at most g and the distance between two centers is greater than
g. More formally, the centers have the following two properties

1. mini∈[`] d(u, ci) ≤ g for all u ∈ V , and

2. d(ci, ci′) > g for all i, i′ ∈ [`] where i 6= i′.

We can compute such a set of centers using the iterative approach of
Hochbaum and Shmoys [9]: Iteratively pick an arbitrary element v of
V , declare v to be a center and remove from V all elements at distance
at most g from v. The process ends when all elements of V have been
removed.

Finding a partial solution. The second step is to construct a partial
partition5 {M1, . . . ,M`} of V such that for each i ∈ [`] we have the
following three properties:

1. |Mi| = b0,

2. |Mi ∩ Tj | ≥ bj for each j ∈ [k], and

3. d(v, ci) ≤ g for all v ∈Mi.

We can find such a partial partition, if one exists, by solving a maxi-
mum flow problem in a layered directed graph depicted in Figure 1 and
described below.

The vertex set of the network flow instance is as follows:

– In the first layer, we have the source s by itself.

– In the second layer, we have k + 1 dummy vertices for each center;
namely, we have a vertex aji for each i ∈ [`] and j ∈ [0, . . . , k].

– The third layer contains the ground set V .

– Finally, in the fourth layer, we only have the sink t.

The layers are connected as follows:

– For all i ∈ [`], the source s is connected to a0i with an edge with
capacity b0 −

∑k
j=1 bj .

– For all i ∈ [`] and j ∈ [k], the source s is connected aji with an edge
with capacity bj .

– Each a0i is connected to each v ∈ V with an edge without capacity
if d(ci, v) ≤ g.

– Each aji is connected to each v ∈ Tj with an edge without capacity
if d(ci, v) ≤ g.

– Finally, each v ∈ V is connected to t with an edge with capacity 1.

We solve this problem using any of the traditional combinatorial algo-
rithms [2] for maximum s-t flow. These algorithms return an integral flow
that obeys the capacity constraints and sends the maximum amount of
flow from s to t. If the value of the maximum flow is less that b0 · `
then the parametrized routine declares “failure”. Otherwise, we create a
partial partition by setting Mi to be the set of nodes v ∈ V such that
there exists a unit of flow going from some aji to v.

5 A partial partition of V is a partition of a subset of V .

s t

a01

a11

a21

a02

a12

a22

b0−b1−b2

b1

b2

b0−b1−b2

b1

b2

v1

1

v2

1v3

1

v4 1

v5

1

v6

1

Fig. 1. Maximum flow instance for step two of the parametrized routine. In this ex-
ample ` = 2, k = 2, T1 = {v1, v2, v3}, and T2 = {v4, v5, v6}.

Augmenting the partial solution. The third and final step is to aug-
ment our partial solution by adding every vertex v not assigned so far
to one of the parts Mi such that d(v, ci) ≤ g. Notice that because of the
way the centers were constructed in the first step, we are always able to
identify such a center.
If the algorithm does not declare failure in the second step, it returns
the augmented solution from the third step that forms a full partition of
V .

3.2 Correctness of the parametrized routine

If the routine does not fail, it returns a feasible partition {M1, . . . ,M`}
where ci ∈Mi for each i ∈ [`]. This is because the centers are more than
g apart from one another and we only assign to Mi that are at distance
at most g to ci. Furthermore, for any two vertices u, v ∈ Mi we have
d(u, v) ≤ d(u, ci) + d(ci, v) ≤ 2g, so the solution has cost at most 2g as
desired.
If the routine fails, we need to argue that g < opt. We prove the con-
trapositive: If g ≥ opt then the routine does not fail. This boils down
to arguing that the network flow problem defined in the second step
of the routine is feasible. To that end, consider an optimal solution
O = {O1, O2, . . .}. Recall that any two centers in c1, . . . , c` are at dis-
tance strictly greater than g ≥ opt from one another. It follows that they
must lie in different sets in the optimal solution. Assume, without loss of
generality, that ci ∈ Oi. We build a flow as follows. For each j = 1, . . . , k,
pick bj elements v ∈ Oi ∩ Tj and push one unit of flow along the path
〈s, aji , v, t〉; finally pick any b0 −

∑k
j=1 bj elements v ∈ Oi that were not

chosen so far and push one unit of flow along the path 〈s, a0i , v, t〉. (The
existence of the elements is guaranteed by the feasibility of O.) The re-
sulting flow is feasible and has value b0 · ` as needed.

3.3 Time complexity and implementation details

The most expensive step of the parametrized routine is the computation
of the maximum flow. An alternative to computing a flow would be
build a bipartite graph where s and t are removed and the aji vertex is
replaced with bj copies for j ∈ [k] and b0−

∑k
j=1 bj copies for j = 0. The

objective in this new graph is to find a maximum cardinality matching
(matching in the standard Graph-theoretic sense). Using the Hopcroft-
Karp algorithm[10], this can be done in O(n2.5) time where n = |V |.
In principle this would have to be repeated for each possible choice of g
of which there are O(n2) many. However, one can perform binary search
on the candidate values of g until we find the smallest value of g for
which the parametrized routine does not fail, which only adds a O(logn)
factor to the O(n2.5) running time.

4 Generalization to matroid constraints

In this section we explore a generalization of the basic setting that in-
volves a richer set of constraints on each part that involves matroids.
Before we proceed any further, it is worth recalling some basic terminol-
ogy from Matroid Theory [17]. A subset system is a pair (V,E) where
E is a collection subsets of V such that for all A ∈ E and A′ ⊂ A we
have A′ ∈ E. A subset system is a matroid if for all A,B ∈ E such that
|A| < |B|, there exists x ∈ B \A such that A+x ∈ E. The rank function
associated with an independence system E is rankA = maxB⊆A:B∈E |B|,
that is, the rank of A is the cardinality of the largest independent subset
of A. Finally, a set A is said to span the matroid if rank(A) = rank(E).
For our generalization, instead of a target partition and a cardinality
vector like we had before, we are given a matroid (V,E) defined by the
ground set V that we are to partition and an independence system E.
The objective is to compute a partition M = {M1,M2, . . .} of V such
that Mi spans (V,E) for all i ∈ [`] and the maximum diameter of any
one part is minimized:

cost(M) = max
M∈M

max
u,v∈M

d(u, v).

As we shall see in Lemma 1, the constraints of the standard bottleneck
generalized matching problem can be achieved with a carefully designed
matroid system, so this new problem is a strict generalization of the
former. For example, if each element in the ground set is associated with
an edge in some auxiliary graph, then we could ask that each cluster
forms a connect subgraph using a graphic matroid. We call this new
problem the minimum bottleneck generalized matching problem with a
matroid constraint.

Lemma 1. Let (V,E) be a subset system where A ∈ E if and only if∑
i max(|A ∩ Ti| − bi, 0) ≤ b0 −

∑
i bi. Then (V,E) is a matroid and

A ∈ E is maximal if and only if |A| = b0 and |A ∩ Ti| ≥ bi for all i.

Proof. For any A ∈ E, we have

|A| =
∑
i

|A ∩ Ti|

=
∑
i

(|A ∩ Ti| − bi) +
∑
i

bi

≤
∑
i

max(|A ∩ Ti| − bi, 0) +
∑
i

bi

≤ b0 −
∑
i

bi +
∑
i

bi

= b0

Thus, |A| ≤ b0 for all A ∈ E. Furthermore, for any A ∈ E if |A| = b0 all
inequalities are strict, so bi ≥ |A ∩ Ti| for all i. On the other hand, for
any A ∈ E if |A| < b0 then the subset is clearly not maximal.

To see why the system is a matroid, let A,B ∈ E such that |A| < |B|.
If
∑

i max(|A ∩ Ti| − bi, 0) < b0 −
∑

i bi then for any x ∈ B \A we have
A + x ∈ E. Otherwise, since |A| < |B|, there must exist i such that
|A∩ Ti| < bi and |A∩ Ti| < |B ∩ Ti| in which case for any x ∈ B ∩ Ti \A
we have A+ x ∈ E. ut

To solve the problem we proceed as before, by designing a routine that
is parametrized by a scalar g. If g ≥ opt, the routine returns a feasible
solution with cost 2g, or if g < opt either returns a “failure” message or
a solution with cost 2g.

We can use this routine in the same way as we did in the previous problem
to get a 2-approximation by guessing the value of opt and running the
routine on each choice.

4.1 Parametrized routine

The first and third steps remain the same as before: In the first step we
compute a set of centers c1, . . . , c` such that every element in V has a
center at distance at most g and the distance between centers is strictly
greater than g; while in the third step we augment the partial partition
found in the modified second step. The key difference is how we find the
partial solution that satisfies the matroid constraints in the second step.

Modified second step. The new second step involves solving a matroid
intersection problem defined by two matroids (V ′, E′1) and (V ′, E′2).

The ground set of the matroids V ′ contains ` copies of each element in
V , more formally,

V ′ =
{
vi : for all v ∈ V, i ∈ [`]

}
.

The independence system of the first matroid enforces that the i-th copy
of the element chosen is independent in the input matroid

E′1 =
{
X ⊆ V ′ :

{
v : vi ∈ X

}
∈ E for all i ∈ [`]

}
.

The independence system of the second matroid enforces that we select
at most one copy of each element

E′2 =
{
X ⊆ V ′ :

∣∣∣{vi : i ∈ [`]
}
∩X

∣∣∣ ≤ 1 for all v ∈ V
}

We use a matroid intersection algorithm to find a maximum cardinality
set X in E′1 ∩E′2. If |X| < rank(V,E) · `, then we declare “failure”. Oth-
erwise, we create a partial partition with parts Mi =

{
v ∈ V : vi ∈ X

}
for each i ∈ [`]. At this point each part spans the input matroid (V,E),
however, there are elements that may not have been assigned. We as-
sign each of these remaining elements v ∈ V to a part Mj such that
d(v, cj) ≤ g. Such a center is guaranteed to exist due to the way the
centers are selected.

4.2 Correctness

The correctness of the new parametrized routine is similar to that of
the old routine. If the routine returns a partition {M1, . . . ,M`} then it
satisfies the matroid spanning requirements; indeed, the partial parti-
tion {M ′1, . . . ,M ′`} already has the spanning property, namely M ′i ∈ E
and |M ′i | = rank(V,E), so M ′i spans (V,E), and therefore so does Mi.
Furthermore, the diameter of any part is at most 2g since for any two
u, v ∈Mi we have d(u, v) ≤ d(u, ci) + d(ci, v) ≤ 2g.
Finally, we argue that if g ≥ opt then the parametrized routine never
fails. Let O = {O1, O2, . . .} be an optimal solution. Recall that any two
centers indeed c1, . . . , c` are at distance strictly greater than g ≥ opt from
one another. It follows that they must lie in different parts in the optimal
solution. Assume, without loss of generality, that ci ∈ Oi. LetM ′i ⊆ Oi be
a maximum cardinality independent set. Because Oi spans (V,E), it must
be the case that |M ′i | = rank(V,E). Let X = ∪i∈[`]

{
vi : v ∈M ′i

}
be a

subset of the ground set of the matroid intersection instance (V ′, E′1∩E′2)
defined in step two of the parametrized routine. Notice that X ∈ E′1
because each M ′i ∈ E and X ∈ E′2 because the sets {M ′1, . . . ,M ′`} are
disjoint.

4.3 Time complexity

Using the matroid intersection algorithm of Cunningham [4] we can find
the needed maximum cardinality in (V ′, E′1 ∩ E′2) in O(r1.5n′) calls to
an independence oracle for the underlying matroids, where r is the max-
imum size of the common independent set and n′ = |V ′|. In our case,
r = O(n), n′ = O(`n) = O(n2), and we can test independence in the
matroids by using an oracle for the input matroid (V,E). Therefore, the
running time is O(n3.5Q), where Q is the time it takes to test indepen-
dence in (V,E).

As described in the previous section, we can implement the 2-approximation
algorithm so as to perform O(logn) calls to the parametrized routine.
Therefore, the overall running time is O(n3.5Q logn).

5 Conclusion

In this paper we developed a tight 2-approximation algorithm for the
minimum threshold generalized matching problem and showed that our
approach can be generalized to tackle a more general version of the prob-
lem involving finding a partition whose parts span a given matroid. Our
hope is that better approximations can lead to better statistical analyses.

Acknowledgement

We would like to thank Jasjeet Sekhon for early discussions on minimum
bottleneck generalized matching.

References

1. G. Aggarwal, R. Panigrahy, T. Feder, D. Thomas, K. Kenthapadi,
S. Khuller, and A. Zhu. Achieving anonymity via clustering. ACM
Transactions on Algorithms, 6(3):49:1–49:19, 2010.

2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle
River, NJ, USA, 1993.

3. M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Al-
gorithms for facility location problems with outliers. In Proc. of
the 12th Annual Symposium on Discrete Algorithms, pages 642–651,
2001.

4. W. H. Cunningham. Improved bounds for matroid partition and
intersection algorithms. SIAM Journal on Computing, 15(4):948–
957, 1986.

5. R. A. Fisher. The arrangement of field experiments. Journal of the
Ministry of Agriculture of Great Britain, 33:503–513, 1926.

6. T. F. Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science, 38:293–306, 1985.

7. R. Greevy, B. Lu, J. H. Silber, and P. Rosenbaum. Optimal multi-
variate matching before randomization. Biostatistics, 5(2):263–275,
2004.

8. M. J. Higgins, F. Sävje, and J. S. Sekhon. Improving massive experi-
ments with threshold blocking. Proceedings of the National Academy
of Sciences, 113(27):7369–7376, 2016.

9. D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the
k -center problem. Mathematics of Operations Research, 10(2):180–
184, 1985.

10. J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maxi-
mum matchings in bipartite graphs. SIAM Journal on Computing,
2(4):225–231, 1973.

11. S. Khuller, 2019. Personal communication.
12. S. Khuller and Y. J. Sussmann. The capacitated K -center problem.

SIAM Journal of Discrete Mathematics, 13(3):403–418, 2000.
13. R. A. Lewis and J. M. Rao. The Unfavorable Economics of Measuring

the Returns to Advertising. The Quarterly Journal of Economics,
130(4):1941–1973, 2015.

14. J. Li, K. Yi, and Q. Zhang. Clustering with diversity. In Proc.
of the 37th International Colloquium on Automata, Languages and
Programming, pages 188–200, 2010.

15. S. Li and O. Svensson. Approximating k-median via pseudo-
approximation. SIAM Journal on Computing, 45(2):530–547, 2016.

16. S. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129–137, 1982.

17. J. G. Oxley. Matroid Theory. Oxford University Press, 1992.
18. P. R. Rosenbaum. Optimal matching for observational studies. Jour-

nal of the American Statistical Association, 84(408):1024–1032, 1989.
19. F. Sävje, M. J. Higgins, and J. S. Sekhon. Generalized Full Matching.

CoRR, abs/1703.03882, 2019.
20. C. Swamy. Improved approximation algorithms for matroid and

knapsack median problems and applications. ACM Transactions on
Algorithms, 12(4):49:1–49:22, 2016.

