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Abstract: Specifying tasks with videos is a powerful technique towards acquiring novel
and general robot skills. However, reasoning over mechanics and dexterous interactions
can make it challenging to scale learning contact-rich manipulation. In this work, we
focus on the problem of visual non-prehensile planar manipulation: given a video of an
object in planar motion, find contact-aware robot actions that reproduce the same object
motion. We propose a novel architecture, Differentiable Learning for Manipulation
(DLM), that combines video decoding neural models with priors from contact mechan-
ics by leveraging differentiable optimization and finite difference based simulation.
Through extensive simulated experiments, we investigate the interplay between
traditional model-based techniques and modern deep learning approaches. We find
that our modular and fully differentiable architecture performs better than learning-only
methods on unseen objects and motions. https://github.com/baceituno/dlm.
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Figure 1: We tackle the problem of visual non-prehensile planar manipulation where given a pre-segmented video of
an object in planar motion (left) the goal is to find the robot actions (middle) to reproduce the same object motion
(right). In learning for manipulation, we study the role of structure, intermediate representations, and end-to-end
differentiation.

1 Introduction
Dexterous manipulation tasks can be easily described through videos and have the potential to scale robot
learning, but decoding relevant information from them remains a challenging problem. While recent ap-
proaches employing deep learning from images and videos have seen remarkable success in various prehen-
sile robotic tasks [1, 2, 3, 4], there has been limited progress in the direction of non-prehensile manipulation.
An underlying struggle lies in building representations that can reason over object geometry, rigid-body
mechanics, and the combinatorial decisions of choosing contact-modes. Mechanics representations and pri-
ors are ubiquitous in model-based techniques and thus have been able to demonstrate working solutions [5,
6, 7, 8]. However, these methods can be computationally expensive, are unable to exploit past experience,
and require hand engineering, as they assume access to known object shape, pose, and desired trajectory.

Can bringing mechanics representations and priors into deep learning models aid in decoding videos and
learning dexterous manipulation? We study this question on the problem of video-based non-prehensile
planar manipulation. Here, given a video of an object in planar motion in some environment (i.e. input
video), the goal is to find contact and force trajectories for the robot fingers (i.e. output robot actions) that
when executed will reproduce the same object motion in the same environment. This problem is illustrated
in Fig. 1. Our approach is to build intermediate representations based on mechanics that serve as a glue in
combining upstream neural models that decode the video with downstream differentiable priors that solve
for robot actions. We limit the problem scope to planar settings, with the input video being pre-segmented,
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and the robot having point-fingers (standard in robot manipulation literature [9, 10, 11, 6, 8]). These
simplifications allow us to assess the impact of structured learning without the confounding effects of
sensor or actuator noise, and enable us to make a reasonable first step towards general approaches that
would be able to learn dexterous manipulation by watching large scale human videos [12].

We present an architecture, Differentiable Learning for manipulation (DLM) (illustrated in Fig. 2), that
works in three stages and can be progressively trained on each stage: (1) a neural model that derenders the
input video to mechanical parameters i.e. object shape, object trajectory, discrete contact-mode decisions,
and allowable forces between robot fingers and object, (2) a differentiable convex optimization module
based on cvxpylayers [13, 14] that solves inverse dynamics from the mechanical parameters to find contact
and force trajectories for the robot fingers, and finally (3) a differentiable contact-mechanics simulation
module based on lcp-physics [15] and finite-differencing that executes the robot actions to simulate the
object motion. We train the first two stages with supervision from an expert contact trajectory optimizer [6]
while the third stage is trained end-to-end over the desired object trajectory.

To investigate the role structure plays in learning, we compare our approach with various architectures
including neural models without any mechanics priors on visual non-prehensile planar manipulation tasks.
In our experiments, we train the third stage of DLM on a dataset that is smaller relative to the training
dataset used for the first two stages to resemble a more realistic setting where pre-training is done on a large
simulation dataset with easy to obtain supervision and fine-tuning is done on a smaller real-world dataset
that is expensive to collect and harder to label. We find that our structured model is able to outperform
other learning-based architectures on unseen objects and motions, while being more computationally
efficient compared to the non-learning expert.

2 Related Work
Prior work in visual manipulation has involved learning predictive models from videos of a robot interacting
with its environment. These models are used to find actions with simulation roll-outs, in a model-predictive
fashion [16, 17, 1, 18, 19, 20, 21]. These approaches have been successful at solving prehensile manipula-
tion problems where the dynamics are hard to model. When the dynamics have a known model, while these
approaches remove the need to analyze visual data, mechanics or geometry, they struggle in generalizing to
different tasks and geometries and can be data inefficient. Our work aims to address this limitation, under
the planar non-prehensile manipulation task, by learning mechanical parameters from video and optimizing
robot finger actions with a known rigid-body mechanics model, instead of learning a fully predictive model.

On the other side of the spectrum, model-based techniques leverage the known contact-mechanics that
govern the manipulation process for planning or control. The scope of these techniques is often focused
in: (i) the planning/control of primitives [22, 23, 9], which can be combined sequentially to complete a
task [7, 24], or (ii) in the optimization of general skills [25, 5, 6], which solve inverse rigid-body dynamics
to solve a task. These approaches have the potential to provide a certification of robustness [10, 26] and
versatility to operate with different robot kinematics and task specifications. However, they also depend on
accurate state-estimation and control to be implemented. Moreover, solving contact mechanics involves non-
smooth optimization or large combinatorial search. This prevents the scalability of these methods to complex
geometries and large time horizons. The main focus of the state-of-the-art is in planar manipulation tasks
over sagittal settings, where friction and contact forces are the primary source of challenges [5, 27, 6, 28].

Recent research has tried to bridge the gap between deep learning and model-based techniques by
introducing differentiable computational techniques as part of the learning pipeline. The first relevant
line of work involves the introduction of differentiable optimization solvers [29, 30, 13], which introduce
a parametric convex optimization program as a differentiable layer in a neural network. We leverage one
of these solvers [13] to solve a quadratic program that takes as input mechanical parameters from a task
(derendered from video) and outputs robot finger trajectories within our network. The second relevant line
of work comes from the implementation of differentiable contact-mechanics simulators [15, 31], which
execute a parametric physical simulation and allow to back-propagate from a measured output. We modify
an existing differentiable simulator [15], using finite-differences, to handle intermittent contact dynamics
and evaluate the error when executing the learned robot finger trajectories as part of a loss function.

3 Visual Non-Prehensile Manipulation Inference
In this section, we define our problem of inferring manipulation actions from a video which serves as
a task specification. We limit our focus to the context of 2D non-prehensile manipulation given 2D
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pre-segmented videos of desired object motion. In the discussion section, we elaborate on possible avenues
to extending our formulation and approach to 3D, real videos, and real robots. We start by defining the
main components of our problem, its assumptions, and our notation:

1. Task: a video V with T frames showing a sequence of object poses. The tasks involves a set of object
poses r(t)∈SE(2), sampled in T time-steps t.

2. Object: a polygonal rigid-body O with mass matrix M and NF facets. Each facet Ff has a
corresponding friction cone FCf .

3. Action Space: a set ofN point-fingers1 moving freely around space. We describe the position of finger
c, at time-step t, as pc(t). The contact interaction between the object and the finger at pc(t) applies
a force λc(t).

4. Environment: a polygonal environment described as planes with friction cones FCe. The contact
interaction between the object and the environment occurs at the contact point pe(t) and results in
a reaction force λe(t).

We show a high-level representation of our problem in Fig. 1. One of the challenges in solving this
problem come from interpreting video data, in order to extract an implicit representation of the object
shape, the object motion, and finding the appropriate contact interactions between the robot fingers and
the object. Specifically, finding a contact interaction is divided in two steps: (i) select a sequence of contact
modes, indicating where each contact is applied at each time-step, and (ii) invert the dynamics to resolve
the exact contact locations and forces to apply. In this context, inverse dynamics (ID) is an optimization
problem that receives an object motion and outputs forces and locations, formulated in the form:

ID: min
p,Λ

T∑

t=0

JIDp,λ(t) (1)

subject to: Mr̈(t)+G(r)=J(r)TΛ(t), pc(t)∈Fc(t), λc(t)∈FCc(t), λe(t)∈FCe(t) (2)

where JIDp,λ(t) is a cost function that typically penalizes actuation efforts, G(r) represents gravity and
inertial effects, and J(r) is a Jacobian mapping contact forces Λ=[λ1,...,λN ,λe] into wrenches. Solving
ID, however, assumes knowledge of the exact shape of the object and the contact modes to be applied
[32, 27, 7], encoded in the facets Fc(t) and friction cones FCc(t). Solving this problem without assuming
known contact modes is often intractable and a significant body of research has focused on studying
it [25, 33, 6]. Our approach addresses this by extracting object shape and contact modes (as facets and
friction cones) as parameters through a deep neural model, which can be trained with ground-truth labeled
data and augmented with self-supervision through differentiable optimization and differentiable simulation.

4 Differentiable Visual Non-Prehensile Manipulation

In this section, we present our approach Differentiable Learning for Manipulation (DLM). Each subsection
describes a stage of the model and provide technical and implementation details. Our approach leverages
deep neural networks, differentiable optimization, and simulation, to construct the full pipeline, illustrated
in Fig. 2.

4.1 Mechanical Derendering

One challenge of visual manipulation is to decode geometry and motion from video. While pre-segmented
videos can be obtained from realistic videos with state-of-the-art computer vision tools [34], it is
challenging to translate explicit task information into an implicit latent space. This is due to discrete
variables such as facets, vertices, and intersections. Hence, the first stage of our model encodes the video
frames V into an implicit latent space LV . To achieve this, we first encode each frame Ik through a set
of convolution layers CNN(·) and combine these embeddings with a Long Short-Term Memory (LSTM)
layer, to retain their temporal relation, as:

LV=LSTM(CNN(I1),CNN(I2),...,CNN(IT )) (3)

1The use of point-fingers does not account for robot kinematics. While this is a limitation, it is a standard approach
to evaluate planning and learning pipelines for manipulation problems (see [9, 28, 10, 26, 6, 8]).

3



Simulation

Robot 
Actions

Object 
Trajectory

LSTMCNN

Desired   
Obj, Motion 

Video

QP

g

De-rendering

Mechanical 
Parameters

Neural-based Model-based

Latent  
space

p⇤c(t),�
⇤
c(t)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

A(P⇤)


p
�

�
 b(P⇤)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2: Our proposed fully differentiable pipeline, DLM (Differentiable Learning for Manipulation). In contrast to
approaches that represent policies as feed-forward neural networks, our approach leverages model-based priors from
mechanics to process mechanical parameters via a differentiable quadratic program and evaluate the resulting policy
through a differentiable simulator.

g

Figure 3: Interactions in our setup (top-left) and the
mechanical parameters from the scene (bottom). Differ-
ent contact modes are encoded implicitly via the friction
cones and the object facet at each contact (top-right).
Note that the input video only demonstrates the object
moving without any robot actions.

Given this encoding, we find all the parameters
required for ID with differentiable optimization, in
similar fashion to [35]. This set of mechanical param-
eters [6] includes: (i) the Jacobian matrix J(r)(t), (ii)
the location of external contacts pe(t), and (iii) param-
eters that implicitly encode contact modes Fc, FCc,
andFCe. We derender this set of mechanical parame-
ters P={r(t),J(r)(t),Fc(t),FCc(t),pe(t),FCe(t)}
through an MLP2 and the loss function:

P∗(t) =MLPP(LV)(t), ∀t,c, (4)

LP= ||P∗(t)−P(t)||22 (5)

As illustrated in Fig. 3 these parameters are an
implicit representation of the finger contact modes
and the local object geometry for a given task, since
the contact mode only encodes which facet is in
contact and what is the friction cone.

4.2 Differentiable Inverse Dynamics

Given the derendered parameters, we recast ID as the following quadratic program which solves for robot
actions pc(t),λ∗c(t):

QP: min
pc,λ,ε

JQP =
∑T
t=0||Λc(t)||

Qλ
2 +||p̈c(t)||Qp2 +q|ε(t)|

subject to: Mr̈∗(t)=J(p,r)∗
T

Λ(t)−Ĝ(r∗)+ε(t), λc(t)∈FC∗c(t), λe(t)∈FC∗e(t), pc(t)∈F∗c(t) (6)

Under this linearization, QP has the property of being a convex optimization problem [36]. This has a few
benefits: (i) its solution is always the global optima, (ii) if P∗(t)=P(t) then its solution is guaranteed to
match the ground-truth optima, and (iii) QP can be added as a differentiable layer of our model [29, 13],
which inputs P∗ and outputs the optimal p∗c,λ

∗
c,ε for such parameters. There are a few considerations

to make QP a differentiable layer. In particular, QP must have a solution–or be feasible– for any choice
of parameters P∗(t) [13]. To make the problem always feasible, we relax the dynamics constraints by
adding a slackness term ε(t) and penalize it in the loss function JQP , with weight q. After solving QP, we
supervise its solution with ground-truth labels, under known parameters, with the loss

LQP =q|ε|+||p∗c−pc||22+||λ∗c−λc||22, (7)

which drives the model towards a set of actions that are both consistent with the physical structure, such
that ε(t)→0, the ground-truth physical parameters p∗c,λ

∗
c→pc,λc. After training, we set ε=0 to ensure

consistency.
2Facets F are represented by two vertices in the world frame, while friction cones FC are represented with two

rays originating at the contact point.
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4.3 Evaluation

g

Figure 4: Example of four different valid solu-
tions to a simple manipulation task of pushing
a block from left to the right. Since the video
does not show what actions to follow, our model
may output any of these actions depending on
its supervision.

A drawback of learning directly from the action space is the
dependence on ground-truth finger trajectories to assess the
generality of the learned model. The existence of multiple
solutions, e.g. as depicted in Fig. 4, makes it ambiguous to
assess a model with unseen labeled data. To resolve this am-
biguity in the evaluation, we simulate the task using inferred
actions p∗c(t),λ

∗
c(t). We then compare the simulated object

trajectory with the desired object trajectory, and use this error
as a metric [37]. Algebraically, a simulator is represented by

r∗(t)=Sim(p∗c(t))





r(t+1)=r(t)+∆T ṙ(t),

ṙ(t+1)= ṙ(t)+∆T r̈(t),

Mr̈(t)+G(r)=J(r)TΛf(t)
(8)

and:

Λf =[λf1(p∗1(t)),...,λfN(p∗N(t)),λfe(p∗e(t))]

is a functional representation of the contact forces. These forces need to be determined based on the inertial
properties of the system. To resolve these forces we solve a Linear Complementary Problem (LCP), based
on [15], which outputs the corresponding contact forces between the object, fingers, and the environment.
These contact forces are activated discretely as:

λfk((p∗k(t)))=δ(D(p∗k(t),r(t))), D(p∗k(t),r(t))≥0,δ(x)=

{
1,x=0

0,x>0
(9)

whereD(p∗k(t),r(t)) is the distance between point p∗k(t) and the object at pose r(t). Similar relations are
used to represent the friction cones and contact modes, which we omit for simplicity. Then, we use the
simulation for the evaluation metric using the loss function

Lsim= ||Sim(p∗c(t))−r(t)||2 (10)

where p∗c(t) are finger trajectories obtained by solving QP. It is important to note that Lsim is not an
injective mapping from the finger trajectory error ||p∗c(t)−pc(t)||2. Therefore, having actions near the
ground-truth might not necessarily lead to a lower Lsim.

4.4 Supervision via Simulation

Having access to the loss function Lsim can also tune our model subject to ground-truth physics. This
reduces (or potentially removes) the burden of having labeled data over the parameters P(t) and the finger-
trajectories pc(t), leading to a fully self-supervised approach. Training our model with Lsim requires
the function Sim(·) (i.e. the simulator) to be differentiable in all its domain. However, the function δ(·)
only returns gradients at the origin. While this is a pervasive problem, many researchers have successfully
included contact mechanics as differentiable functions by approximating δ(·) with a smooth function [25].
In our case, we approximate δ(·) as the smooth function:

δ(D(pk(t))≈σ(−D(pk(t),r(t)),κ)

where σ(·,κ) is a sigmoidal function with factor κ. This approximation can be made arbitrarily tight as
κ→∞. With this smoothing, the simulator gradients are computed via finite differences as:

∇r∗(t)≈(Sim(p∗k(t)+hp)−Sim(p∗k(t)−hp))/2h

where hp=hI3×3. While automatic differentiation is a more efficient approach to obtain gradients, we
found it incompatible with the smoothed contact model of our current implementation. We leave this
enhancement for future work. Minimizing Lsim drives the learned finger trajectories to push the object
through the desired object trajectory. A consequence of this approximation is that δ(·)≈ σ(·) leads to
effects such as contact at distance and small penetration, although these are attenuated for a large κ>>1 in
practice.
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Figure 5: Left: Examples shapes of objects in our different datasets. Right: Architectures used to evaluate our
framework. Blue segments are stages in the architecture with a neural model, black segments are differentiable
model-based stages. Dots represent points with labeled data used for pre-training and arrow ends are the final loss
function for the full architecture. The MIQP approach has privileged access to all the parameters of the problem.

5 Experiments
We implement all models in PyTorch [38] with Python 3. To generate our datasets, we use MATLAB
R2020b and solve optimization problems with the Gurobi [39] solver. For all experiments, we use Adam as
our network optimizer and CVXPY layers [14, 40] as differentiable solver for QP. In all experiments we
train over each loss function for 100 iterations with a learning rate of 10−4. We implement our simulator
on top of the LCP-based scheme in [15] by modifying it to accommodate our problem setting. We run all
training, testing, and timing experiments on a Macbook Pro with 2.9 GHz 6-Core Intel CPU.

Datasets: We built four datasets of non-prehensile manipulation tasks in the sagittal3 plane with randomized
trajectories in SE(2), all ground truth robot actions are found by solving Contact-Trajectory Optimization
(CTO) [6]:

• Training set of 20 tasks with randomly generated polygonal objects of 4 to 6 facets, including all
mechanical parameters and robot actions for each task.
• Fine-Tuning set of 20 tasks with new random objects of 4 to 6 facets, with robot actions for each task.
• Test set of 40 tasks with new random objects of 12 facets, with robot actions for each task.
• Family Test set of 40 tasks with new random objects of 4-6 facets (same shape and task distribution as

training and fine-tuning sets), with robot actions for each task.

Each task has a video of T=5 RGB frames of size 50×50. We find optimal finger trajectories for each
task using a Mixed-Integer Quadratic Program (MIQP) [6], for N = 2 point fingers. We set κ= 0.5,
qε=0.1 and dim(LV)=75. We illustrate example objects we generate for each dataset in Fig. 5 (left).
Also see Appendix for more details on data generation.

Architectures: We asses the performance of our approach, Differentiable Learning for Manipulation
(DLM) against four different architectures and a model-based oracle (see Fig. 5).

• NN: The Neural Network (NN) architecture replaces QP in DLM, with a 3-layer MLP. This is akin
to a pixel-to-actions style policy network [41, 3] and is trained to generate MIQP solutions with a loss
function LNN = ||p∗c(t)−pc(t)||22.
• NNM: The Neural Network Manipulation (NNM) architecture extends NN by also fine-tuning by

minimizing Lsim, akin to the examples used in [15]. This network is pre-trained with 100 iterations of
minimizing LNN .
• MDR: In the Mechanical DeRendering (MDR) architecture, DLM is cut off when it is trained to extract

parameters from video by minimizing the loss function LP . At test time robot actions are obtained
by solving QP. This is akin to the approach used to learn integer solutions to mixed-integer programs
[42, 43].
• CVX: In the ConVeX optimization (CVX) architecture, DLM is cut off after being trained by minimizing
LQP . This network is pre-trained with 100 iterations of minimizing LP .
• DLM: Our proposed approach is trained by minimizing LSim after it is pre-trained with 100 iterations

of minimizing LQP which in turn is pre-trained with 100 iterations of minimizing LP .
• MIQP (Oracle): A model-based solution to each manipulation task, solved via CTO [6] and provided

with all ground-truth parameters (such as object shape and desired object trajectory in SE(2)).
3side-view of the scene with gravity pointing down in the image plane.
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DLM 

Figure 6: Left: In contrast to NN, MDR and CVX closely match the finger-trajectory solution from MIQP (Oracle).
Center: While each network is trained to match finger trajectories from MIQP, the more structured networks (MDR
and CVX) generalize better to unseen object trajectories and shapes. Right: Each network is trained by propagating
gradients through the simulator. The DLM architecture performs better than the unstructured NNM without over-fitting.

Table 1: Object-Trajectory Loss and computation times (in seconds) for the different architectures on each dataset.
Model Training Fine-Tuning Test Family test Backward Pass (s) Forward Pass (s)

NN 8.5±0.5 N/A 9.5±2 10.0±1.5 0.05±0.01 0.06±0.02
NNM N/A 15.0±5.00 11.0±2.00 15.0±5.0 40.00±5.00 0.06±0.02
MDR 4.5±2.0 N/A 7.5±2.5 4.5±2.0 0.10±0.01 0.11±0.02
CVX 2.0±0.5 N/A 4.0±0.5 3.5±0.5 0.23±0.01 0.11±0.02
DLM - 1.5±0.5 3.5±0.5 3.5±1.0 40.00±5.00 0.11±0.02
MIQP - - - - - 0.57±0.25

Network details: The CNN(·) andDeConv(·) operators represent 3 (de)convolution operations with 6,
12, and 24 channels. The LSTM(·) function is a 5-layer bi-directional recurrent LSTM. EachMLP(·)
has 3 fully-connected hidden layers of equal size to their input. All the layers use ReLU activation functions.
We add a 0.2 dropout and batch-normalization to each fully-connected layer of the network.

5.1 Learning Policies from Data
We first analyze the ability to infer finger trajectories from the ground truth data obtained via CTO.

Finger trajectory loss: We measure the ability of NN, MDR, and CVX methods to learn specific finger
actions from the training set and evaluate their generalization to unseen data from the test set. We present
the results of running each network for 100 epochs in Fig. 6 (left). The NN network consistently falls in a
local minima. In contrast, the MDR and CVX result in lower training loss closer to the MIQP (Oracle)
reference. CVX further refines the learned weights for more accurate predictions, since it is pre-trained
with learned weights from MDR.

Simulated object trajectory loss: As we mention in Section IV.D, when we presented new data, the
networks struggle to generalize finger trajectories to new object shapes. This is a consequence of each
problem having multiple solutions. To resolve this ambiguity, we measure the object-trajectory loss by
simulating the learned actions at each learning iteration. We show the object trajectory loss curves for
each of our datasets in Fig. 6 (center). Fig. 6 (center) demonstrates how the inferred actions lead to better
execution on unseen objects, despite little improvement on the finger-trajectory loss. We note how training
with CVX not only refines the loss of MDR, but also prevents over-fitting. Examples of the qualitative
performance of each model are shown in Fig. 7.

5.2 Learning Policies from Simulation
Next we study the impact of learning actions in a self-supervised fashion. We train DLM and NNM
networks on the Fine-tuning set, leveraging the differentiability of our simulator. Both networks are
pre-trained with the training set. We plot the resulting object trajectory loss in Fig. 6 (right). The DLM
architecture decreases the test loss without overfitting on the Fine-tuning set, while the NNM network
oscillates around a local minima. This test presents the most similarity to a real-world experiment where,
without ground-truth labels on the parameters, the network learns to execute a video motion by iterating
over experiments. Examples of qualitative performance of DLM model is shown in Fig. 7. We show an
example of how this approach can be applied to real object, given a segmented video, in Fig. 1. Also see
Appendix for results on shapes from the OmniPush dataset [44].

5.3 Comparative Analysis
Finally, we compare the final performance of the different networks in terms of object-trajectory loss and
computation times (per data-point), shown in Table 1. Inference time in a neural model is smaller than
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Input Video NN MDR CVX DLM

Figure 7: Qualitative examples of each network applied to four trajectories from the family (top two) and test (bottom
two) sets. These shapes and motions are not seen during the training phase of each model. Networks with more
embedded mechanical structure (MDR, CVX, DLM) tend to perform better than less structured ones (NN). The DLM
pipeline provides a layer of self-supervision to the model which helps it to generalize better to unseen scenarios.

MIQP (Oracle) [6], as our model involves simple operations and solving QP. We note that training the
DLM model is slow, due to the use of finite difference in the backward pass.

6 Discussion
This work explores the problem of visual non-prehensile planar manipulation, reconciling tools from
model-based mechanics with deep learning. Our proposed Differentiable Learning for Manipulation
(DLM) approach: (i) encodes the input video V in a latent vector LV , (ii) derenders mechanical parameters
P∗(t) for the task, (iii) solves QP [29] to obtain robot finger actions p∗c(t),λ

∗
c(t), and (iv) evaluates the

performance of the model by simulating these actions. We train this model by minimizing LP , in order to
match the ground-truth parameters, and by minimizing LQP , in order to match the ground-truth actions.
Moreover, we can self-supervise this approach with new data by back-propagating through the simulator
[15] by minimizingLsim, without the need for ground-truth labels on parameters or actions. We assess this
method by learning how to solve planar manipulation tasks given a pre-segmented video showing a desired
object motion. Our experiments suggest that, when compared to fully neural architectures, our approach
can generalize better to unseen tasks and shapes with the same amount of training data.

Limitations: The first limitation of this approach comes from the differentiable simulation scheme. Since
our implementation uses finite differences, the slow backward pass hampers the scalability of our model.
Similarly, the approximations required to make contact-mechanics differentiable also lead to undesired
effects, such as rigid-body penetrations and contact at distance, which can compromise the quality of the
results. A second limitation arises from our mechanical assumptions. Assuming that contacts occur at
a set of points disregards tasks involving multiple or continuous contacts (e.g. pivoting against a wall).
Moreover, the representation of the friction cones brings challenges for extending to 3D scenarios, as it
cannot appropriately represent sliding contact. Finally, since our setup uses unconstrained point fingers, we
are unable to represent more realistic robot kinematics.

Future work: The next step towards our vision is applying this framework in a real-world system, requiring
the capability to handle real-world video data and robot kinematics. Our vision is to perform training
on completely synthetic data generated with MIQP [6], fine-tuned for robustness with the simulator,
and execute a task specified with a real-world video. Exploring faster simulation schemes will also be
essential to scale this model to larger datasets. Techniques that explicitly resolve the contact-mechanics,
through differentiable solvers, can alleviate this issue [15, 31]. Extending this framework to more complex
manipulation tasks might require an implicit representation for multiple environmental contacts. Finally,
moving to 3D tasks in SE(3) is also possible by solving contact-trajectory optimization [6] in a 3D
environment [6, 8] also leveraging recent advances in large-scale 3D differentiable simulation [31].
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Figure 8: Qualitative examples of each network applied to objects from the OmniPush [44] dataset in a saggital setting.
These shapes are significantly smoother than those used for training.

7 Appendix A: Data Generation

In order to train and evaluate this model, we generate a set of random polygonal shapes and random
trajectories r(t). Each object is generated by sampling points along a unit circle, connecting them randomly
to form a polygon [45]. This shape is re-scaled to fit within a 20 cm radius. To generate a trajectory we
sample a starting pose and a goal pose from an uniform distribution as r(0), r(T)∼U(E). We linearly
interpolate with T−2 points between the goal and starting pose, adding a Gaussian noise d∼G(0,1 cm) to
each position. For each trajectory and shape, we setup T=5 and use a video resolution of 50×50.

Once the task is setup, we pose a Mixed-Integer Quadratic Program (MIQP) that find the globally optimal
robot finger placements and contact forces pc(t),λc(t) as:

MIQP: min
p,Λ

T∑

t=0

λTc (t)Qλλc(t)+p̈Tc (t)Qpp̈c(t) (11)

subject to: Mr̈(t)+G(r)=J(r)TΛ(t), pc(t)∈Fc(t), λc(t)∈FCc(t), λe(t)∈FCe(t) (12)

This problem is known as Contact-Trajectory Optimization (CTO), and we solve the MIQP using the
formulation from [6]. Once the contact-trajectory is generated, we extract the following mechanical
parameters:

1. r: object trajectory in SE(2) over T time-steps, represented by one 3×T matrix.
2. J(r)(t): contact-force Jacobian that maps contact forces into wrenches for object configuration r,

represented as a 3×2N matrix.

11



3. Fc(t): facet where finger pc is at contact during time-step t. We represent the facet with two
vertices φ1∈R2,φ2∈R2.

4. FCc(t): friction cone for finger pc at time-step t. We represent each friction cone as two rays
γ1∈R2,γ2∈R2.

5. pe(t): contact point where external wrenches are aggregated to the object.
6. FCe(t): friction cone for the external wrench location at time-step t. We represent this friction

cone as two rays γe1∈R2 and γe2∈R2.

All these parameters, along with the solution to CTO are stored and used to train and validate our model.
Note that it is difficult to extract these parameters without synthetic data, since real world environments can
be very hard to control and measure.

8 Appendix B: Simulated Experiments with OmniPush Shapes

We also study the application of our method towards more realistic data, using shapes and trajectories from
the OmniPush dataset [44] adapted to the saggital setting that we consider. We qualitatively demonstrate
how our model generalizes to this data (consisting of smooth object shapes), without having seen them
during training. These results are illustrated in Fig. 8. As before, we observe that our structured architecture
performs qualitatively better than less structured approaches.

Real-world videos could directly be utilized as inputs, for example, to a semantic segmentation neural
network which then generates the animated style videos as inputs to our proposed architecture and the
whole system can also be trained end-to-end. This lies beyond the scope of this paper but would be an
interesting future direction.
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