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ABSTRACT
Embedding-based Retrieval (EBR) is a powerful search retrieval
technique in e-commerce to address semantic matches between
search queries and products. However, commerce search engines
like Facebook Marketplace Search are complex multi-stage systems
with each stage optimized for different business objectives. Search
retrieval system usually focuses on query-product semantic rele-
vance, while search ranking puts more emphasis on up-ranking
products for high quality engagement. As a result, the end-to-end
search experience is a combined result of relevance, engagement,
and the interaction between different stages of the system. This
presents challenges to EBR systems in optimizing overall search
experiences. In this paper we present Que2Engage, a search EBR
system designed to bridge the gap between retrieval and ranking for
better end-to-end optimization. Que2Engage takes a multimodal
& multitask approach to infuse contextual information into the
retrieval stage and balance different business objectives. We show
the effectiveness of our approach via a multitask evaluation frame-
work with thorough baseline comparisons and ablation studies.
Que2Engage has been deployed into Facebook Marketplace Search
engine and shows significant improvements in user engagement in
two weeks of A/B testing.
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• Information systems → Retrieval models and ranking; •
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1 INTRODUCTION
Embedding-based Retrieval (EBR) has become an important compo-
nent of e-commerce search engines across Facebook Marketplace,
Walmart, Instacart, and more [6, 7, 9, 16]. In general, EBR models
focus on learning embedding representations for search queries and
documents, so that documents semantically close to a search query
can be retrieved via ANN search [5–7, 9]. However, search engines
are usually complex multi-stage systems optimized for multiple
business objectives, so simply optimizing for semantic relevance
may not always lead to the best outcome. For example, [7] points
out that integrating EBR systems can lead to NDCG regressions
because downstream re-ranking systems may not always able to
rank results retrieved via EBR properly.

In e-commerce platforms like Facebook Marketplace 1, contex-
tual information such as product price, production condition, seller
rating, etc. are also important signals to consider to ensure products
retrieved are engaging to the searchers. However, we argue that the
leverage of contextual information in a search EBR setting towards
better searcher engagement is not a trivial problem because (1)
traditional EBR modeling techniques based on contrastive learning
overly emphasize semantic relevance, so naively apply contextual
information in a contrastive learning setting may not work well (2)
a product being semantically relevant to a query does not imply
that it is engaging to the searcher, and thus simultaneously preserve
relevance and engagement is challenging.

In this paper we present Que2Engage, extending Que2Search [7]
to address the aforementioned challenges. It takes a multimodal
approach to incorporate contextual signals as a unique modality
in its transformer fusion backbone. The model is trained with mul-
titask learning that joins contrastive learning with ranker-style
training to not only retrieve semantically relevant products, but
also up-ranks the more engaging products like a re-ranking model.
Similar to [20], we propose a multitask evaluation for EBR mod-
els to understand its performances in different domains. We share
detailed baseline comparisons and ablation studies using the multi-
task evaluation framework to illustrate our argument of multi-stage
consistency and the effectiveness of our approach in leveraging
contextual information.

Que2Engage is integrated in Facebook Marketplace Search and
powering millions of search queries per day. It has demonstrated
significant improvements in searcher engagement via two weeks
of online A/B testing.

1www.facebook.com/marketplace
† Both authors contributed equally to this research
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2 MODELING
Figure 1 presents the overall architecture of our Que2Engage frame-
work, which is a two-tower neural network consisting of a query
and a document tower for learning embedding representations of
search queries and e-commerce products, respectively. Multimodal
and contextual information of products are fed into the document
tower using a transformer-fusion approach, and trained with multi-
task learning. In the following, we detail our choices in model
architecture and our novel multimodal multitask method.

2.1 Model Architecture
2.1.1 Query tower. Similar to [7], we adopt a multi-granular repre-
sentation of search queries which consists of both raw query text
and character trigrams of the query. Raw query text is encoded
using a 2-layer XLM [4] encoder, and character trigrams are en-
coded using an EmbeddingBag [10] encoder. Different from [7], we
combine the two representations using concatenation instead of
attention fusion before sending to the final MLP layer as we find
the former yields slightly better performance.

2.1.2 Contextual information as a modality. For candidate product
listings, we use a MLP-based encoder from the document tower to
encode their contextual information such as price, category and
creation time. Numerical features are represented as single neurons,
and categorical features are represented using one-hot encoding.
All of the contextual features are concatenated and then fed into
a BatchNorm layer followed by a final MLP to ensure a fixed nu-
merical scale and a fixed output length. We call this encoder output
a "context token" because it is treated similarly to text and image
tokens during the multimodal fusion step covered in section 2.1.3.
Essentially, contextual information is treated as a unique modality
in our multimodal framework.

2.1.3 Multimodal fusion. Besides encoding the contextual informa-
tion, we use text encoder to convert the textual fields, i.e., product
title and description, into a sequence of word tokens and feed them
into the transformer to get the textual embedding. A special [CLS]
token is used to encode the whole sentence representation. For
the variable number of images attached to the document, we take
the pre-trained image representations [1] for each of the attached
images, apply a shared MLP layer and deep sets [19] fusion to get
the image dense representation as image modality token. We bor-
row the transformer-fusion architecture used in [18], where we
feed the concatenation of the text tokens, image token as well as
context token to the multimodal fusion encoder. Our text encoder
and multimodal fusion encoder are initialized from 6-layer XLM-
R [3], an multilingual language model. As in [18], the text encoder
inherits its first K layers and the multimodal fusion model inherits
its remaining M layers. We extract the hidden output of the [CLS]
token at the last layer of multimodal fusion encoder and project it
to the desired dimension as the final document embedding.

2.1.4 Modality dropout. To ensure that our model does not overly
rely on one modality and is robust against missing information
during inference time, we introduce a modality dropout mecha-
nism. Specifically, we randomly mask out the output of contextual
encoder, image encoder and text encoder with probability of 𝛿𝑐 , 𝛿𝑖

and 𝛿𝑡 respectively, and replace the masked ones with tensor of
zero.

2.1.5 Learning image representations. We explore two variants of
image encoders to capture visual information from product images.
In method one, we directly apply pre-computed image embedding
from the GrokNet model [1], with an MLP layer on top to en-
sure the image embedding size is consistent all the other tokens
in transformer fusion. In method two, we include an off-the-shelf
RestNet50 encoder from the CommerceMMmodel [18] into the doc-
ument tower, and train the entire document tower as a continued
CommerceMM fine-tuning process. While the latter is obviously
more powerful because the original image encoder is retained and
fine-tuned, the former is much simpler to train and costs less mem-
ory in both training and serving. We will compare them in more
details in section 3.

2.2 Multitask Training
2.2.1 Contrastive learning. We adopt constrastive learning based
on batch negative sampling as part of our training objectives, where
positive samples are user engaged <query, product> pairs sampled
from de-identified and aggregated search log, and negative sam-
ples are generated by randomly combining queries and products
within a mini-batch of positive samples. Formally, we introduce the
relevance loss 𝐿𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 as follows

𝐿𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 =
1
𝐵

𝐵∑︁
𝑖=1

− log
{

exp {𝑠 · ^ (𝑞𝑖 , 𝑑𝑖 )}∑𝐵
𝑗=1 exp

{
𝑠 · ^

(
𝑞𝑖 , 𝑑 𝑗

)} } (1)

where 𝐵 is the batch size,^ is a similarity kernel that is implemented
as the cosine similarity, and 𝑠 denotes a scaling factor which is
simply a fixed value 𝑠 = 20 throughout all experiments. The value
is the same as the Que2Search [7] model.

2.2.2 Learning contextual information. Although batch negative
sampling has proven useful in learning semantic relevance in the
search EBR problem [7, 9], we notice that it is not sufficient in learn-
ing contextual information towards user engagement. For example,
contextual information like product price is a distinguishing factor
to identify engaging products among relevant products (i.e. a prod-
uct can be relevant but receives no engagement because the listed
price is not reasonable). However, during batch negative training,
the model receives little negative supervision from products with
very unreasonable prices, since all negative samples are generated
from engaged <query, product> pairs. Fundamentally, as [15] points
out, this is because batch negative methods implicitly sample from
the distribution of engaged products, which may not be the true dis-
tribution of the inventory. Methods like mixing random negatives
[17] and in-batch hard negative mining [7] are proposed to mitigate
the problem. However, we observe that negative samples generated
by those approaches are still too easy for the model to pick up
the nuances in contextual information. Therefore, we propose an
auxiliary training task that optimizes the model directly towards
finding engaging products among relevant product. Specifically,
we augment the training set in section 2.2.1 by including <query,
product> pairs displayed to the searchers but receive no searcher
engagements as hard negatives, and computes a BCE loss on those



Que2Engage: Embedding-based Retrieval for Relevant and Engaging Products at Facebook Marketplace WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

Figure 1: Que2Engage architecture overview

samples. Formally, we define the loss 𝐿𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 as follows

𝐿𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = −(𝑦𝑖 log(𝑐𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑐𝑖 )) (2)

where 𝑐𝑖 = 𝑠 · ^ (𝑞𝑖 , 𝑑𝑖 ).
To combine 𝐿𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 and 𝐿𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 , we define the final mul-

titask loss as

𝐿 (\ ) = _1 · 𝐿𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 + _2 · 𝐿𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 (3)

where \ is the model parameters, _1 and _2 are the weighting
parameters chosen empirically.

3 OFFLINE EXPERIMENTS
3.1 Dataset
We collect 150 million <query, product> pairs displayed to searchers
from Facebook Marketplace’s search log, with 75 million receiv-
ing downstream engagements as positive samples, and the rest
of 75 million as negative samples. The data is de-identified and
aggregated to remove any personal information before evaluation
proceeds. For offline evaluation, we collect 26k human-rated data as
the relevance evaluation set. The human-rated dataset is generated
by letting raters to decide whether a result is relevant to a query
or not. The candidates to be rated are generated by a stratified
sampling of the search queries and products, which includes both
easy and hard samples. To evaluate user engagement, we reserve
one future date among the 150 million de-identified and aggregated
search log data.

3.2 Baselines and Ablation Studies
We choose Que2Search [7] as our baseline model, which is a two-
tower model based on attention fusion of pre-trained XLM en-
coders [4] and image representations. We further augment the
model with encoders based on contextual information, as well as
with mixed batch method [17] to incorporate hard negatives from
products displayed to searchers. For the treatment group, we use
the Que2Engage with pre-computed image embeddings, because in
practice its simplicity is preferred during the actual model produc-
tionalization, and we share the comparison against an alternative
image encoder based on fine-tuning of the CommerceMM encoder
separately.

3.3 Experimental Setup
3.3.1 Evaluation metrics. Similar to [20], we adopt a multitask
evaluation framework to measure semantic relevance and searcher
engagement separately. Semantic relevance is measured using the
26k human-rated dataset, and searcher engagement is measured
using the 220k future engagement dataset. For both datasets, we
rank them using the cosine similarity from our model and report
ROC_AUC as the evaluation metric. Note that one significant dif-
ference between the two datasets lies in personalization. For the
human-rated dataset, raters are asked to make judgement based
purely on an objective guideline around textual and visual rele-
vance (e.g. whether there is a catalog or brand mismatch between
a query and a product), while more subjective factors outside of
the guideline (e.g. whether the listed price or product condition is
appealing) play important roles in the engagement dataset.

Therefore, ROC_AUC on the relevance dataset measures how
well the model predicts search relevance (similar to the in relevance
degree in [20]), which is the main evaluation metric used in [7]. We
have also found it correlates well with search retrieval performance.
ROC_AUC of the engagement dataset essentially measures its per-
formance on the search ranking task, because the candidates are all
products with user impressions. In fact, it is also a good indicator
of the consistency between search retrieval and search ranking.

3.3.2 Parameters. We develop all of the models on Nvidia A100
GPUs using the PyTorch Multimodal framework [11]. Models are
trained using batch size of 512, and optimized using Adam optimizer
with a learning rate of 4𝑒−4. We set weighting parameter _1 and _2
as 0.8 and 0.2 respectively. For the modality dropout, 𝛿𝑐 , 𝛿𝑖 and 𝛿𝑡
are 0.5, 0 and 0.5. We directly feed the text tokens and tokens from
other modalities into the multimodal transformer as [18], i.e., our
multimodal transformer is an early-fusion model with 0-layer text
encoder and 6-layer multimodal fusion encoder. One exception to
the aforementioned settings is that when comparing pre-computed
image embeddingswith fine-tuning the CommerceMMencoder, due
to the increased GPU memory consumption of the fine-tuning ap-
proach, we adjust the batch size to 64 for that particular experiment.
Learning rate was also adjusted to 5𝑒 − 5 for the CommerceMM
training to avoid NaN in the loss function computation.
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3.4 Results
3.4.1 Analysis of baseline results. The top part of table 1 outlines
the performance of baseline models. We can see that Que2Search
does well on the relevance evaluation but performs poorly on the
engagement dataset, which is expected because it is optimized
for semantic relevance. While adding contextual information to
Que2Search itself does not improve the performance on engage-
ment evaluation, changing training objective to include mixed neg-
atives significantly improves the prediction. Mixed negatives also
helps Que2Search to better leverage contextual features towards
engagement prediction with row 4 in table 1 achieving the highest
ROC_AUC on engagement evaluation. This aligns with our hypoth-
esis in section 2.2.1 - vanilla batch negative is insufficient to learn
the nuances in engagement prediction from contextual informa-
tion due to the sampling bias introduced by generating negatives
from the positives, and this can be mitigated by introducing mixed
negatives. Note that row 4 and 5 in table 1 suggests a regression in
relevance evaluation along with the improvement of engagement
evaluation. This is expected because contextual information like
product price and condition are irrelevant to the query-product
relevance guideline provided to our raters, and thus we do not
expect the leverage of contextual signals to improve the relevance
evaluation.

3.4.2 Que2Engage and ablation studies. The second part of table 1
shows that engagement evaluation can be significantly improved
with the Que2Engage approach, with the full Que2Engage using
multitask learning and modality dropout achieving the best re-
sults across the two evaluation methods. Ablation study on the
loss function suggests that multitask training leads to the biggest
improvement in engagement evaluation, suggesting that a more
focused loss function on hard negatives works better than simply
mixing the negatives. Finally, modality dropout further improves
both metrics and specially the relevance evaluation, suggesting that
forcing missing modalities may prevent the model over-fitting on
one task and thus regressing the other.

3.4.3 Image encoders. We also compare the two approaches to in-
corporate image signals into the multimodal fusion framework. We
can see that although both methods are based on pre-training tasks,
being able to fine-tune the image encoder indeed outperforms the
original frozen GrokNet [1] approach used in Que2Search in both
evaluations. However, given that fine-tuning the image encoder
end-to-end requires significantly more GPU memory and training
time, we do not include this technique in the production model for
simplicity. And the ablation study is done with a reduced batch
size of 64 which significantly regresses the absolute relevance eval-
uation because larger batch size is proven helpful in contrastive
learning [14]. However, we hope to productionalize this technique
with memory efficiency optimizations such as [14, 20] and with
more powerful hardware.

4 ONLINE EXPERIMENTS
We deploy Que2Engage on Facebook Marketplace Search as a par-
allel retrieval source to the traditional lexical-based search retrieval.
For online A/B testing, we compare Que2Engage with Que2Search
[7], which is our previous production model solely optimized for

Model Engagement Relevance
Que2Search[7] 55.88 67.14
Que2Search w/ contextual encoder 55.85 66.74
Que2Search w/ mixed batch loss 63.63 63.79
Que2Search w/ contextual encoder + mixed batch loss 64.45 61.17
Que2Engage w/ mixed batch loss 64.70 60.36
Que2Engage w/ multitask training 76.13 65.63
Que2Engage w/ multitask training + modality dropout 76.90 67.21

Table 1: Results for baseline comparison and ablation studies

Method Engagement Relevance
pre-computed image embedding 74.35 60.19
fine-tuned CommerceMM encoder 74.67 60.55

Table 2: Results for image encoder comparison

semantic relevance. We measure both NDCG and searcher engage-
ment for this A/B testing. Note that NDCG is calculated from
human-rated labels using simulated search results similar to how
the human-rated evaluation set is generated. Two weeks of online
A/B testing shows that Que2Engage improves online searcher en-
gagement by 4.5% while keeping NDCG neutral, which aligns with
our offline multitask evaluation results.

5 RELATEDWORK
In recent years, Embedding-based Retrieval (EBR) has been adopted
in e-commerce search to retrieve semantically relevant products
as a complement of lexical retrieval [6, 7, 9, 20]. Siamese neutral
networks [2, 12] trained with contrastive learning loss [13, 15] are
among the popular modeling choices for EBR in both search and
recommendation systems [8, 14, 17]. However, naive contrastive
learning using in-batch negatives can suffer from missing inter-
esting negative samples [17, 20] and being memory-hungry [14].
Variants of contrastive learnings are proposed to address them by
incorporating smarter negative sampling [7, 17, 20] and optimizing
memory usage [14, 20]. Sometimes, teacher-student learning is also
used as an auxiliary task to improve relevance [5, 20]. In search
retrieval, Pre-trained Language Models (PLM) are widely adopted
because the main focus of retrieval is often textual relevance [8, 9].
Yet, [6, 7, 20] point out that contextual information beyond text
relevance and consistency with re-ranking stage are also impor-
tant factors to EBR systems’ end-to-end performance. Recently,
[20] developed a unified training scheme to balance multiple opti-
mization objectives, yet the role of contextual information in the
multi-objective setting is rarely discussed.

6 CONCLUSION
We present the need of EBR modeling to balance relevance and en-
gagement in the real-world applications like Facebook Marketplace,
and introduce Que2Engage, our latest search EBR system, to ad-
dress the challenges. Through baseline comparisons and ablations
studies, we show the effectiveness of our innovations in incorpo-
rating contextual signals, multimodal techniques, representation
learning and multitask learning. We have deployed Que2Engage on
Facebook Marketplace Search. Through two weeks of A/B testing,
we show that it outperforms our existing state-of-the-art search
EBR system [7] and significantly improved searcher engagement
on product listed at Facebook Marketplace.
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