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Abstract

We survey a number of data visualization tech-
niques for analyzing Computer Vision (CV)
datasets. These techniques help us under-
stand properties and latent patterns in such
data, by applying dataset-level analysis. We
present various examples of how such analy-
sis helps predict the potential impact of the
dataset properties on CV models and informs
appropriate mitigation of their shortcomings.
Finally, we explore avenues for further visual-
ization techniques of different modalities of CV
datasets as well as ones that are tailored to sup-
port specific CV tasks and analysis needs.

1 Introduction
The majority of work on understanding CV algorithms
and explaining their behavior and results focuses on an-
alyzing the internals of CV models and revealing the
features they learn during training. On the other hand,
less attention has been paid to analyzing CV datasets
and their properties, despite the impact of these proper-
ties on the model behavior and on the learned features.
Existing work tends to rely on quantitative analysis [58]
of these datasets, with limited focus on exploratory vi-
sual analysis.

Torralba and Efros [50] assessed the quality of various
CV datasets. Their comparative analysis illustrates dif-
ferent types of bias in these datasets which limit their
generalizability and representativeness. Likewise, var-
ious studies examined label imbalance issues in various
CV datasets and their impact on different tasks, focusing
on solutions to mitigate the bias associated with them.
Fabbrizzi et al. [15] provide an excellent overview of these
studies. For example, Oksuz et al. [38] studied different
types of imbalance in object detection stemming from
the interaction between foreground and background ob-
jects, their sizes, and locations. Nevertheless, as noted
by Wang et al. [54] there is a lack of reusable tools and
techniques to systematically surface different types of
bias in CV datasets. We also note that most techniques
rely on quantitative analysis, and rarely leverage data vi-
sualization as a powerful means to analyze CV datasets.

We present visualization techniques that help analyze
fundamental properties of CV datasets. The goal of this
analysis is to improve our understanding of these prop-
erties and how they can potentially impact CV models
and algorithms. Our contributions include:

• Providing an overview of generally applicable visu-
alization techniques for CV datasets.

• Demonstrating how the insights these techniques
provide help expose potential shortcomings of CV
datasets and explain CV model behavior.

In Section 3 we explore further analysis opportunities
that are not well supported by existing techniques.

2 A Tour of Visualization Techniques
This section surveys a number of visualization techniques
that can be applied to CV datasets. For each technique,
we demonstrate example insights in popular datasets, as
well as possible implications of these insights.

2.1 Pixel-Level Component Analysis

Principal Component Analysis (PCA) is widely used as
a nonparametric method for dimensionality reduction.
When used for analysis and visualization purposes, of-
tentimes, the data points are projected along the top-2 or
top-3 principal components (PCs) and visualized using
2D or 3D plots. Such plots are rather limited when PCA
is applied in the flattened pixel space, which is usually
very high-dimensional. Furthermore, a relatively small
number of data points can be intelligibly visualized in
2D plots, especially when image icons are displayed.

Fortunately, it is possible to visualize the PCs of a
flattened pixel space directly as visual entities, without
projecting data points on them. This is because each
PC is an eigenvector defined as a linear combination of
the dimensions of the mean-centered pixel space. Each
value in this vector corresponds to one color channel of
a unique pixel and can be either positive or negative.
A pictorial representation of these values can reveal the
image features to which the respective PC is sensitive.

We propose visualizing each PC by means of two im-
ages, one consisting of the positive values of its eigen-
vector (with the negative ones treated as zero), and the
other consisting of the inverted negative values (with the



Figure 1: The top-15 principal components in two CV datasets ImageNet and Places365. The images were resized
to 40× 40. The analysis is applied to (a) the bounding boxes of ImageNet objects (b) to full scenes in Places365.

positive ones treated as zero). This decomposes the vi-
sual representation into two simpler parts, each showing
which pixels tend to have high value at one end of the
PC direction in the data space. This reveals subtle de-
tails in both images that are not always visible when
visualizing the eigenvector values in a single image. For
example, this reveals that the variance explained by the
4-th PC in Figure 1a is between orange-dominated vs.
blue-dominated images. To the side of the two images,
we depict a gray bar whose length represents the eigen-
value of each PC. Accordingly, the visualization of the
pixel space hence consists of the two extremes of each
PC, in addition to a bar chart of the eigenvalues.

We next present two different modes to apply PCA
to image data based on the unit of analysis, and elab-
orate on the insights they provide in the dataset. The
first mode operates on whole images while the second
operates on small patches in these images.

PCA on Whole Images

To apply PCA to a dataset whose items are images, these
images must be of the same size and color depth. This
allows treating the dataset as a high-dimensional table.
Furthermore, PCA requires the number of data points n
to be larger than the number of dimensions p in the table
to allow consistent estimation of the subspace of max-
imal variance. Depending on the dataset and the goal
of analysis, recommendations for the ratio between sam-
ple size and number of dimensions vary between 1 and
100, with higher ratios usually recommended for very
high-dimensional datasets.

The above requirements are generally straightforward
to meet for the purpose of analyzing and understanding
vision datasets by applying suitable crop and resize op-
erations. While downscaling the images can compromise
fine-grained details, applying PCA to downscaled images
is useful to analyze global factors of variations among
them. Furthermore, with small images the computation
overhead is significantly smaller than with large ones 1.
Accordingly, we recommend starting the analysis with

1The time complexity of standard PCA is O(p3 + p2 · n).

relatively small images, and validating the axes found by
repeating the analysis on larger resolutions while avoid-
ing overfitting.

In Figure 1a, the PCs were computing using the Im-
ageNet validation set, which contains n = 50.000 data
points. We first crop each image to the bounding box
of the target object and then resize the image further
to 40 × 40 pixels, resulting in k = 4800 dimensions and
hence a ratio of n/k = 10.4. As evident in Figure 1a, the
top-5 PCs correspond to low-frequency features that to-
gether explain about 40% of the variance in the dataset.

• The 1st PC differentiates between dark and bright
object images, explaining about 24% of the vari-
ance.

• The 2nd PC differentiates between dark objects on
a bright background, and the opposite case.

• The 3rd PC is sensitive to whether the brightness
is concentrated in the upper or bottom parts of the
image.

• The 4th PC differentiates based on orange and sky-
blue tints, two opposing colors in the RGB cube.

• The 5th PC is sensitive to whether the brightness is
concentrated in the left or right parts of the image.

The remaining PCs correspond to increasingly higher-
frequency features in the spatial dimensions. One excep-
tion is the 12th PC, which differentiates based violet and
green tints, which are also opposing colors in the RGB
cube. Interestingly, this PC explains only 1.24% of the
variance, while the orange-blue PC explains 3.3% of it.
This suggests that perturbations along these dimensions
might have varying impact on the learned models, as
we demonstrate in Section 2.1. In Figure 1b, the same
analysis is applied to the Places365 validation set. No-
tice how:

• Horizontal bands dominate the top PCs, such as
the 3rd and 7th PCs, while vertical bands are less
salient and are often mixed with the blue-orange di-
mension. This reflects the nature of scene-centric
datasets, in contrast with the object-centric Ima-
geNet.



• The green-violet axis is not among the top-15 com-
ponents of Place-365, while the blue-orange dimen-
sion is correlated with four of them. This is because
scene images are rarely dominated by violet color,
which limits the variance explained by the green-
violet axis.

PCA on Image Patches

Instead of treating images as the unit of analysis, it is
possible to apply PCA to image patches. This mode
of analysis has been used in the literature to compare
images [47], denoise them [11], and to extract features
for recognition tasks [26]. Furthermore, it has been used
to understand the statistics of natural images and to link
them with certain mechanisms of human vision [13, 21,
23,45].

Applying PCA to image patches eliminates the need
for resizing the images. When used to understand the
influence of the data on the model learned, the patch size
can be selected to match how the model processes the
images. For example, when convolutional neural net-
works are used, the size can be selected to match the
filter size of the first convolutional layer.

Figure 2: The top-15 principal components in 3.1 million
image patches of size 11×11×3, sampled from ImageNet.

Figure 2 shows the PCA results computed for 3.1 mil-
lion patches of size 11× 11, randomly sampled from the
ImageNet validation dataset at random locations span-
ning the entire image area. The size corresponds to the
filter size of the first convolutional layer in AlexNet [30].
When trained to classify ImageNet, the color-blob filters
in the first layer of AlexNet largely follow the two color
dimensions we found among the top PCs.

Independent Component Analysis (ICA)

PCA is designed to maximize the variance explained by
the top PCs it computes. When applied to images, these
PCs hence tend to involve all pixels in order to find di-
rections that maximize this variance. Accordingly, the
visual features that correspond to these directions are
rather global, as evident in Figure 1. Moreover, these
directions can be correlated.

ICA [24] offers an alternative component analysis that
aims to maximize the independence between these com-
ponents, instead of the variance they explain. When
applied to images, the independent components (ICs)
found can hence focus on localized features that are un-
correlated. Figure 3 shows examples of ICs computed
for two datasets, VGG Face [41] and the CASIA Chi-
nese Offline Handwritten Characters [33]. The ICs were
computed using Fast ICA [22], applied to images of size
40×40. Notice how the IC components are localized and
highly disentangled from each other.

Figure 3: Selected independent components in VGG
Face and in CASIA’s Handwritten Chinese Characters.
Notice how ICA can identify localized features.

When applied to image patches sampled from natural
images, ICA was shown to learn features that resemble
Gabor functions [23]. The gray-scale filters in AlexNet
also resemble Gabor functions. This suggests that these
filters aim to maximize the independence between their
features. It is useful to reduce the dimensionality of the
data space using PCA, before applying ICA, in order to
discourage ICA from overfitting noise patterns.

How useful is component analysis?

Exploring the top PCs in the pixel space is helpful to
understand which image features are behind significant
variations in the dataset, and accordingly predict their
potential importance for the model. For example, it is
evident in Figure 1a and in Figure 2 that the blue-orange
direction explains more variance than the green-violet
direction in the ImageNet pixel space. Accordingly, we
suspect that ablating the blue color channel will likely
have more impact on ImageNet classifiers than ablating
the green channel. To verify this assumption, we ablate
each of the three color channels in the input of ResNet-
18 and report its top-1 accuracy on ImageNet in Table 1.
We perform ablation either by replacing the color chan-
nel with the mean of the other two channels, or with the
mean of all three channels (i.e. a basic gray image).

Table 1: Top-1 accuracy of ResNet-18 trained on Ima-
geNet when different color channels are masked in the
validation set. The baseline accuracy is 69.68%

Mask channel w.: Mean of other channels Gray image

Red 56.50% 63.70%

Green 62.12% 66.57%

Blue 60.56% 64.93%

As evident in Table 1, ablating the blue channel indeed
has a higher impact on performance, compared with the
green channel. Moreover, ablating the red channel has
the highest impact, since it is strongly involved both in
the violet and in the orange PC extremes. These results
generalize to a variety of models as well as to CIFAR-
10. This illustrates the value of understanding the major
dimensions of variation in the pixel space.



2.2 Spatial Analysis

CV datasets usually contain annotations of various ob-
jects in their images, typically in the form of bounding
boxes or segmentation masks. Visualizing these boxes
and masks for an entire dataset is helpful to understand
how the corresponding objects are spatially distributed.
Figure 4 depicts the spatial distribution of three object

Figure 4: The spatial distribution of three object cate-
gories in the MS COCO dataset, obtained by aggregating
their masks.

categories in the MS COCO dataset [32]. Each plot ag-
gregates the mask images of dataset samples that contain
the corresponding object. The aggregation is performed
by resizing the mask images to 640 × 640 pixels, sum-
ming up the object pixels in these mask into an aggre-
gate image, and normalizing the resulting image to the
range [0, 255]. It is also possible to analyze further spa-
tial relationships in CV datasets, such as co-occurrence
and adjacency relationships between various categories
in semantic segmentation [54].

How useful is this analysis?

Analyzing the spatial distribution of object categories
helps uncover potential shortcomings of a CV dataset.
Figure 5 illustrates how the spatial distribution of
caravan category in CityScapes [9] varies significantly
between the training and validation sets. Likewise,
Gauen et al [17] show differences in how person images
are spatially distributed in seven popular datasets, which
helps evaluate transferability between them. The anal-
ysis can also help assessing whether popular data aug-
mentation methods are suited to mitigate any skewness
in the spatial distribution. For example, the commonly
used horizontal flipping helps create training sample that
contain a computer mouse both on the left side and on
the right side of the image. However, as evident in Fig-
ure 4, the samples remain predominantly in the lower
part of the image. Moreover, horizontal flipping might
negatively impact images with orientation-sensitive con-
tent such as written text [50].

To appreciate the impact of spatial distribution, we
present an example of a traffic light detector that was
shown to learn and overfit the spatial distribution of
traffic lights in the training set [2]. This distribution
is depicted in Figure 6a. Figure 6b depicts the detec-
tion score the the model computes a traffic light stimulus
placed in a blank image. The score is evidently higher
if the stimulus is present in a position that has a high

Figure 5: The spatial distribution of the caravan cate-
gory in two splits of the CityScapes dataset.

density of training samples. Such overfitting is possible
as convolutional networks are able to encode position in-
formation [25], with padding being a major source of this
information [27]. This insight helps inform the choices
of data augmentation and of the detection architecture.

Figure 6: The impact of spatial distribution on RCNN-
based small object detection. (a) The distribution of
traffic light bounding boxes in the BSTLD dataset [4].
(b) The prediction scores for a traffic light stimulus when
placed at various locations in a blank image, computed
via Faster RCNN. (Figure adapted from [2]).

2.3 Average Image Analysis

Averaging a collection of images offers a useful vi-
sual summary that helps detect various issues in CV
datasets [43]. Average images can also be used to com-
pare subsets of images of the same nature and semantics,
e.g., to trace how portrait photos change over time [19]
or to compare hand-drawings of the same object across



different cultures [34]. Interactive clustering exploration
is often helpful to select subsets that represent repre-
sentative manifestations or interesting outliers [34, 59].
Likewise, when computing average images of selected ob-
jects, it is helpful to group the individual images based
on the object pose, as illustrated in Figure 7.

Figure 7: Average images of the car category in PAS-
CAL VOC [14], computed for different poses (adapted
from https://cs.cmu.edu/~tmalisie/pascal).

How useful is this analysis?

Computing average images per class [51] can reveal vi-
sual cues in classification datasets that classifiers can use
as “shortcuts” instead of learning robust semantic fea-
tures. Analyzing these cues helps in designing dataset
augmentations that prevent models from using them. In
addition, the mean image of ImageNet was used to inves-
tigate the source of weight banding effects [42] in models
that use global average pooling [1]. The authors demon-
strate further applications of image averaging to analyze
and debug the internals of convolutional networks.

2.4 Metadata and Content-based Analysis

Google’s Know Your Data2 offers means to understand
datasets with the goal of improving data quality and mit-
igating bias. Users can analyze metadata about the im-
ages such as their aspect ratios and resolution, extracted
signals such as image quality and sharpness, or various
high-level features such as the presence of faces. Like-
wise, Google’s Facets3 offer a zoomable interface to ex-
plore large datasets using thumbnails, with several pos-
sibilities to split and arrange the data points into scatter
plots, based on their metadata.

It is often possible to analyze the geographic distribu-
tion of vision datasets based on available location infor-
mation in their metadata. Likewise, exploring datasets
based on their temporal information is useful to assess
their appropriateness for the target task. Such analy-
sis can account for several aspects of the time dimen-
sion such as the time of day, time of year, and overall

2http://knowyourdata.withgoogle.com
3http://pair-code.github.io/facets/

Figure 8: Examples of metadata summaries in Google’s
Know Your Data, extracted from three popular datasets.
Notice how OpenImages V4 [31] has the highest propor-
tion of images that contain faces.

recency of the samples. Metadata can sometimes be re-
covered using specialized techniques, e.g. for dating im-
ages [29,40] or approximating their geolocation [12,55].

How useful is this analysis?

Geolocation analysis helps assess the diversity of a
dataset and explore different manifestations of targeted
classes and features, in order to guide the curation and
labeling of representative datasets [10, 48, 54]. Likewise,
exploring datasets based on their temporal information
is useful to assess their appropriateness for the target
task. The REVISE tool [54] demonstrates a variety of
examples of how the above ideas can be applied to ana-
lyze various types of biases in vision datasets along three
dimensions: objects, attributes, and geography. Figure 9
shows an example of such analysis.

Figure 9: Content-based analysis of MS COCO using
the REVISE tool [54] focusing on intersectional gender
bias in scenes containing persons alongside other objects.

2.5 Analysis using Trained Models

The techniques presented so far can be applied directly
to datasets, without requiring a model trained on them.
When available, such models offer a lens into the dataset
that can reveal potential biases or deficiencies.

1A variety of analysis methods have been developed
to understand the features learned by CV models, such
as feature saliency in a given input [3, 46, 49], input

https://cs.cmu.edu/~tmalisie/pascal
http://knowyourdata.withgoogle.com
http://pair-code.github.io/facets/


Figure 10: The Shared Interest UI [6] showing how well
human annotations in the ISIC dataset [8] match salient
detection features.

optimization [37, 39, 57], and concept-based interpreta-
tion [18, 28]. While these techniques primarily focus on
analyzing model behavior, they were shown to be use-
ful for identifying dataset issues. For example dumbbell
images in ImageNet often contain arms [36], leading to
pictures of arms being classified as dumbbell. Likewise,
specialized saliency techniques developed for video recog-
nition models can show biases in video datasets [16].
Shared Interest [6] and Activation Atlas [7] enable sys-
tematic analysis of these issues on the dataset level.

Furthermore, various techniques use prediction results
as a proxy to analyze dataset properties. For example,
analyzing these results during training can reveal inher-
ent sample difficulty [20, 35]. Likewise, analyzing error
patterns in classification datasets using confusion matri-
ces helps reveal latent hierarchical structures that govern
their classes [5].

Finally, trained models can be used to compute em-
beddings that are suited to project the datasets into a
2D plot based on semantic features. Such a plot helps
identify potential patterns and outliers in the dataset,
especially when aided with interactive exploration.

How useful is this analysis?

Difficulty analysis reveals the dichotomous nature of var-
ious CV datasets [35]. For example, the majority of sam-
ples in ImageNet can either be correctly classified after
a few training epochs, or continue to be misclassified
throughout the training process. Such insights are very
helpful to understand the behavior of different learning
paradigms and architectures, and how they are impacted
by inherent issues in the training data. Likewise, com-
paring human annotations with feature attribution re-
sults (Figure 10) was shown useful in revealing ambigu-
ities and shortcoming of these annotations [6]. Finally,
visualizing latent hierarchical structures in classification
datasets helps reveal the properties of different groups
of classes, such as their reliance on color or orientation.

3 Discussion
Visual analysis offers distinctive opportunities to im-
prove our understanding of CV datasets. It can provide
insights into their properties that are not always obvi-
ous or well understood. The techniques presented focus
almost exclusively on image datasets. Here we discuss
opportunities for further research in the area.

Video, Point Cloud, 3D, and Keypoint Datasets
Generally, there is a lack of dataset-level visualizations
that are applicable to modalities in CV other than im-
ages. Nevertheless, many of the techniques we presented
can be extended to support these modalities. Hyvrinen
demonstrated how ICA helps understand spatiotempo-
ral features in image sequences [23]. Likewise, t-SNE
plots [53] are often used to visualize video embeddings in
order to analyze the separability and overlaps between
different classes [44, 52]. Dedicated visualization tech-
niques can be further designed to reveal structures and
patterns in non-image CV datasets based on the rich
nature of their data modalities.

Task-driven Visual Analysis Besides supporting
specific data modalities, the design of new visualization
techniques should also take into account the target CV
task. For example, image classification datasets are dif-
ferent in nature that image segmentation datasets. The
corresponding visualizations can hence assign visual pri-
macy in their designs to different facets, such as the class
hierarchy or the spatial distribution.

Visually Linking Model Results with Dataset
Properties Such an analysis can be useful to explain
model behavior and find a suitable mitigation for ob-
served shortcomings. Figure 6 demonstrates how the
spatial distribution of the training set dictates object
predictability at different locations.

Comparing Datasets and Subsets Thereof Such
comparisons have various applications, e.g., to assess-
ing domain suitability in transfer learning and analyzing
distribution shift [56]. We presented two simple exam-
ples of comparing specific features between two image
datasets (Figure 1) or between two splits of CityScapes
(Figure 5). Further techniques can be designed to vi-
sualize similarities and differences between datasets e.g.
by exposing the internals of similarity metrics.

4 Conclusion
Visualization is a powerful means for understanding CV
datasets. We presented a number of visualization tech-
niques that enable analyzing various pieces of informa-
tion in these datasets. These techniques support dataset-
level analysis to reveal latent patterns in the data and
help us understand its properties. For each technique, we
demonstrated example insights it can enable in popular
datasets. We also provided application scenarios of how
these insights help us understand the impact of dataset
properties on CV models. We finally explored avenues
for further research on visual dataset understanding, to-
wards robust and transparent CV.
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