
Proceedings of Machine Learning Research vol XX:1–27, 2019

Gaussian Process Optimization with Adaptive Sketching:
Scalable and No Regret

Daniele Calandriello DANIELE.CALANDRIELLO@IIT.IT
LCSL - Istituto Italiano di Tecnologia, Genova, Italy & MIT, Cambridge, USA

Luigi Carratino LUIGI.CARRATINO@DIBRIS.UNIGE.IT
UNIGE - Università degli Studi di Genova, Genova, Italy

Alessandro Lazaric LAZARIC@FB.COM
FAIR - Facebook AI Research, Paris, France

Michal Valko MICHAL.VALKO@INRIA.FR
INRIA Lille - Nord Europe, SequeL team, Lille, France

Lorenzo Rosasco LROSASCO@MIT.EDU

LCSL - Istituto Italiano di Tecnologia, Genova, Italy & MIT, Cambridge, USA
UNIGE - Università degli Studi di Genova, Genova, Italy

Abstract
Gaussian processes (GP) are a popular Bayesian approach for the optimization of black-box functions.
Despite their effectiveness in simple problems, GP-based algorithms hardly scale to complex high-
dimensional functions, as their per-iteration time and space cost is at least quadratic in the number
of dimensions d and iterations t. Given a set of A alternative to choose from, the overall runtime
O(t3A) quickly becomes prohibitive. In this paper, we introduce BKB (budgeted kernelized bandit),
a novel approximate GP algorithm for optimization under bandit feedback that achieves near-optimal
regret (and hence near-optimal convergence rate) with near-constant per-iteration complexity and no
assumption on the input space or covariance of the GP.

Combining a kernelized linear bandit algorithm (GP-UCB) with randomized matrix sketching
technique (i.e., leverage score sampling), we prove that selecting inducing points based on their
posterior variance gives an accurate low-rank approximation of the GP, preserving variance estimates
and confidence intervals. As a consequence, BKB does not suffer from variance starvation, an
important problem faced by many previous sparse GP approximations. Moreover, we show that our
procedure selects at most Õ(deff) points, where deff is the effective dimension of the explored space,
which is typically much smaller than both d and t. This greatly reduces the dimensionality of the
problem, thus leading to a O(TAd2eff) runtime and O(Adeff) space complexity.
Keywords: Sparse Gaussian Process Optimization; Kernelized Linear Bandit; Regret; Sketching;
Bayesian Optimization; Black Box Optimization; Variance Starvation

1. Introduction

Efficiently selecting the best alternative out of a set of alternatives is an important problem in
sequential decision making, with practical applications ranging from recommender systems (Li
et al., 2010), to experimental design (Robbins, 1952). It is also the main focus of the research in
bandits (Lattimore and Szepesvári) and Bayesian optimization (Mockus, 1989; Pelikan, 2005; Snoek
et al., 2012), that study optimization under bandit feedback. In this setting, a learning algorithm
sequentially interacts with a reward/utility function f . Over T interactions, the algorithm chooses a

c© 2019 D. Calandriello, L. Carratino, A. Lazaric, M. Valko & L. Rosasco.

BKB

point xt and it has only access to a noisy black-box evaluation of f at xt. The goal of the algorithm
is to minimize the cumulative regret, which compares the reward accumulated at the points selected
over time (i.e.,

∑
t f(xt)) to the reward obtained by repeatedly selecting the optimum of the function

(i.e., T maxx f(x)). In this paper we focus on the Gaussian process optimization approach to this
problem. In particular, we study the GP-UCB algorithm first introduced by Srinivas et al. (2010).

Starting from a Gaussian process prior over f , GP-UCB alternates between evaluating the
function, and using the evaluations to build a posterior of f . This posterior is composed by a mean
function µ that estimates the value of f , and a variance function σ that captures the uncertainty of µ.
These two quantities are combined in a single upper confidence bound (UCB) that drives the selection
of the evaluation points, and trades off between evaluating high-reward points (i.e., exploitation) and
testing possibly sub-optimal points to reduce the uncertainty on the function (i.e., exploration). While
other approaches to select promising points exist, such as expected improvement (EI) and maximum
probability of improvement, it is not known if they can achieve low regret. The performance of
GP-UCB has been extensively studied by (Srinivas et al., 2010; Chowdhury and Gopalan, 2017)
and it provably achieves low regret both in a Bayesian and non-Bayesian framework. However,
the main limiting factor to its applicability is its computational cost. When choosing between A
alternatives, GP-UCB requires Ω(At2) time/space to select each new point, and therefore does not
scale to complex function that require many iterations to be optimized. Several approximations of
GP-UCB have been suggested before (Quinonero-Candela et al., 2007; Liu et al., 2018):
Inducing points: The GP can be restricted to lie in the range of a small subset of inducing points.
The subset should cover well the whole space for accuracy, but also be as small as possible for
efficiency. Several methods, referred to as sparse GPs, have been proposed to select the inducing
points and an approximation based on the subset. Popular instances of this approach are the subset of
regressors (SoR, Wahba, 1990) and the deterministic training conditional (DTC, Seeger et al., 2003).
While these methods are simple to interpret and efficient, they do not come with regret guarantees.
Moreover, when the subset does not cover the space well, they suffer from variance starvation Wang
et al. (2018), as they underestimate the variance of points far away from the inducing points.
Random Fourier features: Another approach is to use explicit feature expansions to approximate
the GP covariance function, and embed the points in a low-dimensional space, usually exploiting
some variation of Fourier expansions (Rahimi and Recht, 2007). Among these methods, Mutny and
Krause (2018) recently showed that discretizing the posterior on a fine grid of quadrature Fourier
features (QFF) incurs a negligible approximation error. This is sufficient, among other things, to
prove that the maximum of the approximate posterior can be efficiently found, and that it is accurate
enough that Thompson sampling with quadratures provably achieves low regret. However this
approach does not extend to non-stationary kernels, and although its dependency on t is small, the
approximation and posterior maximization procedure scales exponentially with the input dimension.
Variational inference: another approach is to replace the true GP likelihood with a variational
approximation that can be optimized efficiently. Although recent methods provide guarantees on the
approximate posterior mean and variance (Huggins et al., 2019), these guarantees only apply to GP
regression and not to the harder optimization setting.
Linear case: in the linear bandit literature, several methods to reduce the complexity of algorithms
such as LinUCB have been proposed. Kuzborskij et al. (2019) uses the Frequent Directions (FD,
Ghashami et al., 2016) to project the design matrix data to a smaller subspace. Unfortunately, the size
of the subspace has to be specified in advance and when the size is not sufficiently large, the method

2

BKB

can suffer linear regret. Prior to the FD approach, CBRAP (Yu et al., 2017) used random projections
instead, but faced similar issues. This turns out to be a fundamental weakness of all approach that
do not adapt the actual size of the space defined by the sequence of points selected by the learning
algorithm. Indeed, Ghosh et al. (2017) showed a lower bound for the linear case that shows that as
soon as one single arm is misspecified we can suffer linear regret.

1.1. Contributions

In this paper, we show a way to adapt the size of the projected space online and devise an algorithm,
BKB (budgeted kernel bandit), that achieves near-optimal regret guarantees with a computational
complexity that can be drastically smaller than GP-UCB. This is achieved without assumptions on
the dimensionality of the input or on the kernel function. BKB leverages several well-known tools
from the literature: a DTC approximation of the posterior variance, based on inducing points, and
a confidence interval construction based on state-of-the-art self-normalized concentration inequali-
ties (Abbasi-Yadkori et al., 2011). It also introduces two novel tools: a selection strategy to select
inducing points based on ridge leverage score (RLS) sampling Alaoui and Mahoney (2015) that is
provably accurate, and a novel approximate confidence interval for the function that is both nearly as
accurate as the one of GP-UCB, but also efficient to compute.

Ridge leverage score sampling was originally introduced for randomized kernel matrix approxi-
mation (Alaoui and Mahoney, 2015). In the context of GPs, RLS correspond to the posterior variance
of a point, which allows adapting algorithms and their guarantees from the RLS sampling literature
to the GP setting. This solves two critical problems in sparse GP and linear bandit approximations.
First, BKB constructs estimates of the variance that are provably accurate, i.e. it does not suffer from
variance starvation, which results in provably accurate confidence bounds as well. The only method
with comparable guarantees, Thompson sampling with quadrature FF (Mutny and Krause, 2018),
only applies to stationary kernels, and only in extremely low dimension. Moreover our approximation
guarantees are qualitatively different, as they do not require a corresponding uniform approximation
bound on the GP.
Second, BKB adaptively chooses the size of the inducing point set based on the effective dimension
deff of the problem, also known as degrees of freedom of the model. This is crucial to achieve
low regret, since fixed approximation schemes may suffer linear regret. Moreover, in a problem
with A arms, using a set of O(deff) inducing points results in an algorithm with O(Ad2eff) per-step
runtime and O(Adeff) space, a significant improvement over the O(At2) time and O(At) space cost
of GP-UCB.

Finally, while in our work we only address kernelized (GP) bandits, our work could be extended
to more complex online learning problems, such as to recent advances in kernelized reinforcement
learning (Chowdhury and Gopalan, 2019). Moreover inducing point methods have clear model
interpretability, and our analysis provides insight both from a bandit and Bayesian optimization
perspective, making it applicable to a large amount of downstream tasks.

2. Background

Notation. We use lower-case letters a for scalars, lower-case bold letters a for vectors, and upper-
case bold letters A for matrices and operators, where [A]ij denotes its element (i, j). We denote by
‖x‖2A = xTAx the norm with metric A, and ‖x‖ = ‖x‖I with I the identity. Finally, we denote the
first T integers as [T] := {1, . . . , T}.

3

BKB

Online optimization under bandit feedback. Let f : A → R be a reward function that we wish
to optimize over a set of decisions A, also called actions or arms. For simplicity, we assume that
A = {xi}Ai=1 is a fixed finite set of A vectors in Rd. We discuss how to relax these assumptions in
Section 5. In optimization under bandit feedback, a learner aims to optimize f through a sequence
of interactions. At each step t ∈ [T] the learner 1) chooses an arm xt ∈ A, 2) receives reward
yt = f(xt) + ηt, where ηt is a zero-mean noise, 3) updates its model of the problem.

The goal of the learner is to minimize its cumulative regret RT =
∑T

t=1 f(x∗)− f(xt) w.r.t. the
best1 arm x∗, where x∗ = arg maxxi∈A f(xi). In particular, the objective of a no-regret algorithm
is to have RT /T go to zero as T grows as fast as possible. We recall that the regret is strictly related
to the convergence rate and the optimization performance. In fact, let xT be an arm chosen at random
from the sequence of arms (x1, . . . , xT) selected by the learner, then f(x∗)− E[f(xT)] ≤ RT /T .

Gaussian process optimization and GP-UCB

A popular no-regret algorithm for optimization under bandit feedback is GP-UCB, introduced by
Srinivas et al. (2010) in the context of Gaussian process optimization. We first introduce the formal
definition of a Gaussian process, and then briefly present the GP-UCB algorithm.
A Gaussian process GP (µ, k) (Rasmussen and Williams, 2006) is a generalization of the Gaussian
distribution to a space of functions and it is defined by a mean function µ(·) and covariance function
k(·, ·). W.l.o.g. we consider zero-mean GP (0, k) priors and bounded covariance k(xi,xi) ≤ κ2 for
all xi ∈ A. An important property of Gaussian processes is that if we combine a prior f ∼ GP (0, k),
and assume the observation noise is zero-mean Gaussian (i.e., ηt ∼ N (0, ξ2)), then the posterior
distribution of f conditioned on a set of observations {(xs, ys)}ts=1 is also a GP. More precisely, let
Xt = [x1, . . . ,xt]

T ∈ Rt×d be the matrix with all arms selected so far and yt = [y1, . . . , yt]
T be

the corresponding observations, then the posterior is still a GP and the mean and variance of the
function at a test point x are defined as

µt(x | Xt,yt)=kt(x)T(Kt + λI)−1yt, (1)

σ2t (x | Xt)=k(x,x)− kt(x)T(Kt + λI)−1kt(x), (2)

where λ = ξ2, Kt ∈ Rt×t is the matrix [Kt]i,j = k(xi,xj) constructed from all pairs xi,xj in Xt,
and kt(x) = [k(x1,x), . . . , k(xt,x)]T. Notice that kt(x) can be interpreted as an embedding of an
arm x “supported” over the arms x1, . . . ,xT observed so far.
The GP-UCB algorithm is a Bayesian optimization algorithm that uses a Gaussian process GP (0, k)
as a prior for f . Inspired by the optimism-in-face-of-uncertainty principle, at each time step t,
GP-UCB uses the posterior GP to compute the mean and variance of an arm xi and obtain the score

ut(xi) = µt(xi) + βtσt(xi), (3)

where we use the short-hand notation µt(·) = µ(· | Xt,yt) and σt(·) = σ(· | Xt). Finally, GP-UCB
chooses the maximizer xt+1 = arg maxxi∈A ut(xi) as the next arm to evaluate. According to the
score ut, an arm x is likely to be selected if it has high mean reward µt and high variance σt, i.e., its
estimated reward µt(x) is very uncertain. As a result, selecting the arm xt+1 with the largest score
trades off between collecting (estimated) large reward (i.e., exploitation) and improving the accuracy
of the posterior (i.e., exploration). The parameter βt balances between these two objectives and it

1. We assume a consistent and arbitrary tie-breaking strategy.

4

BKB

must be properly tuned to guarantee low regret. Srinivas et al. (2010) proposes different approaches
to tune βt for different assumptions on f and A.

While GP-UCB is interpretable, simple to implement and provably achieves low regret, it is
computationally expensive. In particular, computing σt(x) has a complexity at least Ω(t2) for the
matrix-vector product (Kt−1 + ξ2I)−1kt−1(x). Multiplying this for T iterations and A arms results
in an overall O(AT 3) computational cost, which does not scale to large number of iterations T .

3. Budgeted Kernel Bandits

In this section, we introduce the BKB (budgeted kernel bandit) algorithm, a novel efficient approxi-
mation of GP-UCB, and we provide guarantees for its computational complexity. The analysis in
Section 4 shows that BKB can be tuned to significantly reduce the complexity of GP-UCB with a
negligible impact on the regret. We begin by introducing the two major contributions of this section:
an approximation of the GP-UCB scores “supported” only by a small subset St of inducing points,
and a method to incrementally and adaptively construct an accurate subset St.

3.1. The algorithm

The main complexity bottleneck to compute the scores in Equation 3 is due to the fact that after t
steps, the posterior GP is “supported” on all t previously seen arms. As a consequence, evaluating
Equations 1 and 2 requires computing a t dimensional vector kt(x) and t× t matrix Kt respectively.
To avoid this dependency we restrict both kt and Kt to be supported on a subset St of m arms. This
approach is part of the sparse Gaussian process approximation framework (Quinonero-Candela et al.,
2007), or equivalently a linear bandit constrained on a subspace (Kuzborskij et al., 2019).

Approximated GP-UCB scores. Consider a subset of arm St = {xi}mi=1 and denote by XSt ∈
Rm×d the matrix with all arms in St as rows. Let KSt ∈ Rm×m be the matrix constructed by evalu-
ating the covariance k between any two pair of arms in St and kSt(x) = [k(x1,x), . . . , k(xm,x)]T.
The Nyström embedding zt(·) associated with subset St is defined as the mapping2

zt(·) =
(
K

1/2
St

)+
kSt(·) : Rd → Rm,

where (·)+ indicates the pseudo-inverse. We denote with Zt(Xt) = [zt(x1), . . . , zt(xt)]
T ∈ Rt×m

the associated matrix of points and we define Vt = Zt(Xt)
TZt(Xt) + λI. Then, we approximate

the posterior mean and variance of the function on an arm xi as

µ̃t(xi) =zt(xi)
TV−1t Zt(xi)

Tyt

σ̃2t (xi) =
1

λ

(
k(xi,xi)− zt(xi)

TZt(Xt)
TZt(Xt)V

−1
t zt(xi)

)
.

As a result, the approximate scores are obtained as

ũt(xi) = µ̃t(xi) + β̃tσ̃t(xi), (4)

where β̃t is appropriately tuned to achieve small regret in the theoretical analysis of Section 4. Finally,
at each time step t, BKB selects arm x̃t+1 = arg maxxi∈A ũt(xi).

2. Recall that in the exact version, kt(x) can be seen as an embedding of any arm x into the space induced by all the t
arms selected so far, i.e. using all selected points as inducing points.

5

BKB

Notice that in general, µ̃t and σ̃t do not correspond to any GP posterior. In fact, if we were
simply replacing the k(xi,xi) in the expression of σ̃2t (xi) by its value in the Nyström embedding, i.e.,
zt(xi)

Tzt(xi), then we would recover a classical sparse GP approximations, the subset of regressors.
Using zt(xi)

Tzt(xi) is known to cause variance starvation, i.e., it can severely underestimate the
variance of a test point xi when it is far from the points in St. Our formulation of σ̃t is known in
Bayesian literature as the deterministic training conditional (DTC), where it is used as a heuristic to
prevent variance starvation. However, DTC does not correspond to a GP since it violates consistency
(Quinonero-Candela et al., 2007). In this work, we justify this approach rigorously, showing that it is
crucial to prove approximation guarantees necessary both for the optimization process and for the
construction of the set of inducing points.

Algorithm 1: BKB
Data: Arm set A, q, {βt}Tt=1

Result: Arm choices DT = {(x̃t, yt)}
Select uniformly at random x1 and observe y1;
Initialize S1 = {x1};
for t = {1, . . . , T − 1} do

Compute µ̃t(xi) and σ̃2t (xi) for all xi ∈ A;
Select x̃t+1 = arg maxxi∈A ũt(xi) (Eq. 4);
for i = {1, . . . , t+ 1} do

Set p̃t+1,i = q · σ̃2t (x̃i);
Draw qt+1,i ∼ Bernoulli(p̃t+1,i);
If qt+1 = 1 include x̃i in St+1;

end
end

Choosing the inducing points. A critical
aspect to effectively keep the complexity of
BKB low while preserving regret guarantees
is to carefully choose the inducing points to
include in the subset St. As the complexity
of computing ũt scales with the size m of St,
a smaller set gives a faster algorithm. Con-
versely, the difference between µ̃t and σ̃t and
their exact counterparts depends on the ac-
curacy of the embedding zt, which increases
with the size of the set St. Moreover, even
for a fixed m, the quality of the embedding
greatly depends on which inducing points are
included. For instance, selecting the same arm
as inducing point twice, or two co-linear arms, does not improve accuracy as the embedding space
does not change. Finally, we need to take into account two important aspects of sequential optimiza-
tion when choosing St. First, we need to focus our approximation more on regions of A that are
relevant to the optimization problem (i.e., high-reward arms). Second, as these regions change over
time, we need to keep adapting the composition and size of St accordingly.

Taking into consideration these objectives, we choose to construct St by randomly subsampling
only out of the set of arms X̃t evaluated so far. In particular, arms are selected for inclusion in St with
a probability proportional to their posterior variance σt at step t. We report the selection procedure in
Algorithm 1, with the complete BKB algorithm.

We initialize S1 = {x̃1} by selecting an arm uniformly at random. At each step t, after selecting
x̃t+1, we must re-generate St to reflect the changes in X̃t+1. Ideally, we would sample each arm in
X̃t+1 proportionally to σ2t+1, but this would be too computationally expensive. For efficiency we
first approximate σ2t+1 with σ2t . This is equivalent to ignoring the last arm and does not significantly
impact the accuracy. We can then replace σ2t with σ̃2t that was already efficiently computed when
constructing Equation 4. Finally, given a parameter q ≥ 1, we set our approximate inclusion
probability as p̃t+1,i = qσ̃2t (x̃s). The q parameter is used to increase the inclusion probability in
order to boost the overall success probability of the approximation procedure at the expense of a
small increase in the size of St+1. Given p̃t+1,i, we start from an empty St+1 and iterate over all x̃i
for i ∈ [t+ 1] drawing qt+1,i from a Bernoulli distribution with probability p̃t+1,i. If qt+1,i = 1, x̃i
is included in St+1.

6

BKB

0.0 0.2 0.4 0.6 0.8 1.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

f(
x
)

f

0.0 0.2 0.4 0.6 0.8 1.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

f(
x
)

f

0.0 0.2 0.4 0.6 0.8 1.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

f(
x
)

f

Fig. 1: We simulate a GP on [0, 1] ∈ R using Gaussian kernel with bandwidth σ2 = 100. We draw a f from
the GP, and give to BKB t = {6, 63, 215} evaluations sampled uniformly in [0, 0.5]. We plot f , and µ̃t±3σ̃t.

Notice that while constructing St based on σ2t is a common heuristic in the sparse GP literature,
it has not been yet rigorously justified. In the next section, we show that this approach is equivalent
to λ-ridge leverage score (RLS) sampling (Alaoui and Mahoney, 2015), a well studied tool in
randomized linear algebra. We leverage the known results from this field to prove both accuracy and
efficiency guarantees for our selection procedure.

3.2. Complexity analysis

Denote with mt = |St| the size of the set St at step t. At each step, we first compute the embedding
zt(xi) of all arms in O(Am2

t + m3
t) time, which corresponds to one inversion of K

1/2
St and the

matrix-vector product specific to each arm. We then rebuild the matrix Vt from scratch using all
the arms observed so far. In general, it is sufficient to record the counters of the arms pulled so far,
rather than the full list of arms, so that Vt can be constructed in O(min{t, A}m2

t) time. Then the
inverse V−1t is computed in O(m3

t) time. We can now efficiently compute µ̃t, σ̃t, and ũt for all
arms in O(Am2

t) reusing the embeddings and V−1t . Finally, computing all qt+1,i and St+1 takes
O(min{t+ 1, A}) using the estimated variances σ̃2t . As a result, the per-step complexity is of order
O
(
(A+ min{t, A})m2

T

)
.3 Space-wise, we only need to store the embedded arms and Vt matrix,

which takes at most O(AmT) space.

Bounding the size of ST . The size mt of St can be expressed using the qt,i r.v. as the sum
mt =

∑t
i=1 qt,i. In order to provide a bound on the total number of inducing points, which directly

determines the computational complexity of BKB, we go through three major steps.
The first is to show that w.h.p., mt is close to the sum

∑t
i=1 p̃t,i =

∑t
i=1 qσ̃

2
t (x̃i), i.e., close to the

sum of the probabilities we used to sample each qt,i. However the various qt,i are not independent,
and each p̃t,i is itself a r.v. Nonetheless all qt,i are conditionally independent given the previous t− 1
steps, and this is sufficient to obtain the result.
The second and the most complex step is to guarantee that the random sum

∑t
i=1 σ̃

2
t (x̃i) is close to∑t

i=1 σ
2
t (x̃i), and at a lower level that each individual estimate σ̃2t (·) is close to σ2t (·). To achieve

this we exploit the connection between ridge leverage scores and posterior variance σ2t . In particular,
we show that the variance estimator σ̃2t (·) used by BKB is a variation of the RLS estimator recently
introduced by Calandriello et al. (2017b) for RLS sampling. As a consequence, we can transfer the
strong accuracy and size guarantees of RLS sampling to our optimization setting (see Appendix C).
Note that anchoring the probabilities to the RLS (i.e. the sum of the posterior variances) means that

3. Notice that mt ≤ min{t, a} and thus the complexity term O(m3
t) is absorbed in the other terms.

7

BKB

the size of St naturally follows the effective dimension of the arms pulled so far. This strikes an
adaptive balance between decreasing each individual probability to avoid St growing too large, while
at the same time automatically increasing the effective degrees of freedom of the GP approximation
when necessary.
The first two steps lead to mt ≈

∑t
i=1 σ

2
i (x̃i), for which we need to derive a more explicit bound.

In the GP literature, this quantity is bounded using the maximal information gain γT after T rounds.
Denote with XA ∈ RA×d the matrix with all arms as rows, with D a subset of these rows, potentially
with duplicates, and with KD the associated kernel matrix. Then, Srinivas et al. (2010) define

γT = max
D⊂A:|D|=T

1
2 log det(KD/λ+ I),

and show that
∑t

i=1 σ
2
i (x̃i) ≤ γt, and that γT itself can be bounded for specific A and kernel

functions, e.g., γT ≤ O(log(T)d+1) for Gaussian kernels. Using the equivalence between RLS and
posterior variance σ2t , we can also relate the posterior variance σ2t (x̃i) of the evaluated arms to the
so-called GP’s effective dimension deff or degrees of freedom

deff(λ, X̃T) =
∑t

i=1
σ2t (x̃i) = Tr(KT (KT + λI)−1), (5)

using the following inequality by Calandriello et al. (2017a)

log det(KT /λ+ I) ≤ Tr(KT (KT + λI)−1)
(

1 + log
(
‖KT ‖
λ + 1

))
. (6)

We will use both RLS and deff to describe the behaviour of BKB’s selection procedure.
Finally, we obtain the main result of this section.

Theorem 1 For a desired 0 < ε < 1, 0 < δ < 1, let α = (1 + ε)/(1 − ε). If we run BKB with
q ≥ 6α log(4T/δ)/ε2 then with probability 1− δ, for all t ∈ [T] and for all x ∈ A we have

σ2t (x)/α ≤ σ̃2t (x) ≤ ασ2t (x) and |St| ≤ 3(1 + κ2/λ)αqdeff(λ, X̃t).

Computational complexity. We already showed that BKB’s implementation with Nyström embed-
ding required O(T (A+ min{t, A})m3

T) time and O(AmT) space. Combining this with Theorem 1
and the bound mT ≤ Õ(deff), we obtain a Õ(TAd2eff + min{t, A})d3eff) time complexity. Whenever
deff � T and T � A this is essentially a quadratic O(T 2) runtime, a large improvement over the
quartic O(T 4) ≤ O(T 3A) runtime of GP-UCB.
Tuning q. Note that although q must satisfy the condition reported in Theorem 1 for the result to
hold, it is quite robust to uncertainty on the desired horizon T . In particular, the bound holds for any
ε > 0, and even if we continue updating ST after the T -th step, the bound still holds by implicitly
increasing the parameter ε. Alternatively, after the T -th iteration the user can suspend the algorithm,
increase q to suit the new desired horizon, and re-run only the subset selection subroutine on the
arms selected so far.
Avoiding variance starvation. Another important consequence of Theorem 1 is that BKB’s vari-
ance estimate are always close to the exact one up to a small constant factor. To the best of our
knowledge, it makes BKB the first efficient and general GP algorithm that provably avoids variance
starvation, which can be caused by two sources of error. The first source is the degeneracy, i.e.
low-rankness, of the GP approximation, which causes the estimate to grow over-confident when the

8

BKB

number of observed points grows and exceeds the degrees of freedom of the GP. BKB can adaptively
choose its degrees of freedom as the size of St scales with the effective dimension. The second
source of error arises when a point is far away from St. Our use of a DTC variance estimator avoids
under-estimation before we update the subset St. Afterward, we can use guarantees on the quality of
St to guarantee that we do not over-estimate the variance too much, exploiting a similar approach
used to guarantee accuracy in RLS estimation. Both problems, and BKB’s accuracy, are highlighted
in Figure 1 using a benchmark experiment proposed by Wang et al. (2018).
Incremental dictionary update. At each step t, BKB recomputes the dictionary St+1 from scratch
by sampling each of the arms pulled so far with a suitable probability p̃t+1,i. A more efficient variant
would be to build St+1 by adding the new point xt+1 with probability p̃t+1,t+1 and including the
points in St with probability p̃t+1,i/p̃t,i. This strategy is often used in the streaming setting to avoid
storing all points observed so far and incrementally update the dictionary (see e.g., Calandriello et al.,
2017b). Nonetheless, the stream of points, although arbitrary, is assumed to be generated indepen-
dently from the dictionary itself. On the other hand, in our bandit setting, the points x̃1, x̃2, . . . are
actually chosen by the learning algorithm depending on the dictionaries built over time, thus building
a strong dependency between the stream of points and the dictionary itself. How to analyze such
dependency and whether the accuracy of the inducing points is preserved in this case remains as
an open question. Finally, notice that despite being more elegant and efficient, such incremental
dictionary update would not significantly reduce the computational complexity, since computing the
posterior variance for each arm would still dominate the overall runtime.

4. Regret Analysis

We are now ready to present the second main contribution of this paper, a bound on the regret achieved
by BKB. To prove our result we additionally assume that the reward function f has bounded norm,
i.e., ‖f‖2H = 〈f, f〉 <∞. We use an upper-bound ‖f‖H ≤ F to properly tune β̃t to the “range” of
the reward. If F is not known in advance, standard guess-and-double techniques can be applied.

Theorem 2 Assume ‖f‖H ≤ F < ∞. For any desired 0 < ε < 1, 0 < δ < 1, 0 < λ, let
α = (1 + ε)/(1− ε) and q ≥ 6α log(4T/δ)/ε2. If we run BKB with

β̃t = 2ξ

√
α log(κ2t)

(∑t

s=1
σ̃2t (x̃s)

)
+ log(1/δ) +

(
1 + 1√

1−ε

)√
λF,

then, with prob. 1− δ, BKB’s regret RT is bounded by

RT ≤2(2α)3/2
√
T

(
ξdeff(λ, X̃T) log(κ2T) +

√
λF 2deff(λ, X̃T) log(κ2T) + ξ log(1/δ)

)
.

Theorem 2 shows that BKB achieves exactly the same regret as (exact) GP-UCB up to small α
constant and log(κ2T) multiplicative factor.4 For instance, setting ε = 1/2 results in a bound only
3 log(T) times larger than GP-UCB. At the same time, the choice ε = 1/2 only accounts for a
constant factor 12 in the per-step computational complexity, which is still dramatically reduced
from t2A to d2effA. Note also that even if we send ε to 0, in the worst case we will include all

4. Here we derive a frequentist regret bound and thus we compare with the result of Chowdhury and Gopalan (2017)
rather than the original Bayesian analysis of Srinivas et al. (2010).

9

BKB

arms selected so far in St, i.e. St = {X̃t}. Therefore even in this case BKB’s runtime does not
grow unbounded, but BKB simply transform back into exact GP-UCB. Moreover, it is easy to
show that deff(λ, X̃T) ≤ log det(KT /λ+ I) (see Proposition 5 in the appendix), so any bound on
log det(KT /λ+ I) available for GP-UCB can be directly applied to BKB. This means that up to an

extra log(T) factor we also match GP-UCB’s Õ(log(T)2d) rate for Gaussian kernel, Õ(T
1
2

2ν+3d2

2ν+d2)
rate for Matérn kernel, and Õ(d

√
T) for linear kernel. While these bounds are not minimax optimal,

they closely follow the lower bounds derived in Scarlett et al. (2017). On the other hand, in the case
of linear kernel (i.e., the linear bandit problem) we match the lower bound of Dani et al. (2008) up to
logarithmic factors.

Another interesting aspect of BKB is that computing the trade-off parameter β̃t can be done
efficiently. Previous methods bounded this quantity with a loose (deterministic) upper bound (e.g.,
O(log(T)d) for Gaussian kernels) to avoid the large cost of computing log det(KT /λ+ I). In our
β̃t, we bound the log det by deff, which is then bounded by

∑t
s=1 σ̃

2
t (xs) (see Thm. 1), where all σ̃2t

are already efficiently computed at each step. While this is up to log(t) larger than the exact log det,
it is still data adaptive and much smaller than the worst case upper bounds.

This regret guarantee is crucially achieved without requiring an increasing accuracy in our
approximation. One would expect that to obtain a sublinear regret the error induced by the approx-
imation should decrease as 1/T . Instead, in BKB the constants ε and λ that govern the accuracy
level are fixed and thus it is not possible to guarantee that µ̃t will ever get close to µt everywhere.
Adaptivity is key here: we can afford the same approximation level at every step because accuracy
is actually increased only on a specific part of the arm set. For example, if a suboptimal arm is
selected too often due to bad approximation, it will be eventually included in St. After the inclusion,
the approximation accuracy in the region of the suboptimal arm increases, and it would not be
selected anymore. As the set of inducing points is updated fast enough, the impact of inaccurate
approximations is limited in time, thus preventing large regret to accumulate. Note that this is a
significant divergence from existing results. In particular approximation bounds that are uniformly
accurate for all xi ∈ A, such as those obtained with Quadrature FF (Mutny and Krause, 2018), rely
on packing arguments. Due to the nature of packing, this usually causes the runtime or regret to scale
exponentially in the input dimension d, and requires the kernel k to posses specific structure, e.g. to
be statonary. Our new analysis avoids both of these problem.

Finally, we point out that the adaptivity of BKB allows drawing an interesting connection
between learning and computational complexity. In fact, both the regret and the computation of
BKB scale with the log-determinant and effective dimension of KT , which is related to the effective
dimension of the sequence of arms selected over time. As a result, if the problem is difficult from a
learning point of view (i.e., the regret is large because of large log-determinant), then BKB automati-
cally adapts the set St by including many more inducing points to guarantee the level of accuracy
needed to solve the problem. Conversely, if the problem is simple (i.e., small regret), then BKB can
greatly reduce the size of St and achieve the derived level of accuracy.

4.1. Proof sketch

We build on the analysis of GP-UCB by Chowdhury and Gopalan (2017). Their analysis relies on a
confidence interval formulation of GP-UCB that is more conveniently expressed using an explicit
feature-based representation of the GP. For any GP with covariance k, there is a corresponding RKHS
H with k as its kernel function. Furthermore, any kernel function k is associated to a non-linear

10

BKB

feature map φ(·) : Rd → H such that k(x,x′) = φ(x′)Tφ(x′). As a result, any reward function
f ∈ H can be written as f(x) = φ(x)Tw∗, where w∗ ∈ H.

Confidence interval view of GP-UCB. Let Φ(Xt) = [φ(x1), . . . ,φ(xt)]
T be the matrix Xt

after the application of φ(·) to each row. The regularized design matrix is then defined as At =
Φ(Xt)

TΦ(Xt) + λI, while the regularized least-squares estimate is computed as

ŵt = arg min
w∈H

∑t

i=1
(yi − φ(xi)

Tw)2 + λ‖w‖22 = A−1t Φ(Xt)
Tyt.

We define the confidence interval Ct as the ellipsoid induced by At with center ŵt and radius βt

Ct = {w : ‖w − ŵt‖At ≤ βt}, βt = λ1/2F +R
√

2(log det(At/λ) + log(1/δ), (7)

where the radius βt is such that w∗ ∈ Ct w.h.p. (Chowdhury and Gopalan, 2017). Finally, using
Lagrange multipliers we can reformulate the GP-UCB scores as

ut(xi) = max
w∈Ct

φ(xi)
Tw =

µt(xi)

φ(xi)
Tŵt +βt

σt(xi)√
φ(xi)TA

−1
t φ(xi). (8)

Approximating the confidence ellipsoid. Let us focus now on the subset of arm St = {xi}mi=1

chosen by BKB at each step, and denote by XSt ∈ Rm×d the matrix with all arms in St as rows.
We denote by H̃t = Im(Φ(XSt)) the smaller m-rank RKHS spanned by Φ(XSt), and by Pt the
symmetric orthogonal projection operator on H̃t. We can now define an approximate feature map
φ̃t(·) = Ptφ(·) : Rd → H̃t and associated approximations of At and ŵt

Ãt = Φ̃t(Xt)
TΦ̃t(Xt) + λI (9)

w̃t = arg min
w∈H

t∑
i=1

(yi − φ̃(xi)
Tw)2 + λ‖w‖22 = Ã−1t Φ̃t(Xt)

Tyt. (10)

This leads to an approximate confidence ellipsoid C̃t =
{

w : ‖w − w̃t‖Ãt
≤ β̃t

}
.

A subtle element in these definitions is that while Φ̃t(Xt)
TΦ̃t(Xt) and w̃t are now restricted to H̃t,

the identity operator λI in the regularization of Ãt still acts over the wholeH, and therefore Ãt does
not belong to H̃t and remains full-rank and invertible. This immediately leads to using k(xi,xi) in
the definition of σ̃ in Eq. 4, instead of the its approximate version using the Nyström embeddings.

Bounding the regret. To find an appropriate β̃t we follow an approach similar to Abbasi-Yadkori
et al. (2011). Exploiting the relationship yt = φ̃(x̃t)

Tw∗ + ηt, we bound

‖w∗ − w̃t‖2Ãt
≤

(a)

λ1/2‖w∗‖+

(b)

‖Φ̃t(Xt)ηt‖Ã−1
t

+

(c)

‖Φ(Xt)
T‖I−Pt · ‖w∗‖ .

Both (a) and (b) are present in GP-UCB and OFUL’s analysis. Term (a) is due to the bias introduced
in the least-square estimator w̃t by the regularization λ. Term (b) is due to the noisy in the reward
observations. Note that the same term (b) appears in GP-UCB’s analysis as ‖Φ(Xt)ηt‖A−1

t
and

it is bounded by log det(At/λ) using self-normalizing concentration inequalities Chowdhury and
Gopalan (2017). However our ‖Φ̃t(Xt)ηt‖Ã−1

t
is a more complex object, since the projection Pt

11

BKB

contained in Φ̃t(Xt) = PtΦ(Xt) depends on the whole process up to time time t, and therefore
Φ̃t(Xt) also depends on the whole process, losing its martingale structure. To avoid this, we use
Sylvester’s identity and the projection operator Pt to bound

log det(Ãt/λ) = log det
(

Φ(Xt)PtΦ(Xt)T

λ + I
)
≤ log det

(
Φ(Xt)Φ(Xt)T

λ + I
)

= log det(At/λ).

In other words, restricting the problem to H̃t acts as a regularization and reduces the variance of
the martingale. Unfortunately, log det(At/λ) is too expensive to compute, so we first bound it with
deff(λ, X̃t) log(κ2t), and then we bound deff(λ, X̃t) ≤ α

∑t
s=1 σ̃

2
t (xs) (Theorem 1), which can be

computed efficiently. Finally, a new bias term (c) appears. Combining Theorem 1 with results from
Calandriello and Rosasco (2018) on a projection Pt obtained using RLSs sampling we show that

I−P � λ

1− ε
A−1t .

The combination of (a), (b), and (c) finally leads to the definition of β̃t and the final regret bound

RT ≤
√
β̃T

√∑T
t=1φ(xt)TÃ

−1
t φ(xt). To conclude the proof we bound

∑T
t=1φ(xt)

TÃ−1t φ(xt)
with the following corollary to Theorem 1.

Corollary 3 Under the same conditions as Theorem 2, for all t ∈ T we have At/α � Ãt � αAt.

Remarks. The novel bound ‖Φ(Xt)
T‖I−Pt ≤ λ

1−ε‖Φ(Xt)
T‖A−1

t
has a crucial role in controlling

the bias due to the projection Pt. Note that the second term measures the error with the same metric
A−1t used by the variance martingale. In other words, the bias introduced by BKB’s approximation
can be seen as a self-normalizing bias. It is larger along directions that have been sampled less
frequently, and smaller along directions correlated with arms selected often (e.g., the optimal arm).
Our analysis bears some similarity with the one recently and independently developed by Kuzborskij
et al. (2019). Nonetheless, our proof improves their result along two dimensions. First, we consider
the more general (and challenging) GP optimization setting. Second, we do not fix the rank of our
approximation in advance. While their analysis also exploits a self-normalized bias argument, this
applies only to the k largest components. If the problem has an effective dimension larger than k,
their radius and regret become essentially linear. In BKB we use our adaptive sampling scheme to
include all necessary directions and to achieve the same regret rate as exact GP-UCB.

5. Discussion

As the literature in Bayesian optimization is vast and a complete review is out of the scope of this
paper, we do not compare to alternative GP acquisition function, such as GP-EI or GP-PI, and
we focus on approximation techniques with theoretical guarantees. Similarly, we exclude scalable
variational inference based methods, even when their approximate posterior is provably accurate
such as pF-DTC (Huggins et al., 2019), since they only provide guarantees for GP regression and not
the harder optimization setting. We also do not discuss KERNELUCB (Valko et al., 2013), which has
a tighter analysis than GP-UCB, since the algorithm construction is not efficient in practice.

Infinite arm sets. Looking at the proof of Theorem 1, the guarantees on ũt hold for allH, and in
Theorem 2 we only require that the maximum x̃t+1 = arg maxx∈Amax

w∈C̃t φ(x)Tw is returned.
Therefore, the accuracy and regret guarantees hold also for an infinite set of arms A. However, the

12

BKB

search over A can be difficult. In the general case maximization of a GP posterior is an NP-hard
problem, with algorithms that usually scale exponentially with the input dimension d and are not
practical. We focused instead on the easier case of finite sets, where enumeration is sufficient. Note
that this automatically introduces an Ω(A) runtime dependency, which could be removed if the user
can provide an efficient method to solve the maximization problem on a specific infinite set A. As
an example, Mutny and Krause (2018) prove that a GP posterior approximated using QFF can be
optimized efficiently in low dimensions, and we expect similar results can hold for BKB and low
effective dimension. Finally, note that recomputing a new set St still requires min{A, t}d2eff at each
step. This represents a bottleneck in BKB independent from the arm selection problem, and must be
addressed separately in future work.

Linear bandit with matrix sketching. Our analysis is closely related to CBRAP (Yu et al.,
2017) and SOFUL (Kuzborskij et al., 2019). CBRAP uses Gaussian projections to embed all
arms in a lower dimensional space for efficiency. Unfortunately their approach must either use an
embedded space at least Ω(T) large, which in most cases would be even slower than exact OFUL, or
it incurs linear regret w.h.p. Another approach for Euclidean spaces based on matrix approximation is
SOFUL, introduced by Kuzborskij et al. (2019). It uses Frequent Direction (Ghashami et al., 2016),
a method similar to incremental PCA, to embed the arms into Rm, where m is fixed in advance.
When discussing SOFUL, we must distinguish between SOFUL-UCB and SOFUL-TS, a variant
based on Thompson sampling.
SOFUL-UCB achieves a Õ(TAm2) runtime, and Õ((1 + εm)3/2(d+m)

√
T) regret, where εm is

the sum of the d−m smallest eigenvalues of AT . However, notice that if the tail do not decrease
quickly enough this algorithm may suffer linear regret and no adaptive way to tune m is provided.
On the same task BKB does achieve a Õ(d

√
T) regret, since it adaptively chooses the size of the

embedding. Computationally, directly instantiating BKB to use a linear kernel would achieve a
Õ(TAm2

t) runtime, matching Kuzborskij et al. (2019)’s.
Compared to SOFUL-TS, BKB achieves better regret, but is potentially slower. Since Thompson
sampling does not need to compute all confidence intervals, but can instead solve a simpler optimiza-
tion problem, SOFUL-TS requires only Õ(TAm) time against BKB’s Õ(TAm2

t). It remains an
open problem to see if a variant of BKB can match this complexity.

Approximate GP with RFF. Traditionally, RFF approaches have been popular to transform GP
optimization in a finite-dimensional problem and allow for scalability. Unfortunately GP-UCB with
traditional RFF is not low-regret, as RFF are well known to suffer from variance starvation (Wang
et al., 2018) and unfeasibly large RFF embeddings would be necessary to prevent it. Recently
Mutny and Krause (2018) proposed an alternative approach based on QFF, a specialized approach
to random features for stationary kernels. They achieve the same regret rate as GP-UCB and
BKB, with a near-optimal O(TA log(T)d+1) runtime, and present additional variations based on
Thompson sampling and exact posterior maximization. However Quadrature based approaches
apply to stationary kernel only, and require to ε-cover A, hence they cannot escape an exponential
dependency on the dimensionality d. Conversely BKB can be applied to any kernel function, and
while not specifically designed for this task it also achieve a close Õ(TA log(T)3(d+1)) runtime.
Moreover in practice the size of ST can be much less than exponential in d.

Acknowledgements This material is based upon work supported by the Center for Brains, Minds and
Machines (CBMM), funded by NSF STC award CCF-1231216. L. R. acknowledges the financial support of
the AFOSR projects FA9550-17-1-0390 and BAA-AFRL-AFOSR-2016-0007 (European Office of Aerospace

13

BKB

Research and Development), and the EU H2020-MSCA-RISE project NoMADS - DLV-777826. The research
presented was also supported by European CHIST-ERA project DELTA, French Ministry of Higher Education
and Research, Nord-Pas-de-Calais Regional Council, Inria and Otto-von-Guericke-Universität Magdeburg
associated-team north-European project Allocate, and French National Research Agency projects ExTra-Learn
(n.ANR-14-CE24-0010-01) and BoB (n.ANR-16-CE23-0003). This research has benefited from the support
of the FMJH Program PGMO and from the support to this program from Criteo.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.

Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel methods with statistical
guarantees. In Neural Information Processing Systems, 2015.

Daniele Calandriello and Lorenzo Rosasco. Statistical and computational trade-offs in kernel k-means.
In Neural Information Processing Systems, 2018.

Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Second-order kernel online convex
optimization with adaptive sketching. In International Conference on Machine Learning, 2017a.

Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Distributed adaptive sampling for
kernel matrix approximation. In AISTATS, 2017b.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pages 844–853, 2017.

Sayak Ray Chowdhury and Aditya Gopalan. Online learning in kernelized Markov decision processes.
In International Conference on Artificial Intelligence and Statistics, may 2019. URL http:
//arxiv.org/abs/1805.08052.

Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Stochastic linear optimization under bandit
feedback. In COLT, 2008.

Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016.

Avishek Ghosh, Sayak Ray Chowdhury, and Aditya Gopalan. Misspecified linear bandits. In AAAI,
apr 2017. URL https://arxiv.org/abs/1704.06880.

Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic regret algorithms for online
convex optimization. In Conference on Learning Theory. Springer, 2006.

Jonathan H Huggins, Trevor Campbell, Mikołaj Kasprzak, and Tamara Broderick. Scalable gaussian
process inference with finite-data mean and variance guarantees. International Conference on
Artificial Intelligence and Statistics, 2019.

Ilja Kuzborskij, Leonardo Cella, and Nicolò Cesa-Bianchi. Efficient linear bandits through matrix
sketching. In International Conference on Artificial Intelligence and Statistics, 2019.

14

http://arxiv.org/abs/1805.08052
http://arxiv.org/abs/1805.08052
https://arxiv.org/abs/1704.06880

BKB

Tor Lattimore and Csaba Szepesvári. Bandit algorithms.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. International World Wide Web Conference, 2010.
URL http://rob.schapire.net/papers/www10.pdf.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian process meets big data: A
review of scalable gps. arXiv preprint arXiv:1807.01065, 2018.

Jonas Mockus. Global optimization and the Bayesian approach. 1989. doi: 10.1007/
978-94-009-0909-0_1. URL http://www.springerlink.com/index/10.1007/
978-94-009-0909-0{_}1.

Mojmir Mutny and Andreas Krause. Efficient High Dimensional Bayesian Optimization with
Additivity and Quadrature Fourier Features. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 9019–9030. Curran Associates, Inc., 2018.

Martin Pelikan. Hierarchical bayesian optimization algorithm. In Hierarchical Bayesian Optimization
Algorithm, pages 105–129. Springer, 2005.

Joaquin Quinonero-Candela, Carl Edward Rasmussen, and Christopher KI Williams. Approximation
methods for gaussian process regression. Large-scale kernel machines, pages 203–224, 2007.

Ali Rahimi and Ben Recht. Random features for large-scale kernel machines. In Neural Information
Processing Systems, 2007.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, Cambridge, Mass, 2006. ISBN 978-0-
262-18253-9. OCLC: ocm61285753.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematics Society, 58:527–535, 1952.

Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. Lower bounds on regret for noisy gaussian
process bandit optimization. In Conference on Learning Theory, pages 1723–1742, 2017.

Matthias Seeger, Christopher Williams, and Neil Lawrence. Fast forward selection to speed up
sparse gaussian process regression. In Artificial Intelligence and Statistics 9, number EPFL-CONF-
161318, 2003.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951–2959,
2012.

Niranjan Srinivas, Andreas Krause, Matthias Seeger, and Sham M Kakade. Gaussian process
optimization in the bandit setting: No regret and experimental design. In International Conference
on Machine Learning, pages 1015–1022, 2010.

15

http://rob.schapire.net/papers/www10.pdf
http://www.springerlink.com/index/10.1007/978-94-009-0909-0{_}1
http://www.springerlink.com/index/10.1007/978-94-009-0909-0{_}1

BKB

Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends R©
in Machine Learning, 8(1-2):1–230, 2015. ISSN 1935-8237. doi: 10.1561/2200000048. URL
http://dx.doi.org/10.1561/2200000048.

Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time analysis
of kernelised contextual bandits. In Proceedings of the Twenty-Ninth Conference on Uncertainty
in Artificial Intelligence, pages 654–663. AUAI Press, 2013.

Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian
optimization in high-dimensional spaces. In International Conference on Artificial Intelligence
and Statistics, pages 745–754, 2018.

Xiaotian Yu, Michael R. Lyu, and Irwin King. CBRAP: Contextual bandits with random projection.
In AAAI Conference on Artificial Intelligence, 2017.

16

http://dx.doi.org/10.1561/2200000048

BKB

Appendix A. Relaxing assumptions

In the derivation so far we applied several assumptions. While some are necessary, others can be
relaxed.

Assumptions on the noise. Throughout the paper, we assumed that the noise ηt is i.i.d. Gaussian.
Since Chowdhury and Gopalan’s results hold for any ξ-sub-Gussian noise that is measurable based
on the previous iterations, this assumption can be easily relaxed.

Assumptions on the arms. So far we considered a set of arms that is (a) in Rd, (b) fixed for all
t, and (c) finite. Relaxing (a) is easy, since we do not make any assumption beyond boundedness
on the kernel function k, and there are many bounded kernel function for non-Euclidean spaces,
e.g. strings or graphs. Relaxing (b) is also trivial, we just need to embed the changing arm sets
as they are provided, and store and re-embed previously selected arms as necessary. The per-step
time complexity will now depend on the size of the set of arms available at each step. Relaxing (c)
is straightforward from a theoretical perspective, but has varying computational consequences. In
particular, looking at the proof of Theorem 1, the guarantees on ũt hold for allH, and in Theorem 2
we only require that the maximum x̃t+1 = arg maxx∈Amax

w∈C̃t φ(x)Tw is returned. Therefore,
at least from the regret point of view, everything hold also for infinite A. However, while the inner
maximization over C̃t can be solved in closed form for a fixed x, the same cannot be said of the
search over A. If the designer can provide an efficient method to solve the maximization problem on
an infinite A, e.g., linear bandit optimization over compact subsets or Rd, than all BKB guarantees
hold. But in the general case maximization of a GP posterior, or of a general function overH, is an
NP-hard problem and we focused on the easier case of finite sets, where enumeration is sufficient.
Note however that recomputing a new set St still requires min{A, t}d2eff at each step. This represents
a bottleneck independent from the arm selection problem, and must be addressed separately.

Appendix B. Preliminary results on posterior variance

For simplicity we will collect here several results we will use on the posterior variance σ2t (·). While
most of these hold for generic RLS, we will adapt them to our notation.

Proposition 4 (Calandriello et al., 2017b)

1

κ2/λ+ 1
σ2t−1(x̃t) ≤

1

σ2t−1(x̃t) + 1
σ2t−1(x̃t) ≤ σ2t (x̃t) ≤ σ2t−1(x̃t)

Proof The leftmost inequality follows from κ2/λ ≥ σ20(x) and σ2a(x) ≥ σ2b (x), ∀a ≤ b, the others
from Calandriello et al., 2017b

17

BKB

Proposition 5 (Hazan et al., 2006; Calandriello et al., 2017a)

deff(λ, X̃T) = Tr(KT (KT + λI)−1) =
∑T

t=1
σ2T (x̃t)

(1)

≤
∑T

t=1
σ2t (x̃t)

(2)

≤ log det(KT /λ+ I)

(3)

≤ Tr(KT (KT + λI)−1)
(

1 + log
(
‖KT ‖
λ + 1

))
.

Proof Inequality (1) is due to Proposition 4. Inequality (2) is due to Hazan et al. (2006). Inequality
(3) is due to Calandriello et al. (2017a).

Appendix C. Proof of Theorem 1

Let Bt be the bad event where the guarantees of Theorem 1 do not hold. Our goal in this proof is to
prove that Bt happens at most with probability δ for all t ∈ [T].

C.1. Notation

For notational simplicity, in the following we refer to Φ(X̃t) as Φt, Φ̃(X̃t) as Φ̃t and φ(x̃t) as φt.
When the subscript is clear from the context, we will omit it. Since we leverage several results of
Calandriello et al. (2017a), we report here some necessary additional notation.

First we extend our notation for the subset St to include a possible reweighing of the inducing
points. We denote with St = {(φj , sj)}mtj=1 a weighted subset, i.e. a weighted dictionary, of columns
from Φt, with positive weights sj > 0 that must be appropriately chosen.

Denote with ij ∈ [t] the index of the sample φj as a column in Φt. Using a standard approach
(Alaoui and Mahoney, 2015), we choose sj = 1/

√
p̃t,ij , where p̃t,i = qσ̃2t−1(x̃i) is the probability5

used by Algorithm 1 when sampling φij from Φt.
Let us now denote with St ∈ Rt×t the diagonal matrix with qt,i/

√
p̃t,i on the diagonal, where

qt,i are the {0, 1} r.v. selected by Algorithm 1. Then we can see that

mt∑
j=1

1

p̃t,ij
φijφ

T
ij =

t∑
i=1

qt,i
p̃t,i

φiφ
T
i = ΦtStS

T
tΦ

T
t . (11)

Calandriello et al. (2017b) define St to be an ε-accurate dictionary of Φt if it satisfies the following
condition

(1− ε)ΦtΦ
T
t − ελI � ΦtStS

T
tΦ

T
t � (1 + ε)ΦtΦ

T
t + ελI. (12)

We can also now fully define the projection operator at time t (see Section 4.1 for more details) as

Pt = ΦtSt(S
T
tΦ

T
tΦtSt)

+ST
tΦ

T
t

the projection matrix spanned by the dictionary.

5. Note that p̃t,i might be larger than 1, but with a small abuse of notation and w.l.o.g. we will still refer to it as a
probability.

18

BKB

C.2. Event decomposition

We can decompose Theorem 1 into an accuracy part, i.e. St must induce accurate σ̃t, and an efficiency
part, i.e. mt ≤ deff(t). We also connect the accuracy of σ̃t to the definition of ε-accuracy.

Lemma 6 Let α = 1+ε
1−ε . If St is ε-accurate w.r.t. Φt, then

At/α � Ãt � αAt

and σ2t (x)/α ≤ min
{
σ̃2t (x), 1

}
≤ ασ2t (x) for all x ∈ A.

Proof Inverting the bound in Equation 12, and using the fact that PtΦtSt = ΦtSt we have

PtΦtΦ
T
tPt �

1

1− ε
(PtΦtStS

T
tΦ

T
tPt + ελPt) �

1

1− ε
(ΦtStS

T
tΦ

T
t + ελPt)

� 1

1− ε
((1 + ε)ΦtΦ

T
t + ελI + ελPt) �

1 + ε

1− ε

(
ΦtΦ

T
t +

2ε

1 + ε
λI

)
.

Repeating for the other side we obtain

1− ε
1 + ε

(
ΦtΦ

T
t −

2ε

1− ε
λI

)
� PtΦtΦ

T
tPt �

1 + ε

1− ε

(
ΦtΦ

T
t +

2ε

1 + ε
λI

)
.

Applying this to Ãt we have

Ãt = PtΦtΦ
T
tPt + λI � 1− ε

1 + ε

(
ΦtΦ

T
t −

2ε

1− ε
λI

)
+ λI =

1− ε
1 + ε

(ΦtΦ
T
t + λI) =

1− ε
1 + ε

At,

which can again be applied on the other side to obtain our result. To prove the accuracy of the
approximate posterior variance σ̃2t (xi) we simply apply the definition

1− ε
1 + ε

σ2
t (xi)

φT
iAtφi �

σ̃2
t (xi)

φT
i Ãtφi �

1 + ε

1− ε

σ2
t (xi)

φT
iAtφi,

Using Lemma 6 we can now decompose our bad event Bt = At ∪ Et where At is the event
where St is not ε-accurate w.r.t. Φt. and Et is the event where mt is much larger than deff(λ, X̃t).
We can further decompose the event At

At = (At ∩At−1) ∪ (At ∩A{
t−1)

⊆ At−1 ∪ (At ∩A{
t−1) = A0 ∪

(
t⋃

s=1

(As ∩A{
s−1)

)
=

t⋃
s=1

(As ∩A{
s−1),

where A0 is the empty event since Φ0 is empty and it is well approximated by the empty S0.
Moreover, we can simplify a part of the problem by noting

Bt = At ∪ Et = At ∪ (Et ∩A{
t−1) ∪ (Et ∩At−1) ⊆ At ∪At−1 ∪ (Et ∩A{

t−1),

19

BKB

which will help us when bounding the event Et, where we will directly act as if At does not hold.
Putting it all together

T⋃
t=1

Bt =
T⋃
t=1

(At ∪ Et) ⊆
T⋃
t=1

(
At ∪At−1 ∪ (Et ∩A{

t−1)
)

=

(
T⋃
t=1

At

)
∪

(
T⋃
t=1

(Et ∩A{
t−1)

)
=

(
T⋃
t=1

At

)
∪

(
T⋃
t=1

(Et ∩A{
t−1)

)

⊆

(
T⋃
t=1

(
t⋃

s=1

(As ∩A{
s−1)

))
∪

(
T⋃
t=1

(Et ∩A{
t−1)

)

=

(
T⋃
t=1

(At ∩A{
t−1)

)
∪

(
T⋃
t=1

(Et ∩A{
t−1)

)

C.3. Bounding Pr(At ∩A{
t−1)

We can now bound the probability of event At ∩A{
t−1 happening. Our first step is to formally define

At using Equation 12. In particular we can rewrite the ε-accuracy condition as

(1− ε)ΦtΦ
T
t − ελI � ΦtStS

T
tΦ

T
t � (1 + ε)ΦtΦ

T
t + ελI

⇐⇒ −ε(ΦtΦ
T
t + λI) � ΦtStS

T
tΦ

T
t −ΦtΦ

T
t � ε(ΦtΦ

T
t + λI)

⇐⇒ −εI � (ΦtΦ
T
t + λI)−1/2(ΦtStS

T
tΦ

T
t −ΦtΦ

T
t)(ΦtΦ

T
t + λI)−1/2 � εI

⇐⇒ ‖(ΦtΦ
T
t + λI)−1/2(ΦtStS

T
tΦ

T
t −ΦtΦ

T
t)(ΦtΦ

T
t + λI)−1/2‖ ≤ ε,

where ‖ · ‖ is the spectral norm. We can now focus on this last reformulation, and frame it as a

random matrix concentration problem in a RKHS H. Let ψt,i = (ΦtΦ
T
t + λI)−

1
2φi and Ψt =

Φt(Φ
T
tΦt + λI)−

1
2 = [ψt,1, . . . , ψt,t]

T, and define the operator Gt,i =
(
qt,i
p̃t,i
− 1
)
ψt,iψ

T
t,i. Then we

can rewrite ε-accuracy as

‖(ΦtΦ
T
t + λI)−

1
2Φt(StS

T
t − I)ΦT

t (ΦtΦ
T
t + λI)−

1
2 ‖ =

∥∥∥∥∥
t∑
i=1

(
qt,i
p̃t,i
− 1

)
ψt,iψ

T
t,i

∥∥∥∥∥ =

∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≤ ε,
and the event At as the event where

∥∥∑t
i=1 Gt,i

∥∥ ≥ ε, Note that this reformulation exploits the fact
that qt,i = 0 encodes the column that are not selected in St (see Equation 11). To study this random
object, we begin by defining the filtration Ft = {qs,i, ηs}ts=1 at time t containing all the randomness
coming from the construction of the various Ss and the noise on the function ηt. In particular, note
that the {0, 1} r.v. qt,i used by Algorithm 1 are not Bernoulli r.v., since the probability p̃t,i used to
select 0 or 1 is itself random. However they become well defined Bernoulli when conditioned on

20

BKB

Ft−1. Let I{·} indicate the indicator function of an event. We can rewrite

Pr(At ∩A{
t−1) = Pr

(∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε ∩
∥∥∥∥∥

t∑
i=1

Gt−1,i

∥∥∥∥∥ ≤ ε
)

= E
Ft

[
I

{∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε ∩
∥∥∥∥∥

t∑
i=1

Gt−1,i

∥∥∥∥∥ ≤ ε
}]

= E
Ft−1

[
E

ηt,{qt,i}

[
I

{∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε ∩
∥∥∥∥∥

t∑
i=1

Gt−1,i

∥∥∥∥∥ ≤ ε
} ∣∣∣∣∣ Ft−1

]]

= E
Ft−1

[
E
{qt,i}

[
I

{∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε ∩
∥∥∥∥∥

t∑
i=1

Gt−1,i

∥∥∥∥∥ ≤ ε
} ∣∣∣∣∣ Ft−1

]]
,

where the last passage is due to the fact that Gt,i is independent from ηt. Notice now that conditioned
on Ft−1 the event A{

t−1 is not random anymore, and we can restrict our expectations to the outcomes
where

∥∥∑t
i=1 Gt−1,i

∥∥ ≤ ε,
Pr(At ∩A{

t−1) = E
Ft−1:‖∑t

i=1 Gt−1,i‖≤ε

[
E
{qt,i}

[
I

{∥∥∥∥∥
t∑
i=1

Gt,i

∥∥∥∥∥ ≥ ε
} ∣∣∣∣∣ Ft−1

]]
.

Moreover, conditioned on Ft−1 all the qt,i become independent r.v., and we can use the following
result of Tropp (2015).

Proposition 7 Let G1, . . . ,Gn be a sequence of independent self-adjoint random operators such
that EGi = 0 and ‖Gi‖ ≤ R a.s.
Denote σ2 =

∥∥∑t
i=1 EG2

i

∥∥. Then for any ε ≥ 0

Pr

(∥∥∥∥∥
t∑
i=1

Gi

∥∥∥∥∥ ≥ ε
)
≤ 4t exp(

ε2/2

σ2 +Rε/3
)

We begin by computing the mean of Gt,i

E
qt,i

[Gt,i | Ft−1] = E
qt,i

[(
qt,i
p̃t,i
− 1

)
ψt,iψ

T
t,i

∣∣∣∣ Ft−1]
=

(Eqt,i [qt,i | Ft−1]
p̃t,i

− 1

)
ψt,iψ

T
t,i =

(
p̃t,i
p̃t,i
− 1

)
ψt,iψ

T
t,i = 0,

where we use the fact that p̃t,i is fixed conditioned on Ft−1 and it is the (conditional) expectation of
qt,i. Since G is zero-mean, we can use Proposition 7. First we find R. We can upper bound

‖Gt,i‖ =

∥∥∥∥(qt,ip̃t,i
− 1

)
ψt,iψ

T
t,i

∥∥∥∥ ≤ ∣∣∣∣(qt,ip̃t,i
− 1

)∣∣∣∣‖ψt,iψT
t,i‖ ≤

1

p̃t,i
‖ψt,iψT

t,i‖.

Note that due to the definition of ψt,i

‖ψt,iψT
t,i‖ = ψT

t,iψt,i = φT
i (ΦtΦ

T
t + λI)−1φi = σ2t (x̃i).

21

BKB

Moreover, we are only considering outcomes of Ft−1 where
∥∥∑t

i=1 Gt−1,i
∥∥ ≤ ε, which implies that

St−1 is ε accurate, and by Lemma 6 we have σ̃t−1(x̃i) ≥ σt−1(x̃i)/α. Finally, due to Proposition 4
we have σt−1(x̃i) ≥ σt(x̃i). Putting this all together we can bound

1

p̃t,i
‖ψt,iψT

t,i‖. =
1

qσ̃t−1(x̃i)
σt(x̃i) ≤

α

q
:= R.

For the variance term, we expand

t∑
i=1

E
qt,i

[
G2
t,i

∣∣ Ft−1] =
t∑
i=1

E
qt,i

[(
qt,i
p̃t,i
− 1

)2
∣∣∣∣∣ Ft−1

]
ψt,iψ

T
t,iψt,iψ

T
t,i

=

t∑
i=1

(
E
qt,i

[
q2t,i
p̃2t,i

∣∣∣∣∣ Ft−1
]
− E
qt,i

[
2
qt,i
p̃t,i

∣∣∣∣ Ft−1]+ 1

)
ψt,iψ

T
t,iψt,iψ

T
t,i

=
t∑
i=1

(
E
qt,i

[
qt,i
p̃2t,i

∣∣∣∣∣ Ft−1
]
− 1

)
ψt,iψ

T
t,iψt,iψ

T
t,i =

t∑
i=1

(
E
qt,i

[
qt,i
p̃2t,i

∣∣∣∣∣ Ft−1
]
− 1

)
ψt,iψ

T
t,iψt,iψ

T
t,i

=
t∑
i=1

(
1

p̃t,i
− 1

)
ψt,iψ

T
t,iψt,iψ

T
t,i �

t∑
i=1

1

p̃t,i
‖ψt,iψT

t,i‖ψt,iψT
t,i �

t∑
i=1

Rψt,iψ
T
t,i

where we used the fact that q2t,i = qt,i and Eqt,i [qt,i|Ft−1] = p̃t,i. We can now bound this quantity as∥∥∥∥∥
t∑
i=1

E
qt,i

[
G2
t,i

∣∣ Ft−1]
∥∥∥∥∥ ≤

∥∥∥∥∥
t∑
i=1

Rψt,iψ
T
t,i

∥∥∥∥∥ = R

∥∥∥∥∥
t∑
i=1

ψt,iψ
T
t,i

∥∥∥∥∥ = R‖ΨT
tΨt‖ ≤ R := σ2.

Therefore, we have σ2 = R and R = 1/q, and applying Proposition 7 and a union bound we
conclude the proof.

C.4. Bounding Pr(Et ∩A{
t−1)

We will use the following concentration for independent Bernoulli r.v.

Proposition 8 (Calandriello et al., 2017b, App. D.4) Let {qs}ts=1 be independent Bernoulli ran-
dom variables, each with success probability ps, and denote their sum as d =

∑t
s=1 ps ≥ 1.

Then,6

P

(
t∑

s=1

qs ≥ 3d

)
≤ exp{−3d(3d− (log(3d) + 1))} ≤ exp{−2d}

We can also rigorously define the event Et as the event where

t∑
i=1

qt,i ≥ 3α(1 + κ2/λ) log(t/δ)

t∑
i=1

σ2t (x̃i) = 3α(1 + κ2/λ)deff(λ, X̃t) log(t/δ).

6. This is a simple variant of Chernoff bound where the Bernoulli random variables are not identically distributed.

22

BKB

Once again we will use conditioning, in particular

Pr(Et ∩A{
t) = E

Ft−1:‖∑t
i=1 Gt−1,i‖≤ε

[
E
{qt,i}

[
I

{
t∑
i=1

qt,i ≥ 3α(1 + κ2/λ) log(t/δ)
t∑
i=1

σ2t (x̃i)

} ∣∣∣∣∣ Ft−1
]]
.

Conditioned on Ft−1 the r.v. qt,i become independent Bernoulli with probability p̃t,i = qσ̃t−1(x̃i).
Since we restrict the outcomes to A{

t−1, we can exploit Lemma 6 and the guarantees of ε accuracy to
bound p̃t,i ≤ ασ2t−1(x̃i). Then we can use Proposition 4 to bound σ2t−1(x̃i) ≤ (1 + κ2/λ)σ2t (x̃i).
Therefore, qt,i are conditionally independent Bernoulli with probability at most q(1 + κ2/λ)σ2t (x̃i).
Applying a simple stochastic dominance argument, and Proposition 8, we obtain our result.

Appendix D. Proof of Theorem 2

Following Abbasi-Yadkori et al. (2011), we divide the proof in two parts, bounding the approximate
confidence ellipsoid, and bounding the regret.

D.1. Bounding the confidence ellipsoid

We begin by proving an intermediate result on the confidence ellipsoid

Theorem 9 Under the same assumptions as Theorem 2 with probability at least 1− δ and for all
t ≥ 0 w∗ lies in the set

C̃t :=
{

w : ‖w − w̃t‖Ãt
≤ β̃t

}
with

β̃t := 2ξ

√√√√α log(κ2t)

(
t∑

s=1

σ̃2t (xs)

)
+ log

(
1

δ

)
+

(
1 +

1√
1− ε

)√
λF

Proof For simplicity, we now omit the subscript t. We begin noticing that

(w̃ −w∗)
TÃ(w̃ −w∗) = (w̃ −w∗)

TÃ(Ã−1Φ̃Ty −w∗)

= (w̃ −w∗)
TÃ(Ã−1Φ̃T(Φw∗ + η −w∗)

= (w̃ −w∗)
TÃ(Ã−1Φ̃TΦw∗ −w∗︸ ︷︷ ︸

bias

) + (w̃ −w∗)
TÃ1/2 Ã−1/2Φ̃Tη︸ ︷︷ ︸

variance

.

Bounding the bias. We first focus on the first term, which is made complicated by the mismatch
Φ̃TΦ. We have

Ã(Ã−1Φ̃TΦw∗ −w∗) = Φ̃TΦw∗ − Φ̃TΦ̃w∗ − λw∗

= Φ̃TΦ(I−P)w∗ + Φ̃TΦPw∗ − Φ̃TΦ̃w
∗ − λw∗

= Φ̃TΦ(I−P)w∗ − λw∗

23

BKB

Therefore

(w̃ −w∗)
TÃ(Ã−1Φ̃TΦw∗ −w∗) = (w̃ −w∗)

TΦ̃TΦ(I−P)w∗ − λ(w̃ −w∗)
Tw∗

≤ ‖w̃ −w∗‖Ã
(
‖Ã−1/2Φ̃TΦ(I−P)w∗‖+ λ‖w∗‖

Ã−1

)
≤ ‖w̃ −w∗‖Ã

(
‖Ã−1/2Φ̃TΦ(I−P)w∗‖+ λ√

λ
‖w∗‖

)
.

We have

‖Ã−1/2Φ̃TΦ(I−P)w∗‖ ≤ ‖Ã−1/2Φ̃T‖‖Φ(I−P)‖‖w∗‖

≤
√
λmax(Φ̃Ã−1Φ̃T)

√
λmax(Φ(I−P)2ΦT)‖w∗‖.

It is easy to see that

λmax(Φ̃Ã−1Φ̃T) = λmax(Φ̃(Φ̃TΦ̃ + λI)−1Φ̃T) ≤ 1.

To bound the other term we use the following result from Calandriello and Rosasco (2018).

Proposition 10 If St is ε-accurate w.r.t. Φt, then

I−Pt � I−ΦtSt(S
T
tΦ

T
tΦtSt + λI)−1ST

tΦ
T
t �

λ

1− ε
(ΦtΦ

T
t + λI)−1.

Since from Theorem 1 we have that St is ε-accurate, we have from Theorem 10

Φ(I−P)2ΦT = Φ(I−P)ΦT � λ

1− ε
Φ(ΦTΦ + λI)−1ΦT � λ

1− ε
I

Putting it all together

(w̃ −w∗)
TÃ(Ã−1Φ̃TΦw∗ −w∗) ≤

(
1 +

1√
1− ε

)
‖w̃ −w∗‖Ã

√
λ‖w∗‖

Bounding the variance. We will need this self-normalized martingale concentration inequality
from Abbasi-Yadkori et al. (2011). It can be trivially extended to RKHSs in the case of finite sets
such as our A. Note that if the reader is interested in infinite sets, Chowdhury and Gopalan (2017)
provide a generalization with slightly worst constants.

Proposition 11 (Abbasi-Yadkori et al. (2011)) Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1 be a real-
valued stochastic process such that ηt is Ft-measurable and zero-mean ξ-subgaussian. Let {Φt}∞t=1

be anH-valued stochastic process such that Φt is Ft−1-measurable. Let I be the identity operator
onH. For any t ≥ 1, define

At = ΦT
tΦt + λI, Vt = ΦT

t ηt.

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖Vt‖2A−1
t
≤ 2ξ2 log(Det(At/λ)/δ).

24

BKB

Remembering the definition of α ≥ 1 from Theorem 1, we can reformulate

(w̃ −w∗)
TÃ1/2Ã−1/2Φ̃η ≤ ‖w̃ −w∗‖Ã‖Φ̃η‖Ã−1

= ‖w̃ −w∗‖Ã‖Φ̃
Tη‖

(Φ̃TΦ̃+λI)−1

= ‖w̃ −w∗‖Ã‖Φ̃
Tη/λ‖

(Φ̃TΦ̃/λ+I)−1

We need now to make a remark that requires temporal notation. Note that we cannot directly apply
Theorem 11 to Φ̃tηt = PtΦtηt. In particular, for s < t we have that Φ̃sηs = PtΦsηs is not
Fs−1 measurable, since Pt depends on all randomness up to time t. However, since Pt is always a
projection matrix we know that the variance of the projected process is bounded by the variance of
the original process

‖Φ̃Tη/λ‖
(Φ̃TΦ̃/λ+I)−1 =

√
ηTΦ̃(Φ̃TΦ̃/λ+ I)−1Φ̃Tη/λ =

√
ηTΦ̃Φ̃T(Φ̃Φ̃T/λ+ I)−1η/λ

(a)
=

√
ηT(I− λ(Φ̃Φ̃T/λ+ I)−1)η/λ =

√
ηT(I− λ(ΦPΦT/λ+ I)−1)η/λ

(b)

≤
√
ηT(I− λ(ΦΦT/λ+ I)−1)η/λ

(c)
= ‖ΦTη/λ‖(ΦTΦ/λ+I)−1 ,

where in (a) we added and subtracted λI from Φ̃Φ̃T, in (b) we used the fact that ‖P‖ ≤ 1 for
all projection matrices, and in (c) we reversed the reformulation from (a). We can finally use
Theorem 11

‖ΦTη/λ‖(ΦTΦ/λ+I)−1 ≤
√

2ξ2 log(Det(ΦTΦ/λ+ I)/δ)

=
√

2ξ2 log(Det(A/λ)/δ).

While this is now a valid bound on the radius of the confidence interval, it is still not satisfactory. In
particular, we can use Sylvester’s identity to reformulate

log det(A/λ) = log det(ΦTΦ/λ+ I) = log det(ΦΦT/λ+ I) = log det(K/λ+ I).

Computing the radius would require constructing the matrix K ∈ Rt×t and is too expensive. Instead,
we obtain a cheap but still small upper bound as follow

log det(Kt/λ+ I) ≤ Tr(Kt(Kt + λI)−1)(1 + log(‖Kt‖+ 1))

≤ Tr(Kt(Kt + λI)−1)(1 + log(Tr Kt + 1))

≤ Tr(Kt(Kt + λI)−1)(1 + log(κ2t+ 1))

= (1 + log(κ2t+ 1))
t∑

s=1

σ2t (xs)

≤ α(1 + log(κ2t+ 1))
t∑

s=1

σ̃2t (xs)

≤ 2α log(κ2t)
t∑

s=1

σ̃2t (xs),

25

BKB

where σ̃2t (xs) can be computed efficiently, and is already done so by the algorithm at every step.
Putting it all together

‖w̃ −w∗‖Ã ≤ 2ξ

√√√√α log(κ2t)

(
t∑

s=1

σ̃2t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λ‖w∗‖

≤ 2ξ

√√√√α log(κ2t)

(
t∑

s=1

σ̃2t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λF := β̃t

D.2. Bounding the regret

The regret analysis is straightforward. Assume that w∗ ∈ C̃t is satisfied (i.e. the event from
Theorem 9 holds) and remember that by the definition φt = arg maxxiinAmax

w∈C̃t
φT
iw. We can

also define wt,i = arg max
w∈C̃t

φT
iw as the auxiliary vector which encodes the optimistic behaviour

of the algorithm. With a slight abuse of notation we will also use ∗ as a subscript to indicate the
(unknown) index of the optimal arm, so that wt,∗ = arg max

w∈C̃t
φT
∗w. Since w∗ ∈ C̃t

φT
twt,t ≥ φ∗wt,∗ ≥ φ∗w∗.

We can now bound the instantaneous regret rt as

rt = φT
∗w∗ − φT

tw∗ ≤ φT
twt,t − φT

tw∗

= φT
t (wt,t − ŵt) + φT

t (ŵt −w∗)

= φT
t Ã
−1/2
t Ã

1/2
t (wt,t − ŵt) + φT

t Ã
−1/2
t−1 Ã

1/2
t (ŵt −w∗)

≤
√
φT
t Ã
−1
t φt(‖wt,t − ŵt‖Ãt

+ ‖ŵt −w∗‖Ãt
)

≤ 2β̃t

√
φT
t Ã
−1
t φt

Summing over t and taking the max over β̃t

Rt ≤ 2β̃T

T∑
t=1

√
φT
t Ã
−1
t φt ≤ 2β̃T

√
T

√√√√ T∑
t=1

φT
t Ã
−1
t φt ≤ 2β̃T

√
T

√√√√α

T∑
t=1

φT
tA
−1
t φt

We can now use once again Proposition 5 to obtain

RT ≤ 2β̃T

√√√√αT
T∑
t=1

φT
tA
−1
t φt = 2β̃T

√√√√αT
T∑
t=1

σ2t (x̃t) ≤ 2β̃T

√
2αTdeff(λ, X̃T) log(κ2T).

26

BKB

We can also further upper bound β̃T as

β̃T = 2ξ

√√√√α log(κ2T)

(
T∑
s=1

σ̃2t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λF

≤ 2ξ

√√√√α2 log(κ2T)

(
T∑
s=1

σ2t (xs)

)
+ log(1/δ) +

(
1 +

1√
1− ε

)√
λF

≤ 2ξα

√
deff(λ, X̃T) log(κ2T) + log(1/δ) +

(
1 +

1√
1− ε

)√
λF

Putting it together we obtain

RT ≤2

(
2ξα

√
deff(λ, X̃T) log(κ2T) + log(1/δ)

)√
2αTdeff(λ, X̃T) log(κ2T)

+ 2

((
1 +

1√
1− ε

)√
λF

)√
2αTdeff(λ, X̃T) log(κ2T)

≤2ξ(2α)3/2
(
deff(λ, X̃T) log(κ2T) + log(1/δ)

)
+ 2
(

2
√
α
√
λF
)√

2αTdeff(λ, X̃T) log(κ2T)

≤2(2α)3/2
(√

Tξdeff(λ, X̃T) log(κ2T) +
√
T log(1/δ) +

√
TλF 2deff(λ, X̃T) log(κ2T)

)

27

	Introduction
	Contributions

	Background
	Budgeted Kernel Bandits
	The algorithm
	Complexity analysis

	Regret Analysis
	Proof sketch

	Discussion
	Relaxing assumptions
	Preliminary results on posterior variance
	Proof of thm:kors-complexity
	Notation
	Event decomposition
	Bounding Pr(At At-1)
	Bounding Pr(Et At-1)

	Proof of thm:main-regret
	Bounding the confidence ellipsoid
	Bounding the regret

