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ABSTRACT
In this paper, we present Que2Search, a deployed query and product
understanding system for search. Que2Search leverages multi-task
and multi-modal learning approaches to train query and product
representations. We achieve over 5% absolute offline relevance
improvement and over 4% online engagement gain over state-of-
the-art Facebook product understanding system by combining the
latest multilingual natural language understanding architectures
like XLM and XLM-R with multi-modal fusion techniques. In this
paper, we describe how we deploy XLM-based search query un-
derstanding model that runs <1.5ms @P99 on CPU at Facebook
scale, which has been a significant challenge in the industry. We
also describe what model optimizations worked (and what did not)
based on numerous offline and online A/B experiments. We deploy
Que2Search to Facebook Marketplace Search and share our deploy-
ment experience to production and tuning tricks to achieve higher
efficiency in online A/B experiments. Que2Search has demonstrated
gains in production applications and operates at Facebook scale.
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1 INTRODUCTION
Facebook Marketplace1 is a global platform that enables businesses
and buyers across the world to buy and sell items. Hundreds of
millions of products are listed for sale, and Marketplace provides

1http://www.facebook.com/marketplace
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Figure 1: A screenshot of a Facebook Marketplace Search re-
sults page.

an ecosystem for buyers to explore, find and buy what they need.
We targeted to improve the quality and recall of the Marketplace
search engine so that we can surface the right set of products given
the user textual query. See figure 1 with output of Marketplace
Search engine for the query “hats”.

Traditionally search engines were based on various term match-
ing methods [1]. Recently Huang et al. [14] introduced Embedding-
based Retrieval to Facebook search: authors of [14] used character
n-grams sparse features to represent textual features and relied on
wide and deep neural networks to build embedding representations
for the query and document [6]. This approach lacks representation
of natural language and did not on-board BERT [10] based models
primarily due to high computational requirements. In our previous
works, we have built state-of-art image recognition systems (Bell
et al. [2], Tang et al. [25]) for product image understanding. In ad-
dition to the product image, other textual and categorical product
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features, such as title, product description, location and product
category, also provide valuable information.

This paper presents Que2Search, a query to product similarity
model, which provides a modeling approach that takes into ac-
count comprehensive multi-modal features and utilizes XLM en-
coder (Lample and Conneau [17]) for textual features. Que2Search
is trained on weakly-supervised datasets and achieves state-of-the-
art performance for product representation compared to previous
baselines at Facebook. Que2Search has been deployed to Facebook
Marketplace search; it powers query-to-product Embedding-based
Retrieval and is also used as a ranking feature. Que2Search operates
at Facebook Marketplace scale, works across multi-languages and
satisfies strict latency constraints.

There were several challenges as we build Que2Search, we list
some of them here:

• Noisy product descriptions: The quality of seller-provided
product descriptions varies a lot. In many cases, attributes
of the marketplace products are missing or misspelled

• Internationalization support: we would like to build a model
that would perform well across many languages where Face-
book Marketplace is enabled

• Efficient Handling of multi-modalities: we need to take into
account all multi-modal features, such as products images
and textual information, effectively into one model

• Strict latency constraints: we need to satisfy strict latency
constraints of the search engine, this is particularly challeng-
ing as we use transformer-based language models, which
are known to be computationally expensive

Recent state-of-the-art technology in language understanding
stems from BERT [10] based transformer language models. The
challenge of scaling BERT-based models and improving inference
latency is a known across the industry[21, 22]. The inference time
is especially crucial for search problems where we need to have
embedding representation for free form textual query in real-time.
We use a 2-layer XLM encoder [17] to transform query text, and on
the product side, we adopt a multi-lingual approach with XLM-R
[7] encoder to encode textual fields of the product. We share our
experience to scale XLM/XLM-R models for search scenarios in
§3.5 to run under 1.5 milliseconds on CPU.

Que2Search has demonstrated gains in production applications
by introducing several modeling techniques, including multi-stage
curriculum learning, multi-modality handling, and multi-task learn-
ing that optimizes query-to-product retrieval task and product
classification task jointly. We share our modeling techniques in
§3, ablation studies in §5, and production deployment experience
and tuning tricks to achieve higher performance in online A/B
experiments in §6.

2 RELATEDWORK
Embedding-based Retrieval.Traditionally Siamese networks [3] have
been used for modeling pairwise relationships and is effective for
retrieval in production applications because it provides a way to
compute object embeddings independently of the query and store
them in the search index. A set of recent works in the industry in-
vestigated semantic retrieval at scale in various applications using
a combination of Siamese networks and wide & deep architecture
[6] for each of the towers. Yang et al. [27] trained two towers neural

network to power retrieval of a commercial mobile app store and
introduce mixed negative sampling taking random negatives from
the search index in addition to within the batch random negatives.
Huang et al. [14] introduced the approach of two towers wide &
deep network for Facebook search, where they used a set of sparse
features based on character n-grams to model textual features and
primarily dealt with single modality data. There have been several
recent works using advanced BERT [10] based models in search
applications such as [11, 23]. Guo et al. [11] proposed to use deep
networks within the ranking framework and used several optimiza-
tions to reduce computations issues such as a smaller model for
documents, and pre-calculated document side embeddings before
serving. This paper shares our experience utilizing transformer-
based language models for textual features and describes practical
multi-modal training techniques to fuse textual, visual, and cate-
gorical modalities.

Multi-modal modeling. In recent years, authors [4, 15, 18] have
been investigating solutions for multi-modal representation across
textual and visual domains and achieved state-of-the-art results
on research datasets. Many papers use early fusion across the two
towers, which excludes the possibility of deploying the query tower
model and document tower model independently. This paper fo-
cuses on two tower Siamese network with late fusion, where both
towers can be computed independently in production.

Natural language processing. With the breakthrough of BERT
[10] natural language understanding went on the next level of qual-
ity. Due to the high computational needs of transformers, various
companies explored BERT optimizations, including [11, 21, 22].
We applied some of the similar approaches of [11] and discussed
additional approaches we took to improve inference latency in
production. Recently XLM-R (Conneau et al. [7]) adapted BERT ap-
proaches to multi-lingual applications. We use XLM-R to transform
textual features and fine-tune using search logging data, we share
our solutions in §3.

3 MODELING
In this section, we start by describing the model architecture and
going over the input features. We then describe how we train and
evaluate the model, including a curriculum training scheme where
we feed harder negative examples to the model by using differ-
ent loss functions without changes to the training data collection
process. We also discuss the challenges we faced in multi-modal
training and our solution to overcome them. We conclude this sec-
tion by describing how we used ML interpretability techniques to
understand the model and identify improvement areas.

3.1 Model architecture
The model architecture is depicted in Figure 2. For query tower,
we use three input features - the character tri-gram [14] multi-
categorical feature; the country of the searcher, a single categorical
feature; and the raw query text, which is a textual feature. For
character tri-grams, we apply a hash function (e.g. MurmurHash)
to the sliding window of 3 characters of the query, thus getting
a list of hash ids for the query. We then pass the hash ids list to
an EmbeddingBag 2[24] which learns an embedding for each hash
2https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html



Figure 2: Architecture of Que2Search, Facebook’s scalable query and product understanding model.

id and performs a sum pool to provide a fixed-size representation
for each query. We also apply EmbeddingBag to learn country
representation for searcher country single categorical feature. We
apply a 2-layer XLM [17] encoder to the raw query text. We take
the representation of the [CLS] token of the final layer as the en-
coder representation and project to the desired dimension to get
the query’s XLM representation. We then fuse these three rep-
resentations based on attention weights to get the query’s final
representation.

For the document tower, we have input features like product
title, description and images. We use one shared 6-layer XLM-R
[7] encoder for all the textual fields (such as title and description);
sharing of the encoder helped to achieve improvement in batch
recall@1 (see table 3). We also apply EmbeddingBag [24] to encode
the character tri-grams multi-categorical features of title and de-
scription respectively, as described in the previous paragraph. For
each document, there are a variable number of images attached to
it. We take the pre-trained image representations (Bell et al. [2]) for
each of the attached images, apply a shared MLP layer and deep sets
(Zaheer et al. [29]) fusion to get the image channel representation.
Same as in the query tower, we then fuse the representations from
different feature channels with learned attention weights to get the
document’s final representation.

We tried different late-fusion techniques to fuse the representa-
tions of different feature channels, like concatenation fusion (i.e.,
concatenate all encoder outputs followed by an MLP layer) and
simple attention fusion (a weighted sum of channel representations
based on learned channel weights as shown in Eq.1 where ∥ means
concatenation). Simple Attention fusion has shown better metrics

performance as compared to concatenation fusion.

𝜑 = {𝜑𝑖 }𝑁𝑖=1 representations of N channels
Φ = 𝜑1 ∥ ... ∥ 𝜑𝑁 concatenation

𝑎 = Softmax(Φ𝑊 ) 𝑊 ∈ R𝑁𝐷×𝑁

𝑓 =

𝑁∑
𝑖=1

𝑎𝑖 ¤𝜑𝑖 final tower representation

(1)

We used PyTorch and several downstream libraries such as Face-
book’s PyText, Fairseq, and Multimodal Framework (MMF) to im-
plement the model. We used a learning rate of 7𝑒 − 4 with a batch
size of 768 and Adam optimizer. However, since we use pretrained
XLM/XLM-R models, we implemented a different learning rate
2𝑒 − 4 to XLM module - this means that all the parameters inside
the XLM module would have a different learning rate compared to
the rest of the parameters. This gave us a 1% increase in ROC AUC
to the validation set (referred as varying XLM LR in table 4). We
used standard regularization techniques like dropout (dropout rate
of 0.1) and gradient clipping of 1.0. We used ROC AUC metric on
the validation set for early stopping with a patience of 3 epochs.

3.1.1 Two Tower with Classification. We also extend our two-tower
model structure to have an additional classification task in docu-
ment tower, as depicted in the upper right of figure 2. For each doc-
ument, we collect a list of text queries estimated to be relevant for
that document(defined in §3.2) from de-identified and aggregated
Marketplace search log data. We keep the top 45k most common
queries. We treat the problem as a multi-label multi-class classifi-
cation task and use multi-label cross entropy, where each positive
target is set to be 1/k if there are k positive labels for the document
[19]. We compare the results of this multi-task architecture with
the vanilla two-tower model in §5.



3.2 Training
Training data. In traditional supervised learning, we require the
training data to contain both positive and negative examples. How-
ever, in our training setup, we take positive training (query, docu-
ment) pairs only and automatically obtain the negative examples
from the query to the other documents within a batch. Positive
(query, document) pairs can be collected through search log. In
particular, we use similar schema of data collection as in [2, 25]: we
create a dataset of document-query pairs from Facebook Market-
place search log by filtering for the following sequence of events:
(1) a user searches for a query, (2) clicks on a product,(3) messages
a Marketplace seller, and (4) the seller responds back. If all 4 events
happen within a short time, such as 24 hours, the user likely found
what they were looking for, and thus the query is considered rele-
vant to the document. We do not have access to message contents
and only know that users interacted with the sellers. We call se-
quences of such user interactions as 𝑖𝑛 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑎𝑡𝑖𝑜𝑛 [25].

Batch Negatives:We have used several ways to generate negative
examples. In order to explain how batch negatives work, we’ll
explain what happens during training in a single batch of batch size
𝐵. In every batch, we obtain the query embedding tensor {𝑞𝑖 }𝐵𝑖=1
with embedding dimension 𝐷 , and similarly we also obtain the
document embedding tensor {𝑑 𝑗 }𝐵𝑗=1 of the same size. We then
calculate a cosine similarity matrix {𝑐𝑜𝑠 (𝑞𝑖 , 𝑑 𝑗 )}𝐵𝑖,𝑗=1. The cosine
similarity matrix represents query document similarity for every
possible pair within a batch, with the row in the matrix belonging
to a query and the column belonging to a document. We treat this
as a multi-class classification problem, where the number of classes
is 𝐵, and document 𝑑𝑖 is the ground-truth class for query 𝑞𝑖 (as
shown in green grids in the figure 4) while the other documents
𝑑 𝑗 , 𝑗 ≠ 𝑖 are negative examples for 𝑞𝑖 . We use a scaled multi-class
cross-entropy loss (formulae 2) to optimize our network. The idea
of having a scale times cosine is also mentioned in Deng et al. [9].
During training, we found that having a 𝑠𝑐𝑎𝑙𝑒 is important for loss
to converge. In our use case, we choose scale between 15 and 20.

loss𝑖 = − log
exp(𝑠 · cos{𝑞𝑖 , 𝑑𝑖 })∑𝐵
𝑗=1 exp(𝑠 · cos{𝑞𝑖 , 𝑑 𝑗 })

where s denotes scale (2)

We’ve also tried Symmetrical Scaled Cross Entropy Loss (formu-
lae 3). This loss function optimizes query-to-document retrieval
and also document-to-query retrieval. While this loss neither im-
proves nor regresses the overall system metrics in our query to
document two-tower model discussed in this paper, in a different
use-case where we train document-to-document two-tower model,
this symmetric loss has shown 2% improvement in ROC AUC on
evaluation dataset.

− 1
2
(log exp(𝑠 · cos{𝑞𝑖 , 𝑑𝑖 })∑

𝑗 exp(𝑠 · cos{𝑞𝑖 , 𝑑 𝑗 })
+ log exp(𝑠 · cos{𝑞𝑖 , 𝑑𝑖 })∑

𝑗 exp(𝑠 · cos{𝑞 𝑗 , 𝑑𝑖 })
) (3)

3.3 Curriculum Training
In addition to the in-batch negative sampling described in §3.2,
we designed a curriculum training scheme where the two-tower
model is fed harder negative examples during 2nd stage training
and results in an absolute over 1% ROC AUC gain on the validation
set (see table 4). In the first stage of training, we train a model
using in-batch negative examples and let the model converge by

Figure 3: ROC-AUC curve for multi-stage training.

early stopping on ROC AUC metric on the validation set. We would
like to feed "harder" negative examples to the model for the 2nd
stage of training. While traditionally this would mean running a
separate data pipeline to find hard negativs and feeding this dataset
to the model, we propose to use negative examples within the batch:
we get the cosine similarity matrix of shape (𝐵 ∗ 𝐵) as usual. For
each row, we now extract the highest score besides the diagonal
score as the hard negative sample; we denote the column index of
this score as 𝑛𝑞𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐵

𝑗≠𝑖
𝑐𝑜𝑠 (𝑞𝑖 , 𝑑 𝑗 ). This will help to generate

training samples in format (𝑞𝑖 , 𝑑𝑖 , 𝑑𝑛𝑞𝑖 ). We explored scaled binary
cross entropy loss (formulae 4) and margin rank loss (formulae
5) with these triplet samples, and observed that margin rank loss
with margin between 0.1 and 0.2 works best. In-batch hard negative
sampling also reduces the additional CPU usage in finding hard
negatives and the additional cost in maintaining another offline
data pipeline.

Initially, curriculum training with harder negatives did not work
well. Through experiments, we found that it is crucial to make sure
the first stage training converges before kicking off 2nd stage train-
ing. Additionally, we observed that 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑢𝑚 in𝑀𝑎𝑟𝑔𝑖𝑛𝑅𝑎𝑛𝑘

loss3 performs better than 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =𝑚𝑒𝑎𝑛.

loss𝑖 = −𝑙𝑜𝑔(𝜎 (𝑠 · 𝑐𝑜𝑠 (𝑞𝑖 , 𝑑𝑖 ))) + 𝑙𝑜𝑔(1 − 𝜎 (𝑠 · 𝑐𝑜𝑠 (𝑞𝑖 , 𝑑𝑛𝑞𝑖 ))) (4)

loss𝑖 =𝑚𝑎𝑥 (0,−[𝑐𝑜𝑠 (𝑞𝑖 , 𝑑𝑖 ) − 𝑐𝑜𝑠 (𝑞𝑖 , 𝑑𝑛𝑞𝑖 )] +𝑚𝑎𝑟𝑔𝑖𝑛) (5)
Figure 3 is ROC AUC evaluation metric curve of multi-stage

training from one of our model training instances, we see a ROC
AUC bump in 2nd stage training.

3.4 Evaluation
Before A/B tests through online traffic, we evaluate our model
candidates offline and select the best one based on batch recall@K,
ROC AUC, and KNN Recall and Precision.

Batch recall@K : This metric measures whether diagonal element
𝑐𝑜𝑠 (𝑞𝑖 , 𝑑𝑖 ) is among the top K scores of the row 𝑐𝑜𝑠 (𝑞𝑖 , 𝑑 𝑗 ), 𝑗 ∈
[1, 𝐵]. This metric is easy to compute during training and is the
closest metric that the model optimizes, enabling us to iterate fast
on modeling ideas.

3https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html



Figure 4: Generation of random negative examples.
ROC AUC: In Facebook Marketplace, we regularly collect human-

rated data for the quality of search engine. Human-rated evalua-
tion is done on publicly visibly products, and the query data is
de-identified and aggregated before evaluation proceeds. Given the
set of pre-selected search queries, numbers usually in thousands,
we scrape search engine results and send them to human raters for
evaluation: 1 for relevant document that satisfies the search intent
of the query and 0 for the irrelevant. This gives us an evaluation
dataset of (query, document) pair with a label. With cosine similar-
ity of the inferenced query and document embeddings 𝑐𝑜𝑠 (𝑞, 𝑑) as
score, we calculate ROC AUC. ROC AUC are used as a validation
metric during training time for early stopping and an offline evalu-
ation metric after model is trained. The human-rated data helped
us evaluate potential impact on relevance and the search quality.

KNN Recall@K : On the other hand, we evaluate the potential
impact on online engagement by KNN Recall and Precision. KNN
Recall@K is an offline evaluation metric to calculate on the eval-
uation dataset after we trained the model. We trained our models
using weeks of online engagement data (𝑖𝑛 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑎𝑡𝑖𝑜𝑛 defined
in §3.2), and evaluated on data of the future unseen days: given a
trained two-tower model and an evaluation dataset, inference query
embedding and document embedding. Given query embedding, we
use Faiss (Johnson et al. [16]) K-nearest neighbor to retrieve N
similar documents in the document embedding space and check
whether the original query’s ground-truth document is among the
top K retrieved documents. We observe that KNN Recall@K metric
is closely correlated to online performance for Embeddings-based
Retrieval.

3.5 Speeding up model inference
At Facebook, our systems need to handle a large QPS at lightning
speed to serve our large user base. Search queries are requested by
the user in real-time and we expect to return the result within hun-
dreds of milliseconds. The query side model needs to be fast enough
to satisfy system requirements. Therefore, we experimented with
various transformer architecture to handle the trade-off between
latency and accuracy. We experimented with two XLM models in
the query tower: one with 2 layers, 4 attention heads and 128 sen-
tence embedding dimension and the other with 3 encoder layers, 4
attention heads and 256 sentence embedding dimension. We found
the former to have a P99 latency of 1.5ms while the latter had a
P99 latency of 3.5ms while the performance gain was minimal. We
cap the query sequence length to be at the 99th percentile of all
query lengths in Marketplace search. We used a dropout of 0.1 and
a feed-forward embedding dimension of 3x of sentence embedding

dimension. We used a SentencePiece vocabulary of size 150k for all
of our experiments.

The document tower model has lesser requirement on execution
speed, because document side embeddings can be pre-computed
offline, or computed near real-time after document creation, and
then ingested into the search system backend.We sharemore details
on serving system optimizations in §4.

We also take advantage of Torch Just-In-Time (JIT) compilation
to speed up our inference.

3.6 Fusion of different modalities
We experimented with various approaches to mix different modal-
ities, for example text modality and image modality. The default
approach is simple attention fusion as described in Eq.1. We refer
to this approach as baseline modalities handling.

Gradient blending [26] is an optimization technique to balance
among different modalities and reduce overfitting on dominant
modalities in a multi-modal setting. In gradient blending, we train
M+1 models: M uni-modal models and one full multi-modal model,
where M is the number of modalities. We compute losses for each
model and take a weighted sum of the losses with estimated weights
as the final loss. The intuition behind this is to let the model learn
even when the modality is not present, making the model robust
to sparse input features.

We extend Gradient Blending to Two Tower architecture by
keeping one tower with full modalities at a time. For example in
Figure 2, we say the query tower has 𝑚 = 2 modalities: query
and country; and the document tower has 𝑛 = 3 modalities: title,
description and image. We then get𝑚 + 𝑛 + 1 losses as formulated
below, where {𝜑1

𝑖
}𝑚1 and {𝜑2

𝑗
}𝑛1 are uni-modal deep networks for

the left tower and right tower respectively, and ⊕ denotes a fusion
operation:

L𝑚𝑢𝑙𝑡𝑖 = 𝐿(𝑐𝑜𝑠 (𝜑11 ⊕ ... ⊕ 𝜑1𝑚, 𝜑21 ⊕ ... ⊕ 𝜑2𝑛))
L1
𝑖 = 𝐿(𝑐𝑜𝑠 (𝜑1𝑖 , 𝜑

2
1 ⊕ ... ⊕ 𝜑2𝑛)) 𝑖 ∈ [1,𝑚]

L2
𝑗 = 𝐿(𝑐𝑜𝑠 (𝑐𝑜𝑠 (𝜑11 ⊕ ... ⊕ 𝜑1𝑚, 𝜑2𝑗 )) 𝑗 ∈ [1, 𝑛]

(6)

Modality is a loosely define term. We can treat each input feature
channel as an individual modality. In that case, in Figure 2, the
query tower has 𝑚 = 3 modalities and the document tower has
𝑛 = 5 modalities. We can also group related features together to
be considered as one modality. For example, if product description
feature is missing, then neither description raw text nor description
character tri-grams is present. We can group the two features to-
gether. Then in the document tower, we only have 𝑛 = 3modalities:
title, description and image. We share results of our experiments
on gradient blending in Table 1. We did not observe statistically sig-
nificant improvement in offline metrics by using gradient blending
with individual feature channels, and observed that grouped feature
Gradient blending provides a boost in performance by +0.91% in
ROC AUC, Gradient blending is only applied during training, and
during inference we run the full multi-modal model as usual.

3.7 Model Interpretability
3.7.1 Does XLM encoder add value to the query tower? One ques-
tion that was commonly asked is whether it is useful to have XLM



Technique ROC AUC % (relative)

Baseline modalities handling -
GB - individual feature -1.2% (non-significant)
GB - grouped feature +0.91%

Table 1: Evaluation of modalities fusion on human rated
dataset.

Tower Feature Tower Importance
Query XLM 60%
Query Char trigram 40%
Document GrokNet 55%
Document Description XLM 13%
Document Title XLM 9%
Document Description Char trigram 1.5%
Document Title Char trigram 1.5%
Document Language 1%
Document Country 1%

Table 2: Feature Importance Calculation

encoder for the query tower. One may argue that queries usually
are short phrases, and for Marketplace the queries are head-heavy
(most of the traffic is dominated by a small set of queries). Intu-
itively character tri-gram may already be good enough to represent
the queries.

We use the attentionweights to explore the answer in this section.
In the query tower, we have an attention mechanism between
the query character tri-gram channel and the query XLM encoder
channel. The attention weights (which sum to 1) are formulated in
Eq.1. We extract these attention weights and try to interpret which
feature the model is paying more attention to. We find that the XLM
encoder had an average attention weight of 0.64 compared to 0.36
for the EmbeddingBagEncoder. We find an interesting observation
when we plot the attention weight as a function of the query length.
We find the model attends to character tri-gram more when the
query length is less than 5 characters, but XLM encoder weight
dominates for longer queries.

3.7.2 Feature Importance. We think the two-tower model is more
of a "search" problem than a "classification" problem.

As a result, we propose a different way to compute feature im-
portance for the two-tower model where we compute feature im-
portance within a tower while keeping the other constant. We use
a feature importance technique known as Feature Ablation - where
each input feature is replaced by a baseline (a tensor of zeros, or
feature value from other random training point) and the change in
output is computed.

We present the feature importance results in Table 2. As we can
see, XLM dominates among all textual features in both towers. On
the other hand, the character tri-gram features also provide non-
trivial gains. This is consistent with our study in Section 3.7 where
the character tri-gram features contribute most for short queries.
On the document tower, we use pretrained image embedding from

Figure 5: System architecture of Que2Search.

GrokNet [2], the state-of-the-art image recognition system at Face-
book. From the Table 2 we see image modality provides significant
value to the model.

Additionally we use deep sets [29] fusion over multiple images of
the product, it provides additional benefits especially for products
like garage sale where several products are getting sold within one
listing.

4 SYSTEM ARCHITECTURE
Wenowdescribe the system architecture of deployment ofQue2Search,
Facebook’s large-scale product understanding system for Market-
place. Que2Search is deployed in production and is designed to
operate on products created in real-time. Model inferences are com-
puted at cloud of machines called Predictor [12]. Predictor provides
functionality to deploy the model, and API to call the model with
a set of input features. Predictor is a cloud service and can scale
accordingly. Given the call to Predictor, the query embedding is
computed within 1.5 ms P99 and document embedding within 7ms.
We store the product embeddings using Unicorn [8] along with
other product indexes for search retrieval and ranking.

Document side model serving. Upon the creation and update of
a product, an asynchronous call will be made to Predictor to gen-
erate its product embedding, and the embedding vector will be
updated to search index in real-time to prepare the product for
retrieval and ranking. In other words, product embeddings are al-
ready pre-computed and indexed when search queries are issued,
which makes the computation of query product similarity across
many product candidates tractable. In addition, Unicorn further
clusters and quantizes [16] the embedding space to speed up the
computations. Our infrastructure also supports backfills embed-
dings to older products. After a new model is deployed, it usually
takes under 24 hours to backfill embedding to enough documents
to the search index to be experimentation ready.

Query time model serving. At the inference time query flow fol-
lows the path of calling our backend Natural Language Under-
standing Service (NLP service), which calls to Predictor service
in real-time. NLP service caches the embeddings in memory for a
fixed period of time (e.g. 8 hours) to speed up the service response
and save on the Predictor computations. Query embeddings is then



Technique Batch Recall@1

Wide & dense char trigram baseline [25] 0.6788
Char tri-gram + raw text features 0.7292
Char tri-gram + image features 0.7237
Char trigram + raw text + image 0.7445

All features + Attention Fusion on both towers 0.7456
Above + Shared XLM for title & description 0.7459

Table 3: Ablation study of features and parameters. Each
modality brings it’s separate gain independently. Char tri-
gram continue to be useful.

passed to Unicorn search engine backend for product retrieval. Uni-
corn search engine is capable to do approximate nearest neighbor
(ANN) retrieval with boolean constraints, which means that we
can, for example, require that we retrieve most relevant/matching
products for the query, and at the same time require that products
are within 50 miles radius of the user specified location, and along
with other traditional term matching expression. Results are then
passed back to several stages of ranking. We use the cosine similar-
ity score produced by the two-tower model as a ranking feature in
all stages of ranking.

5 ABLATION STUDIES
We performed offline ablation studies to confirm the efficiency of
every step. Our baseline model [14] uses deep & wide architecture
and applies character tri-gram features on the textual attributes of
the products; the model has been previously shipped to production
and achieved production gains. In table 3 we share results of the
ablation studies comparing new model and features additions. We
see that adding XLM/XLM-R based raw text feature transformers
significantly improves batch Recall@1(§3.4).4 Similar impact comes
from image features, where we apply deep sets fusion [29] over
up to five images of the product. Text transformers and image
features each provide independent value; jointly introduction of
text transformers and image features gives a relative improvement
of +9.23%. Simple attention fusion (Eq.1) over tower modalities, as
compared to concatenation fusion, gives 0.15% improvement; and
having a shared XLM-R encoder across text fields of the product
provides additional improvement of 0.18% (see Table 3).

Que2Search two-tower model also substantially improved ROC
AUC on human-rated datasets. Results of evaluation are shown in
Table 4. Both image and textual features provide additional value,
where XLM encoder on raw text contributed most gains, with 2.1%
absolute improvement in ROC AUC. Second biggest contributor
comes from curriculum training with boost in ROC AUC by 0.8%
absolute (§3.3). A different learning rate for XLM modules from the
rest of the model (§3.1) helps to improve the quality further with
1% relative improvement. Addition of classification task head in
the document tower (§3.1) provides 0.61% relative improvement in
ROC AUC. Gradient blending with grouped features (§3.7) makes
the model more robust for cases when one of the modalities is not

4We used batch Recall@1 in the initial stages of development and report details in
Table 3. In subsequent studies, we reported ROC AUC improvements on human-rated
dataset.

Technique ROC AUC

Wide & dense char trigram baseline [25] 0.795
Char trigram + raw text features 0.816
Char trigram + image features 0.806
Char trigram + raw text + image 0.825
Above + Curriculum Training 0.833
Above + varying XLM LR 0.837
Above + Classification head 0.842
Above + GB-grouped feature 0.849

Table 4: Evaluation on human rated dataset. Each modal-
ity brings it’s separate gain independently. Attention fusion
and sharing of weight included.

Technique In-conversation

(Baseline) No Embedding-based Ranking -
(EBR) char tri-gram only model [25] +3.3%

(EBR) Que2Search model +2.80%
(Ranking) Cosine similarity ranking feature +1.24%

Table 5: Online A/B testing results for incremental engage-
ment gains from different techniques. Relative improve-
ment from each technique assumes the productionalization
of the techniques above. Model uses the techniques men-
tioned in Table 4.

present in the product description and gives an additional rela-
tive improvement of 0.91% in ROC AUC. In summary, Que2Search
achieved over 5% absolute ROCAUC improvement over the existing
Facebook product understanding system.

6 DEPLOYMENT LESSONS
We deployed Que2Search on Facebook Marketplace powering hun-
dreds of millions of product searches per day. Furthermore, we
achieved this scalably by integrating it as an organic component of
Facebook Marketplace’s Embedding-based Retrieval and ranking
stacks, via various optimizations in precision, recall, CPU usage and
latency. Online A/B testing showed that Que2Search led to more
than 4% increase in search product engagements, with around 2.8%
coming semantic retrieval, and 1.24% from ranking. Table 5 shows a
more detailed breakdown of how different techniques incrementally
contribute to search product engagement gains.

6.1 Embedding-based retrieval
With the introduction of Que2Search, we are able to perform more
semantic retrieval using Unicorn’s native support for embedding-
based retrieval (EBR) [14]. More specifically, as described in section
4, we deployed the query tower model to a NLP service to generate
query embeddings in real-time, and deployed the product tower
model on an async update path to Unicorn index upon the creation
and update of a product. When a user issues a product search, its
search query will be translated into an embedding vector to perform
an ANN search in the product embedding space using Unicorn’s
NN-operator, and products within a threshold of cosine distance
will be retrieved as a result.



6.2 There is no silver bullet for retrieval
Note that we deployed Que2Search as an organic component of
the whole Marketplace search retrieval, instead of using it as the
only mean of search retrieval. Other key components of the whole
retrieval process include a traditional token-based retrieval that is
semantically parallel to the ANN search, and other possible con-
straints such as location, social [13], and product category. And
this is done seamlessly using Unicorn’s query language [8] (i.e.
ANN and token-based retrieval are organized under an OR, and
constraints are grouped into a high-level AND).

Empirically, we discovered that it is beneficial to treat EBR as
a component to solve semantic matches, instead of seeing it as a
silver bullet for all retrieval problems. Here are a few reasons (1)
despite that Que2Search is location-aware, it is difficult to specify
explicit location constraints in ANN search, which is crucial to a
local commerce search engine like in Facebook Marketplace (2)
ANN search is unable to handle user-selected filters which is a key
feature in any commerce search engine (3) due to performance
concerns, it is hard to make ANN search exhaustive, while token-
based retrieval offers a cheap alternative to cover easier cases more
exhaustively.

6.3 Precision, recall, CPU usage and latency
When deploying Que2Search, precision, recall, CPU usage and la-
tency are the dimensions whose trade-offs need to be optimized. In
terms of Unicorn’s NN-operator, they can be translated into two
hyper-parameters - 𝑛_𝑝𝑟𝑜𝑏 and 𝑟𝑎𝑑𝑖𝑢𝑠 . Since Unicorn takes a clus-
tering and product quantization approach [14, 16], the number of
clusters to be scanned determines how exhaustive the ANN search
can be, which is controlled by 𝑛_𝑝𝑟𝑜𝑏. Generally, more clusters
scanned means higher precision but higher CPU usage. And when
a product is scanned, its cosine distance to the query vector is cal-
culated. Then 𝑟𝑎𝑑𝑖𝑢𝑠 parameter controls the threshold to determine
whether to retrieve this product or not.

Although a grid search of the hyper-parameters is possible using
online A/B testing, we want to minimize user impacts especially
when poorly chosen parameters degrade user experiences. There-
fore, we simulated the retrieval on a golden query set to reduce into
a handful of reasonably good candidates before setting up online
A/B testing. The golden set consists of search results scraped against
Marketplace search using stratified sampling of search queries. We
also asked raters to judge whether a result is relevant or not. With
this golden set, we can simulate retrieval using different 𝑟𝑎𝑑𝑖𝑢𝑠 and
determine the aggressiveness of retrieval by examining the number
of results returned, and the recall of the relevant ones. However,
online A/B testing is still essential to choose the right parameters,
because apart from the need to measure the real user engagements,
sometimes CPU usage and latency are difficult to be simulated
accurately due to their close connections to user behaviors.

6.4 Optimizing for continuous pagination
One key observation on how user behaviors can affect CPU usage
measures is around continuous pagination, which refers to users
keep scrolling down the search result page to trigger more retrieval
requests so that more products can be surfaced. Obviously, if a
user is satisfied with the top results (equivalently, the first retrieval

request offers great precision), we will save CPU usage because
any subsequent requests will not need to be triggered. However,
we also know empirically that users are sensitive to the latency
of the first request - if no results are displayed in sometime, the
entire search could be abandoned. This means we cannot make
the first request too expensive in favor of precision. To summarize,
continuous pagination could be used as a lever to trade off precision,
recall and CPU usage, but subject to constraints like latency.

With that observation in mind, we enabled EBR with a conser-
vative 𝑛_𝑝𝑟𝑜𝑏 and 𝑟𝑎𝑑𝑖𝑢𝑠 setup for the first request, so that we can
keep a high bar on latency, and made the EBR in subsequent re-
quests more expensive to optimize for engagements further. Based
on online A/B testing results, we discovered that this dynamic
ANN configuration yielded the same engagement wins compared
to keeping the same configuration throughout, but with a sub-
stantial reduction in both CPU usage cycles and latency. In fact,
without this optimization, we would not able to enable Que2Search
in production due to latency concerns.

6.5 Search Ranking
Based on table 4, we know that the query-product cosine similarity
score from two-tower model is a good predictor of the human-
rated dataset. Provided that the similarity score is readily available
from retrieval stage, we also exposed the score to search ranking
to leverage Que2Search further.

Facebook Marketplace’s search ranking follows a two-stage
scheme, where a lightweight GBDT ranker runs on individual index
server instances to select the top results from each shard, and a
more expensive DLRM-like [20] model is used to further select the
best results. To utilize Que2Search in ranking, we simply added
the score as a ranking feature to both stages. We examined feature
importance and discovered that the cosine distance feature is of
top one importance in both stages, and online A/B testing showed
that such simple feature addition yielded statistically significant
engagement improvements as illustrated in table 5.

6.6 Lessons from failures
Deploying Que2Search for better search quality is a trial-and-error
process, and we encountered many phenomena that could seem
counter-intuitive at first sight.

Precision matters:. Precision is obviously very important in vari-
ous machine learning tasks, but it is less intuitive why we cannot
use recall as the only criteria in a search retrieval setting. In other
words, we discovered that relaxing the threshold of ANN search
could lead to worse results although theoretically, it should not
affect the total number of good results being retrieved. Further
analysis showed that this is caused by the inconsistency between
the retrieval and ranking models - our ranking model is not able
to handle the noisier results retrieved via a more relaxed thresh-
old. Improving the consistency between multi-stage models is a
research topic by itself [5, 28] which we will not expand in details.
And eventually, we simply ran online and offline parameter sweeps
to decide the best threshold.

Relevance is not enough:. A naive approach to improve the consis-
tency between retrieval and ranking model is to simply use the two



tower model’s cosine similarity as the ranking score. A nice conse-
quence of this approach is that it guarantees all results retrieved
due to a more relaxed threshold can be ranked at the bottom. In
fact we experimented with this idea by replacing our GBDT-based
stage one model with the cosine similarity, but although we discov-
ered a significant relevance improvement measured by NDCG, it
regressed online engagement considerably. This is possibly because
the two-tower model is trained to optimize query-product similarity
instead of optimizing engagement, while the GBDT model is more
engagement focused. Although it is possible to add engagement
features to the two-tower model, it is not a trivial extension because
many of our important engagement features are hand-tuned dense
features based on both searcher and product signals, which violate
the independence/late-fusion property of a two-tower model.

7 CONCLUSION
We presented approaches for building a comprehensive query and
product understanding system called Que2Search. We presented
innovative ideas on multi-task and multi-modal training to learn
query and product representations. ThroughQue2Searchwe achieved
over 5% absolute offline relevance improvement and over 4% online
engagement gain over state-of-the-art Facebook product under-
standing system. We shared our experience on tuning and deploy-
ing BERT based query understanding model for search use-cases
and achieve 1.5 ms inference time at 99th percentile. We shared
our deployment story, and practical advice on deployments steps,
and how to integrate Que2Search component in search semantic
retrieval and ranking stacks.
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