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Abstract—Deep neural networks (DNNs) achieve great success
in blind image quality assessment (BIQA) with large pre-trained
models in recent years. Their solutions cannot be easily deployed
at mobile or edge devices, and a lightweight solution is desired. In
this work, we propose a novel BIQA model, called GreenBIQA,
that aims at high performance, low computational complexity
and a small model size. GreenBIQA adopts an unsupervised
feature generation method and a supervised feature selection
method to extract quality-aware features. Then, it trains an
XGBoost regressor to predict quality scores of test images. We
conduct experiments on four popular IQA datasets, which include
two synthetic-distortion and two authentic-distortion datasets.
Experimental results show that GreenBIQA is competitive in
performance against state-of-the-art DNNs with lower complexity
and smaller model sizes. Code is available at: https://github.com/
zhanxuanm/GreenBIQA

Index Terms—image quality, image quality assessment, blind
quality assessment, green learning

I. INTRODUCTION

Image quality assessment (IQA) aims to evaluate image
quality at various stages of image processing such as image
acquisition, transmission, and compression. Based on the
availability of undistorted reference images, objective IQA can
be classified into three categories [12]: full-reference (FR),
reduced-referenced (RR) and no-reference (NR). The last one
is also known as blind IQA (BIQA). FR-IQA metrics have
achieved high consistency with human subjective evaluation.
Many FR-IQA methods have been well developed in the last
two decades such as SSIM [17] and FSIM [23]. RR-IQA
metrics only utilize features of reference images for quality
evaluation. In some application scenarios (e.g., image re-
ceivers), users cannot access reference images so that NR-IQA
is the only choice. BIQA methods attract growing attention in
recent years.

Generally speaking, conventional BIQA methods consist
of two stages: 1) extraction of quality-aware features and 2)
adoption of a regression model for quality score prediction.
As the amount of user generated images grows rapidly, a
handcrafted feature extraction method is limited in its power
of modeling a wide range of image content and distortion
characteristics. Recently, due to the strong feature representa-
tion capability of deep neural networks (DNNs), DNN-based
BIQA methods have been proposed and they have achieved
significant performance improvement [19]. Yet, collecting
large-scale IQA datasets with user annotations is expensive
and time-consuming. Moreover, for IQA datasets of a limited

size, DNN-based BIQA methods tend to overfit the training
data and do not perform well against the test data. To address
this problem, DNN-based solutions often rely on a huge pre-
trained network which is trained by a large dataset. The
large model size demands high computational complexity and
memory requirement. Such a solution cannot be easily de-
ployed at mobile or edge devices, where a lightweight solution
is essential. Here, we propose a lightweight BIQA method
called GreenBIQA. It aims to achieve high performance that is
competitive with DNN-based solutions yet demands much less
computing power and memory. To this end, for a video source,
GreenBIQA can predict perceptual quality scores frame by
frame in real time.

To enlarge the training sample number in GreenBIQA, we
first crop distortion-sensitive patches from images. Then, an
unsupervised representation determination method is used to
obtain a large number of joint spatial-spectral features from
each patch. Next, we adopt a supervised feature selection
method, called the relevant feature test (RFT) [20], to reduce
the dimension of quality-aware features. Finally, an XGBoost
[3] regressor is used to predict the final quality scores.

There are two main contributions of this work.
• A novel, lightweight and modularized BIQA method

is proposed. The components of GreenBIQA include
image augmentation, unsupervised feature determination,
supervised quality-aware feature selection, and MOS pre-
diction. It can extract quality-aware features efficiently
and yield accurate quality predictions.

• We conduct experiments on four widely-used BIQA
datasets to demonstrate the advantages of GreenBIQA.
It outperforms all conventional BIQA methods in pre-
diction accuracy. Furthermore, its prediction performance
is highly competitive with state-of-the-art DNN-based
methods, which is achieved with a significantly smaller
model size and at a much faster speed.

The rest of this paper is organized as follows. Related work
is reviewed in Sec. II. GreenBIQA is proposed in Sec. III.
Experimental results are shown in Sec. IV. Finally, concluding
remarks are given in Sec. V.

II. REVIEW OF RELATED WORK

Quite a few BIQA methods have been proposed in the last
two decades. Existing work can be classified into conventional
and DNN-based two categories as reviewed below.
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Fig. 1. An overview of the proposed GreenBIQA method.

A. Conventional BIQA Method

Conventional BIQA methods extract quality-aware features
from input images. Then, they train a regression model, e.g.,
Support Vector Regression (SVR) [1] or XGBoost [3], to
predict the quality score based on these features. One repre-
sentative class of conventional methods relies on the Natural
Scene Statistics (NSS). For example, BIQI [14] developed the
Distorted Image Statistics (DIS) to capture the NSS changes
caused by various distortions. Then, it adopted a distortion-
specific quality assessment framework. By following a similar
two-stage framework, DIIVINE [15] improved the perceptual
quality prediction performance furthermore. Instead of com-
puting distortion-specific features, BRISQUE [13] used scene
statistics to quantify loss of naturalness caused by distortions.
It operated in the spatial domain with low complexity. Al-
though NSS-based methods are simple, their features are not
powerful enough to handle a wide range of distortion types.

Another class of conventional methods leverage the use of
codebooks. They share one common framework; namely, local
feature extraction, codebook construction, feature encoding,
spatial pooling, and quality regression. For instance, CORNIA
[21] extracted raw-image-patches from unlabeled images and
used clustering to build a dictionary. Then, an image can be
represented by soft-assignment coding with spatial pooling of
the dictionary. Finally, SVR was adopted to map the encoded
quality-aware features to quality scores. By following the
same structure, HOSA [18] was developed to improve the
performance and reduce the computational cost. Besides the
mean of each cluster, some high order statistical information
(e.g., dimension-wise variance and skewness) of clusters can
also be aggregated to form a small codebook. Codebook-
based methods demand high-dimensional handcrafted feature
vectors. Again, they cannot handle a wide range of distortion
types effectively.

B. Deep-learning Based BIQA Method

Deep-learning-based methods have been investigated to
solve the BIQA problem. A BIQA method based on the
convolutional neural network (CNN), consisting of one con-
volutional layer with max and min pooling and two fully
connected layers was proposed in [7]. To alleviate accuracy
discrepancy between FR-IQA and NR-IQA, BIECON [8] used
FR-IQA to compute proxy quality scores for image patches

and, then, used them to train the neural network. WaDIQaM
[2] adopted a deep CNN model that contains ten convolutional
layers and two fully connected layers.

Yet, early networks can only handle synthetic distortions
(i.e., with given distortion types generated by humans). To
achieve better performance, recent work adopts a DNN pre-
trained by large datasets. For example, a DNN was pre-
tained by the ImageNet [4] and synthetic-distortion datasets
in DBCNN [24]. Furthermore, to reflect diverging subjective
perception evaluation on an image, PQR [22] adopted a score
distribution to represent image quality. A hyper network,
which adjusts the quality prediction parameters adaptively, was
proposed in HyperIQA [16]. Both local distortion features and
global semantic features were aggregated in this work to gather
fine-grained details and holistic information, respectively. Af-
terwards, image quality was predicted based on the multi-scale
representation. Despite the good performance of pre-trained
DNNs, their huge model sizes are difficult to deploy in many
real-world applications.

III. GREENBIQA METHOD

As shown in Fig. 1, GreenBIQA adopts a modularized
solution that consists of the following four modules: (1)
image augmentation, (2) unsupervised feature determination,
(3) supervised quality-aware feature selection, and (4) MOS
prediction. They are elaborated below.

Fig. 2. An example of cropped subimages for (a) authentic-distortion and (b)
synthetic-distortion datasets.

Image Augmentation. Image augmentation is implemented
to enlarge the number of training samples. This is achieved
by image flipping and cropping. All obtained subimages are



assigned the same MOS as their source image. To ensure
the overall perceptual quality of a subimage, we adopt two
different image augmentation strategies for BIQA datasets for
authentic-distortions and synthetic-distortions, respectively.

For authentic-distortion datasets such as KonIQ-10K [6],
distortions are introduced during capturing. Collected images
have a diverse type and a wide range of distortions. Besides,
distortions are not uniformly applied to images. To preserve
the perceptual quality of subimages and avoid loss of semantic
and/or content information, we crop larger subimages out of
source images as shown in Fig. 2 (a). The cropped subimages
can be overlapped. Each subimage is a squared one. Its size is
determined by the height of the source image. We select the
left-most, center and right-most three subimages.

In contrast, for synthetic-distortion datasets such as KADID-
10K [11], all distortions are added by humans. They are
often applied to original undistorted images uniformly with
few exceptions (e.g., color distortion in localized regions in
KADID-10K). Consequently, we can crop out patches of
smaller sizes and treat them as subimages to get even more
training samples. An example of non-overlapping cropped
patches from an image in KADID-10K is shown in Fig. 2
(b). We select patches that have higher frequency components.
Thus, patches containing foreground objects are more likely
to be selected than those containing simple background. We
feed selected patches to the next module.

Fig. 3. The block diagram of unsupervised feature determination.

Unsupervised Feature Determination. Given subimages
obtained above, we derive a set of features to represent
the subimages in an unsupervised manner using a two-hop
hierarchy as shown in Fig. 3, where HOP1 and HOP2 are
used to capture local and global representations, respectively.
Since image and video coding standards all adopt block-based
DCT, the processing of GreenBIQA also operates in the DCT
domain for faster speed.

In HOP1, we partition an input subimage into non-
overlapping blocks of size 8 × 8 and compute the DCT
coefficients of each block. It is done for the Y, U and V
channels separately. This step can be skipped if the quality

assessment software and the image decoding software can be
integrated since the DCT coefficients can be directly obtained
from compressed images. DCT coefficients of each block are
scanned in the zigzag order, leading to one DC coefficient
and 63 AC coefficients, denoted by AC1-AC63. Since the
DC coefficients of spatially adjacent blocks are correlated, we
apply the Saab transform [9] to decorrelate them in HOP2.
Specifically, we partition DC coefficients from HOP1 into
non-overlapping blocks of size 3× 3. To implement the Saab
transform, nine DC coefficients are flattened into a 9-D vector
denoted by y = (y1, · · · , y9)T . The mean of the nine DC
coefficients, ȳ = (

∑9
i=1 yi)/9, defines the DC in HOP2.

Next, the principle component analysis (PCA) is applied to
the mean-removed vector y′ = y− ȳ(1, · · · , 1)T to yield eight
AC coefficients, denoted by AC1 to AC8 in HOP2.

There are 63 AC coefficients in each block of HOP1 and
1DC and 8 AC coefficients in each block of HOP2. It is
essential to aggregate them spatially to reduce the feature
number. To lower the feature dimension, we first take their
absolute values and conduct maximum pooling. Next, we
adopt the following operations to generate two sets of features.

• Compute the maximum value, the mean value, and the
standard deviation of the same coefficient across the
spatial domain.

• Conduct the Saab transform on spatially adjacent regions
for further dimension reduction and use the Saab coeffi-
cients as spectral features.

The above two sets of features are concatenated to form a set
of unsupervised features.

Fig. 4. RFT results in Y, U and V three channels.

Supervised Quality-Aware Feature Selection. To reduce
the feature dimension furthermore, we select quality-aware
features from the set of unsupervised features obtained in the
previous module. This is accomplished by a recently developed
method called the relevant feature test (RFT) [20]. For each
1D feature, RFT splits its dynamic range into two subintervals
with a certain partitioning point and uses training samples to
calculate a cost function. In our current context, we choose
the weighted average of root-mean-squared errors (RMSE) of
the two subintervals as the cost function. The set of features
with the smallest cost functions are selected as quality-aware
features. We order features of the smallest to the largest cost
functions for Y, U, V three channels in Fig. 4. We see clearly



TABLE I
STATISTICS OF IQA DATASETS.

Dataset Dist. Ref. Dist. Types Scenario
CSIQ [10] 866 30 6 Synthetic
KADID-10K [11] 10,125 81 25 Synthetic
LIVE-C [5] 1,169 N/A N/A Authentic
KonIQ-10K [6] 10,073 N/A N/A Authentic

an elbow point in all three curves. We treat feature dimensions
before the elbow point as quality-aware features. All selected
feature dimensions are concatenated to form the set of quality-
aware features.

MOS prediction. After quality-aware features are selected,
we adopt the XGBoost [3] regressor as the quality score pre-
diction model that maps d-dimensional quality-aware features
to a single quality score. Since we extract k subimages from
each image in image augmentation, we have k predicted MOS
values for each distorted image. Finally, we adopt a mean filter
to ensemble the predictions from all subimages to yield the
final MOS prediction for a test distorted image.

IV. EXPERIMENTS

Datasets. We evaluate GreenBIQA on four IQA datasets,
including two synthetic datasets and two authentic datasets.
Their statistics are given in Table I. CSIQ [10] and KADID-
10K [11] are two synthetic-distortion datasets, where multiple
distortions of various levels are applied to a set of reference
images. LIVE-C [5] and KonIQ-10K [6] are two authentic-
distortion datasets, which contains a diverse range of distorted
images captured by various cameras in the real world.

GreenBIQA Training. We crop 25 patches of size 96× 96
and 6 subimages of size 384× 384 from images in synthetic-
and authentic-distortion datasets, respectively. The number of
quality-aware features for each of the Y, U, V channels is set
as 2,500, 600, and 600 for authentic and synthetic images,
respectively. For the XGBoost regressor, the learning rate is
set to 0.05 and the max depth and number of estimators are
set to 5 and 1000, respectively. We adopt the early stopping
for the XGBoost regressors. All the experiments are run on a
server with Intel(R) Xeon(R) E5-2620 CPU.

Evaluation Metrics. The performance is measured by the
Pearson Linear Correlation Coefficient (PLCC) and the Spear-
man Rank Order Correlation Coefficient (SROCC). PLCC is
used to measure the linear correlation between predicted scores
and subjective quality scores. It is defined as

PLCC = 1−
∑

i(pi − pm)(p̂i − p̂m)√∑
i(pi − pm)2

√∑
i p̂i − p̂m)2

, (1)

where pi and p̂i denote the predicted score and the subjective
quality score, pm and p̂m denote the mean of predicted
score and the subjective quality score, respectively. SROCC is
adopted to measure the monotonicity between predicted and
subjective quality scores. It is defined as

SROCC = 1−
6
∑L

i=1(mi − ni)
2

L(L2 − 1)
, (2)

where mi is the rank of pi in the predicted scores, ni is
the rank of p̂i in the subjective quality score and L is the
number of images. We adopt the standard evaluation procedure
by splitting each dataset into 80% for training and 20%
for testing. Furthermore, 10% of training data is used for
validation. We run experiments 10 times and report the median
PLCC and SROCC values. For synthetic-distortion datasets,
splitting is implemented based on reference images to avoid
content overlapping.

Performance Benchmarking. We compare the perfor-
mance of GreenBIQA with four conventional and five deep-
learning-based methods, and report their results in Table II.
We divide them into four categories.

• NIQE [14] and BRISQUE [13] use NSS-based hand-
crafted features.

• CORNIA [21] and HOSA [18] are codebook-learning
methods.

• BIECON [8] and WaDIQaM [2] are deep-learning meth-
ods without pre-training.

• PQR [22], DBCNN [24], and HyperIQA [16] are deep-
learning methods with pre-training.

As shown in Table II, GreenBIQA outperforms conventional
BIQA methods in all four datasets. It also outperforms two
deep-learning methods without pre-training in both authentic-
distortion datasets. As compared with deep-learning methods
with pretraining, GreenBIQA achieves competitive or even
better performance in synthetic-distortion datasets (i.e., CSIQ
and KADID-10K). Furthermore, we show the SROCC perfor-
mance of individual distortions in the CSIQ dataset in Table
III. There are six distortion types in CSIQ. The best performer
in each category is selected for comparison. GreenBIQA
performs especially well for JPEG distortion. This could be
attributed to the fact that its features are extracted in the
DCT domain. For authentic-distortion datasets, GreenBIQA
performs better than traditional deep-learning methods such
as BIECON and WaDIQaM, which demonstrates that it can
generalize well to diverse distortions. There is a performance
gap between GreenBIQA and deep-learning models with pre-
training. Yet, these pre-trained models have much larger model
sizes as a tradeoff.

Memory Size Comparison. A small memory size is critical
to real-world applications such as mobile phones. To illustrate
the tradeoff between performance and memory sizes, we show
the SROCC performance versus the memory size (under the
assumption that one parameter takes one byte memory) of
several benchmarking methods against CSIQ and KonIQ-10K
in Fig. 5(a). We see that GreenBIQA can achieve simliar
performance on CSIQ and competitive performance on KonIQ-
10K. Since high performance deep-learning methods have
a huge pre-trained neural network as their backbone, their
model sizes are usually more than 100 MB. In contrast,
GreenBIQA only needs 600 KB for feature extraction and
1.17 MB for the regression model. Furthermore, GreenBIQA
outperforms BIECON and WaDIQaM, which are two deep-
learning methods without pre-training, on KonIQ-10K. As



TABLE II
RESULTS ON MULTIPLE IQA DATABASES.

BIQA Method CSIQ LIVE-C KADID-10K KonIQ-10K Model Size (MB)
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

NIQE [14] 0.627 0.712 0.455 0.483 0.374 0.428 0.531 0.538 -
BRISQUE [13] 0.746 0.829 0.608 0.629 0.528 0.567 0.665 0.681 -

CORNIA [21] 0.678 0.776 0.632 0.661 0.516 0.558 0.780 0.795 7.4
HOSA [18] 0.741 0.823 0.661 0.675 0.618 0.653 0.805 0.813 0.23

BIECON [8] 0.815 0.823 0.595 0.613 - - 0.618 0.651 35.2
WaDIQaM [2] 0.955 0.973 0.671 0.680 - - 0.797 0.805 25.2

PQR [22] 0.872 0.901 0.857 0.882 - - 0.880 0.884 235.9
DBCNN [24] 0.946 0.959 0.851 0.869 0.851 0.856 0.875 0.884 54.6
HyperIQA [16] 0.923 0.942 0.859 0.882 0.852 0.845 0.906 0.917 104.7

GreenBIQA (Ours) 0.925 0.936 0.673 0.689 0.847 0.848 0.812 0.834 1.9

(a) SROCC performance versus the memory size of several benchmarking methods

(b) SROCC performance versus the running time of several benchmarking methods

Fig. 5. Comparison of (a) model sizes and (b) running time on CSIQ and KonIQ-10K.



TABLE III
SROCC OF INDIVIDUAL DISTORTION TYPES IN CSIQ.

WN JPEG JP2K FN GB CC
BRISQUE [13] 0.723 0.806 0.840 0.378 0.820 0.804
HOSA [18] 0.604 0.733 0.818 0.500 0.841 0.716
WaDIQaM [2] 0.974 0.863 0.947 0.882 0.979 0.923
HyperIQA [16] 0.927 0.934 0.960 0.931 0.915 0.874
GreenBIQA (Ours) 0.937 0.971 0.947 0.928 0.922 0.829

compared to codebook-learning methods such as CORNIA and
HOSA, whose model sizes are determined by the lengths of
the codewords, GreenBIQA achieves much better performance
while its size is slightly larger than HOSA and much smaller
than CORNIA.

Running Time Comparison. Another factor to consider
for BIQA at the client is running time in MOS prediction.
As streaming services and video calls are widely used at
mobile devices nowadays, it is desired to assess the quality of
individual video frames in real-time with limited computation
power. For deep-learning methods with huge pre-trained mod-
els, their computations are heavy and have to be run on one or
multiple GPUs. To illustrate the tradeoff between performance
and running time, we show the SROCC performance versus
the MOS inference time per frame of GreenBIQA and four
conventional methods on a CPU against CSIQ and KonIQ-
10K in Fig. 5(b). Note that we do not include deep-learning-
based methods in Fig. 5(b) since they are all implemented on
GPUs. GreenBIQA can process around 43 images per second
with a single CPU. Thus, it meets the real-time processing
requirement. We see from Fig. 5(b) that GreenBIQA has the
smallest inference time among all benchmarking methods.
It can be executed faster than conventional methods (i.e.
NSS-based and codebook-learning methods) with significantly
better SROCC performance on both datasets.

V. CONCLUSION AND FUTURE WORK

A lightweight BIQA method, called GreenBIQA, was pro-
posed in this paper. GreenBIQA was evaluated on two syn-
thetic and two authentic datasets. GreenBIQA outperforms
all conventional BIQA methods in all datasets. As compared
to pre-trained deep-learning methods, GreenBIQA achieves
0.978x performance in synthetic datasets and 0.842x perfor-
mance in authentic datasets with 54x smaller model size. It
can extract quality-aware features in real-time (i.e. 43 images
per second) using only CPUs.

Generally speaking, human annotations of image quality
are often limited and difficult to collect. Thus, it is desired
to transfer the GreenBIAQ model trained with one dataset to
another one with weak supervision and evaluate the general-
ized capability of GreenBIQA under cross-database settings
in the future extension. In addition, considering that recent
mobile and edge devices have GPUs, GPU acceleration for
GreenBIQA will be implemented in the future.
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