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ABSTRACT

Spoken language understanding system is traditionally de-
signed as a pipeline of a number of components. First, the
audio signal is processed by an automatic speech recognizer
for transcription or n-best hypotheses. With the recognition
results, a natural language understanding system classifies the
text to structured data as domain, intent and slots for down-
streaming consumers, such as dialog system, hands-free ap-
plications. These components are usually developed and op-
timized independently. In this paper, we present our study
on an end-to-end learning system for spoken language under-
standing. With this unified approach, we can infer the se-
mantic meaning directly from audio features without the in-
termediate text representation. This study showed that the
trained model can achieve reasonable good result and demon-
strated that the model can capture the semantic attention di-
rectly from the audio features.

Index Terms— Spoken language understanding, end-to-
end training, recurrent neural networks

1. INTRODUCTION

With the growing demand of voice interfaces for mobile and
virtual reality (VR) devices, spoken language understanding
(SLU) has received many researchers’ attention recently [1, 2,
3, 4, 5, 6, 7]. Given a spoken utterance, a typical SLU system
performs three main tasks: domain classification, intent de-
tection and slot filling [1]. Standard SLU systems are usually
designed as a pipeline structure. As shown in Fig. 1, recorded
speech signals are converted by an automatic speech recog-
nition (ASR) module into the spoken format text, followed
by an optional inverse text normalization module to translate
the spoken domain text to the written domain; then a natu-
ral language understanding (NLU) module is used to deter-
mine intent and extract slots accordingly. Although there are
some works (e.g. [8]) that take the possible ASR errors into
consideration when designing the NLU module, the pipeline
approach is widely adopted. One arguable limitation of this
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Fig. 1: Traditional SLU system. The NLU part (in blue) is trained
on transcripts and consists of a domain classifier, intent classifier
and a slot filling model. The speech recognition part (in orange) is
trained independently. During the evaluation time the NLU system
uses the recognized text from the ASR system, as denoted by the
dotted arrows.

pipelined architecture is that each module is optimized sepa-
rately under different criteria: the ASR module is trained to
minimize the word error rate (WER) criterion, which typi-
cally weights each word equally; obviously not every word
has the same impact on the intent classification or slot fill-
ing accuracy. On the other hand, the NLU module is typ-
ically trained on the clean text (transcription) without ASR
errors, but during evaluation, it has to use recognized hy-
potheses outputted by the ASR module as the input: errors
in ASR module, especially in noisy conditions, will be prop-
agated to SLU degrading its performance. Second considera-
tion is how human process speech signal to extract intent level
concepts. Intuitively, when asked to perform intent detection
tasks, humans do not understand speech by recognizing word
by word; instead, humans interpret and understand speech
directly, while attention is given to the high level concepts
which are directly related with the task. It is thus desirable to
train an SLU system in an end-to-end fashion.

End-to-end learning has been widely used in several
areas, such as machine translation [9, 10, 11] and image-
captioning[12]. It has also been investigated for speech
synthesis [13] and ASR tasks [14, 15, 16]. For example, the
CTC loss function is used to train an ASR system to map the
feature sequences directly to the word sequences in [16] and
it has been shown to perform similarly to the traditional ASR
systems; in [17, 18], encode-decoder models with attention
have been used for ASR tasks, including large vocabulary
ASR. End-of-end learning of memory networks is also used



for knowledge carryover in multi-turn spoken language un-
derstanding [19].

Inspired by these success, we explore the possibility to ex-
tend the end-to-end ASR learning to include NLU component
and optimize the whole system for SLU purpose. As the first
step towards an end-to-end SLU system, in this work, we fo-
cus on maximizing the single-turn intent classification accu-
racy using log-Mel filterbank feature directly. Contributions
of this work are following: 1) we demonstrate the possibility
of training a language understanding model from audio fea-
tures (see Section 3). To the best knowledge of authors this is
the first work on this topic; 2) We show that the performance
of an SLU degrades when evaluating on the ASR output. The
details of our experiments are described in Section 4, and re-
sults in Section 5; Additionally, we perform experiments on
noise-corrupted data. We artificially add noise to the audio
data to demonstrate the degradation of the performance of a
standard SLU evaluation and test our system.

2. STANDARD ASR AND NLU SYSTEMS
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Fig. 2: A schematic picture of a traditional ASR system. The re-
current acoustic model predicts the states of an HMM. It is decoded
with Viterbi algorithm using the language model (LM).

Given a sequence of feature vectors X = (x1, . . . ,xT ),
an ASR system is trained to find the most likely word se-
quences W ∗ = (w1, . . . , wn) using the chain rule:

W ∗ = argmax
W

p(W |X) = argmax
W

p(X|W )p(W ).

Therefore, the ASR system is usually divided into two mod-
els: an acoustic model p(X|W ) and a language model p(W )
(AM and LM respectively). CD-HMM-LSTM [20] is widely
used as an AM, in which the feature vector sequence is con-
verted to the likelihood vectors of context-dependent HMM
states for each acoustic frame. Together with the LM (p(W )
is usually a statistical n-gram model) and a dictionary, a
Viterbi decoder is used to search for the most likely word
sequence. Fig. 2 depicts the described standard ASR archi-
tecture: the core part of the AM is a multi-layer LSTM [21]
network, which predicts the probability of CD-HMM states
for each frame. Since most of the SLU systems requires
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Fig. 3: A schematic diagram of a standard NLU system for do-
main/intent classification. “fc” means a fully-connected layer.

spontaneous response, usually only uni-directional LSTM is
used.

Given the word sequence output by the ASR module, an
NLU module is used to perform domain and intent classifica-
tion, and to fill slots for different intents accordingly. Follow-
ing [5], we use LSTM-based utterance classifier, in which the
input words are first embedded in a dense representation, and
then the LSTM network is used to encode the word sequence.
We found 2-layer bi-directional LSTM encoder performs bet-
ter. Fig. 3 demonstrates how a standard NLU system predicts
the domain/intent for a given word sequence. Note that since
the NLU system incurs much smaller latency compared with
the ASR system and the classification only starts after the en-
tire word sequence become available, it is possible to use bi-
directional RNNs for NLU.

In the pipelined approach to SLU, ASR, and NLU mod-
ules are usually trained independently, where the NLU mod-
ule is trained using human transcription as the input. During
the evaluation phase, the ASR output is piped into the NLU
module.

3. END-TO-END SPOKEN LANGUAGE
UNDERSTANDING

As the first step towards the end-to-end spoken language un-
derstanding, we focus on two tasks: speech-to-domain and
speech-to-intent. Both tasks are sequence classification prob-
lems where the input is log-Mel filterbank feature vectors.

The task of end-to-end SLU is close to speech recognition
with a difference that the structure of the output is simpler but
the transformation is more complicated and the data is noisy
and non-unimodal (close utterances may have sufficiently dif-
ferent intents). For this reason our model was inspired by
works in end-to-end speech recognition [22, 10, 15, 23]. We
use an encoder-decoder framework. The input log-Mel filter-
bank features are processed by an encoder which is a multi-
layer bidirectional gated recurrent unit (GRU, [24]) network.
A potential issue of using log-Mel filterbank feature is that
it is generated every 10 ms: the 10-ms frame rate is good
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Fig. 4: End-to-end SLU system. Sub-sampling is performed at every
layer to reduce the output sequence length. Our best model uses 4
layer bidirectional GRU.

for classifying sub-phone unit like CD-HMM states, while it
may not be suitable for utterance-level classification as GRUs
may forget most of the speech content when it arrives at the
end of the utterance end due to gradient vanishing. In order
to reduce the sequence length processed by GRUs, we sub-
sample [10, 15] the hidden activations along the time domain
for every bi-direction GRU layer (see Fig. 4). This allowed
us to extract a representation roughly at a syllable level in
a given utterance. On the other hand, this significantly re-
duced the computational time for both training and predic-
tion, which enables us to use bi-directional GRU for real time
intent and/or domain classification. Given the encoder output,
a max-pooling layer along the time axis is used to compress
it into a fixed dimension vector. This is followed by a fully-
connected feed-forward layer. Finally, a softmax layer is used
to compute the posterior probability of intents or domains.

4. EXPERIMENTS

We train and evaluate our models on an in-house dataset con-
taining VR spoken commands collected for that purpose. The
dataset is close in spirit to ATIS corpus [25]. The dataset con-
tains about 320 hours of near field annotated data collected
from a diverse set of more than 1000 de-identified speakers.
It was recorded in two scenarios: scripted and free speech.
The scripted half is read speech with a fixed script. For the
free speech part, the participants were asked to achieve cer-
tain goal using any phrasing, then these utterances were tran-
scribed. Every utterance has transcription as well as meta in-
formation including a domain label and an intent label. After
cleaning data we extracted 5 domains and 35 distinct intents.
Roughly 11,000 utterances, totaling 10 hours audio, are used
as the evaluation set.

For all our experiments we used log-Mel filterbank fea-
tures. We used an encoder-decoder architecture [9]. The en-
coder is a 4 layer bidirectional GRU network with 256 units
every layer. The output was sub-sampled with a stride of 2 at
every layer to reduce the length of the representation. The de-
coder network takes the output of the encoder and aggregates
them with a max-pooling layer and puts it through a 1-layer
feed-forward network (hidden size 1024) to produce either
the domain or intent class. The network was optimized with
Adam [26] algorithm until convergence on the validation set.
We used the batch normalization [27] for every feed-forward
connection to speed up the convergence of this network.

The baseline NLU model for our experiments was a re-
current network similar to our model with an exception that
we did not use sub-sampling. The input word was repre-
sented as one-hot vector and a trainable embedding was used.
This model is close to state of the art models and ones used
in production [28, 29]. This network was evaluated in two
regimes: using the transcript text, and using the recognized
text. The former shows the upper bound for our models
and corresponds to the perfect speech recognition. The later
regime was transcribed by a speech recognizer: the core part
of AM is a four-layer CD-HMM-LSTM network[20] with
800 memory cells in each layer, trained on the same 320
hours training data with a cross-entropy criterion to predict
posterior probabilities of 6,133 clustered content-dependent
states; the vocabulary size is 80,000 and the LM is trained on
the transcribed 320 hours speech and interpolated with a large
background LM which is trained on other sources; there are
roughly 200M n-grams in the LM. Our ASR system achieved
3.5% word error rate on the evaluation set. Each utterance
from the evaluation set was recognized with this ASR and
inputed to the baseline NLU network. In order to provide
the fair comparison we did not use any external data in both
cases. No pretrained embeddings or dictionary look-up was
used.

We also emulate the real-world situation where the in-
put to the SLU system is noisy. Both training and evalu-
ation datasets were corrupted by convolving with recorded
room impulse responses (RIRs) whose T60 times ranges from
200ms to 1 second. Background noise was added as well:
for training data, the SNR ranges from 5 to 25dB, while for
evaluation data, the SNR ranges from 0 to 20dB. Every train-
ing utterance is distorted 2 times by using different RIRs,
sources of background noise and SNRs. This results in a
600 hours noise-corrupted training set. Utterances in evalu-
ation set are only distorted once. Both the ASR system and
our end-to-end system were retrained on this noise-corrupted
training set. Due to the reverberation and relatively strong
background noise, the ASR has considerably higher word er-
ror rate (28.6% WER).



Fig. 5: Filter-bank features and corresponding saliency maps for our
speech-to-domain model. It can be seen that the model responds to
“what’s the weather” part and “play” or “spotify” from the second
example. Top image is “weather” domain, bottom image is “music”
domain.

5. RESULTS AND DISCUSSION

We first present results of domain classification. Five domains
in this corpus are “music,” “weather,” “news,” “sports,” “opt-
in, opt-out.” The results for domain recognition are summa-
rized in Table 1. The performance in “Transcript text” row is
evaluated on perfect transcriptions that correspond to human
transcription and such performance is not achievable with the
current ASR system. For qualitative analysis of our end-to-
end model, we visualize the saliency map (gradients w.r.t.
input) in Fig. 5 for a selected utterance. We notice that the
position of the network response corresponds to meaningful
positions in the utterance. As it can be seen in Table 1, the
accuracy is close to perfect on this dataset. Therefore we con-
tinue with a more challenging task of the intent classification.

Table 1: Results for domain classification. The first row corre-
sponds to evaluation on clean transcripts, the maximum performance
achievable with this model.

Input Accuracy, %

Transcript text 99.2
Recognized text 98.1
Audio 97.2

Examples of intents are “Learn about the weather in your
location,” “Learn about the weather in different location,”
“Learn the results of a completed sports match, game, tour-
nament,” “Learn the status of an ongoing sports match, game,
tournament.” These classes are more fine grained and require
deeper understanding of a given utterance. For the ablation
study we report the performance of variations of our end-
to-end model: initially, we use last-layer hidden activations
at the end of both left-to-right and right-to-left directions as
the encoder output; this is compared with using max pool-
ing to aggregate all the hidden activations in the last layers
in Table 2, which shows that using max-pooling activations
increases performance. We hypothesize that due to the long
input speech sequence (ranging from 100 to 1,000 input

Table 2: Results for intent classification. As mentioned above, the
first row is the maximum performance achievable with this model.
We report the number of parameters for the models used to demon-
strate that a much smaller end-to-end model achieves reasonable per-
formance.

Input Parameters Accuracy, %

Text input
Transcript 15.5M 84.0
Recognized 15.5M 80.9

Clean audio features
no BN, no max-pool 0.4M 71.3
no BN, max-pool 0.4M 72.5
BN, max-pool 0.4M 74.1

Noisy audio features
Recognized text 15.4M 72.0
Audio 0.4M 64.9

frames), the activations in the last time step may not suffi-
ciently summarize the utterance. This is contrary to the NLU
model using text as input, whereas using hidden activations
from the last time step usually suffice, as the input length is
relatively small (a majority of them are less than 20 words).
We also observe that using batch normalization (BN) in both
encoder and decoder significantly improves the classification
accuracy, which indicates that our end-to-end model is diffi-
cult to optimize due to the long input sequence. The results
for the noise-corrupted data are also reported in the bottom
part of Table 2. The performance of both models degrades
significantly. A potential advantage of our end-to-end ap-
proach to SLU is that since the model is optimized under the
same criterion, the model can be made very compact; this
is demonstrated in the same table by comparing the number
of parameters of neural networks in standard SLU system
and our system. Note that the parameters in the LM are not
included, although it is usually two or three magnitude more
than AM in ASR. Due to the compactness of our end-to-end
model, we are able to predict the intent or domain with a real
time factor around 0.002, which makes the use of bi-GRU in
our model possible for real time applications.

With this work we hope to start a discussion on the topic
of the audio-based SLU. Although, the end-to-end approach
does not show superior performance, it provides a promis-
ing research direction. With significantly less parameters our
system is able to reach 10% relatively worse accuracy. One
of the future directions for this work is to encompass the slot
filling task into this framework. It requires simultaneous pre-
diction of a word and a slot. This can be tackled with the
attention-based networks. Other directions are to explore dif-
ferent architectures for the decoder, such as using different
pooling strategies, using deeper networks and incorporating
convolutional transformations.



6. REFERENCES

[1] Gokhan Tur and Renato De Mori, Spoken language under-
standing: Systems for extracting semantic information from
speech, John Wiley & Sons, 2011.

[2] Puyang Xu and Ruhi Sarikaya, “Contextual domain classifica-
tion in spoken language understanding systems using recurrent
neural network,” in ICASSP, 2014.

[3] Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang, Yangyang
Shi, and Dong Yu, “Recurrent neural networks for language
understanding,” in Interspeech, 2014.

[4] Aditya Bhargava, Asli Celikyilmaz, Dilek Hakkani-Tür, and
Ruhi Sarikaya, “Easy contextual intent prediction and slot de-
tection,” in ICASSP, 2013.

[5] Suman V Ravuri and Andreas Stolcke, “Recurrent neural net-
work and LSTM models for lexical utterance classification,” in
Interspeech, 2015.

[6] Ruhi Sarikaya, Geoffrey E Hinton, and Anoop Deoras, “Appli-
cation of deep belief networks for natural language understand-
ing,” IEEE/ACM Transactions on Audio, Speech and Language
Processing, 2014.

[7] Gokhan Tur, Li Deng, Dilek Hakkani-Tür, and Xiaodong He,
“Towards deeper understanding: Deep convex networks for se-
mantic utterance classification,” in ICASSP, 2012.

[8] Fabrizio Morbini, Kartik Audhkhasi, Ron Artstein, Maarten
Van Segbroeck, Kenji Sagae, Panayiotis Georgiou, David R
Traum, and Shri Narayanan, “A reranking approach for recog-
nition and classification of speech input in conversational dia-
logue systems,” in SLT, 2012.

[9] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Sequence to
sequence learning with neural networks,” in NIPS, 2014.

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio,
“Neural machine translation by jointly learning to align and
translate,” arXiv:1409.0473, 2014.

[11] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N Dauphin, “Convolutional sequence to sequence
learning,” arXiv:1705.03122, 2017.

[12] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Ben-
gio, “Show, attend and tell: Neural image caption generation
with visual attention,” in ICML, 2015.

[13] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, An-
drew Senior, and Koray Kavukcuoglu, “Wavenet: A generative
model for raw audio,” arXiv:1609.03499, 2016.

[14] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-
hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper,
Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al., “Deep
speech 2: End-to-end speech recognition in English and Man-
darin,” in ICML, 2016.

[15] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,
“Listen, attend and spell: A neural network for large vocabu-
lary conversational speech recognition,” in ICASSP, 2016.

[16] Hagen Soltau, Hank Liao, and Hasim Sak, “Neural speech rec-
ognizer: acoustic-to-word LSTM model for large vocabulary
speech recognition,” arXiv:1610.09975, 2016.

[17] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio, “Attention-based mod-
els for speech recognition,” in NIPS, 2015.

[18] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Phile-
mon Brakel, and Yoshua Bengio, “End-to-end attention-based
large vocabulary speech recognition,” in ICASSP, 2016.

[19] Yun-Nung Chen, Dilek Hakkani-Tür, Gökhan Tür, Jianfeng
Gao, and Li Deng, “End-to-end memory networks with knowl-
edge carryover for multi-turn spoken language understanding,”
in Interspeech, 2016.
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