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Datacenters are characterized by their large scale, comprising a large 
number of network links and switches. However, these hardware 
components can develop intermittent faults, resulting in randomly 

occurring packet drops or delays that harm application performance—several 
such faults occur daily in large production datacenters. Since the effects are 
intermittent, traditional detection techniques involving end-host and router 
statistics or active probe traffic can fall short in their ability to identify and 
locate these errors. In this article, we present our passive hybrid approach 
that combines network path information with end-host-based statistics to 
rapidly detect and pinpoint the location of datacenter network faults inside a 
production Facebook datacenter.

Modern datacenters continue to increase in scale, speed, and complexity. Unfortunately, 
experience indicates that modern datacenters are rife with hardware and software failures—
indeed, they are designed to be robust to large numbers of such faults. The large scale of 
deployment both ensures a non-trivial fault incidence rate and complicates the localization 
of these faults. Recently, authors from Microsoft described [9] a rogue’s gallery of datacen-
ter faults: dusty fiber-optic connectors leading to corrupted packets, switch software bugs, 
hardware faults, incorrect ECMP load balancing, untrustworthy counters, and more. Con-
founding the issue is the fact that failures can be intermittent and partial: rather than failing 
completely, a link or switch might only affect a subset of traffic, complicating detection and 
diagnosis. To illustrate this difficulty, the authors of NetPilot [8] describe how a single link 
dropping a small percentage of packets, combined with cut-through routing, resulted in 
degraded application performance and a multiple-hour network goose chase to identify the 
faulty device.

We present our approach [5] to detect and localize such faults by providing greater visibility 
into the fate of application traffic once it is injected into the network—specifically, by expos-
ing network path information for all datacenter traffic to the end-hosts. This allows us to 
correlate poor network performance observed at each end-host to the specific component in 
the network that is responsible passively, without any probe traffic overhead. Furthermore, 
we find that the vast amount of data available—we use TCP state machine data for every flow 
on every host—allows us to do so fairly rapidly.

Current Methods
Commonly deployed network monitoring approaches include end-host monitoring (e.g., 
RPC latency and TCP retransmits) and switch-based monitoring (e.g., drop counters and 
queue occupancies). However, such methods can fall short for troubleshooting datacenter-
scale networks. Host monitoring alone lacks specificity in the presence of large numbers 
of alternative paths, which is characteristic of datacenter topologies [2, 7]. An application 
suffering from dropped packets or increased latency does not give any insight on where the 
fault is located, or whether a given set of performance anomalies are due to the same faults. 
Similarly, if a switch drops a packet, the operator is unlikely to know which application’s traf-
fic was impacted or, more importantly, what is to blame. Even if a switch samples dropped 
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packets, the operator might not have a clear idea of what traffic 
was impacted. Due to sampling bias favoring high volume flows, 
mouse flows experiencing loss might be missed. Switch-coun-
ter-based approaches are further confounded by cut-through 
forwarding and unreliable hardware [8, 9]. Recent work [9] uses 
detailed path tracing of a subset of network traffic, combined 
with a modicum of active probe traffic, to debug where pack-
ets are dropped in the network and why. We argue that, for the 
highly regular topologies used by current datacenter networks, it 
should be possible to determine path information for all traffic. 
Luckily, common datacenter topologies are particularly ame-
nable to providing this functionality.

Getting Path Information Scalably
Facebook’s datacenters consist of thousands of hosts and hun-
dreds of switches grouped into a multi-rooted, multi-level tree 
topology [2]. Figure 1 describes a simplified view of this topology, 
focusing on one of the several identical “pods” in the network. 
Each pod consists of several tens of Top-of-Rack (ToR) switches, 
each responsible for a few tens of servers. Each pod also contains 
four aggregation switches (Aggs) that enable inter-rack commu-
nication; every ToR connects to every Agg in the pod. Pods are 
in turn interconnected by a layer of core switches; each Agg is 
connected to a disjoint subset of core switches. 

The network uses equal-cost multipath (ECMP) routing. When 
a host communicates with a host in another rack, a hash func-
tion at the ToR switch determines which ToR-to-Agg uplink the 
packets traverse based on fields such as source and destination 
IP addresses and network ports. Similarly, when a host com-
municates with a host in another pod, a hash function at the Agg 
switch determines which Agg-to-Core uplink is used. 

For cross-pod traffic, once a packet reaches the core layer, 
there is only one path leading to the destination server. Thus, 
if we know the start and end point of a packet (from the source 
and destination IP address) and the core switch it transits, the 
receiving host can learn the entire path traversed. Thus, we 
assign an ID to each core switch and install a rule on the core 
switch instructing it to stamp every packet it forwards with this 
ID (see Figure 2).

Pinpointing a Fault to a Link
Once we have full path information, we could theoretically 
associate packet loss with a particular network path. However, 
this doesn’t tell us which link along the path is responsible. An 
observation about the traffic engineering employed at Facebook 
aids us, however.

A significant amount of engineering effort has been targeted 
at calming hotspots at the application level to ensure that no 
particular server is overloaded by requests [4]. Specifically, for a 
front-end datacenter containing Web and cache servers (which 

cache user data stored by back-end databases), every Web server 
spreads its requests for user data across all the cache servers 
in the datacenter. Furthermore, these requests are individually 
quite small and evenly spread, but in aggregate constitute the 
bulk of traffic within the network. This application-level load 
balancing is in addition to normal network load balancing tech-
niques like ECMP routing.

Consequently, if we look at a level of the multirooted tree topol-
ogy (for example, every Agg to Core link in a pod, or every ToR 
to Agg link in a pod), every link in the group we examine has a 
very even load—both in terms of number of flows and number of 
bytes handled—on short timescales of just a few seconds. The 
aggregate performance of the flows for any given link is similar 
to that of the flows of any other link within the set—we call it an 
“equivalence set” of links.

Figure 1: Facebook datacenter topology

Figure 2: Determining flow network path
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On the flip side, if one of the links is faulty, it sticks out like a 
sore thumb—the aggregate flow performance diverges com-
pared to the other links in the set. Thus, if we pick a metric that 
is correlated with packet loss—for example, TCP retransmits or 
congestion window—we can compare the distributions of the 
metric across links and perform outlier analysis to pinpoint the 
faulty link. Figure 3 depicts the distributions for TCP congestion 
window for each ToR to Agg uplink traversed by traffic destined 
for a single cache server, where link 1 (out of four total) has a 
0.5% induced packet loss rate; note the significant skew to lower 
values present for the distribution corresponding to that link.

Outlier Analysis
While it is visually apparent that the distributions of perfor-
mance metrics across links are impacted by the presence of a 
fault, we need a way to automate the process of using this infor-
mation to generate a verdict for every combination of (host, link) 
to determine whether the link is faulty or not. Fundamentally, 
the question we are asking is: does a particular link have more 
retransmits (or say, a smaller flow congestion windows) than the 
others? If so, maybe there is a fault at that link!

To answer this question, we use the Student’s t-test. The t-test 
determines whether a given distribution has a mean that is 
higher than another distribution. It is amenable to efficient 
streaming computation (a prototype implementation of our 
system uses approximately 0.5% of CPU on a production Web 
server) and runs on every host, with each host examining its own 
traffic. Note, however, that this raises the chance of false posi-
tives, where a link might temporarily have worse performance 
distributions, possibly due to effects like transient congestion. 
Given a large number of hosts, it is certain that some subset of 

them will incorrectly flag a link as faulty. We have to account for 
these false positives.

The observation we leverage is that false positives, in the 
absence of an actual fault, ought to be evenly distributed among 
links due to the high degree of load balancing. Thus, we aim to 
filter out the false positives by asking the question: are links 
being claimed as faulty roughly evenly, or is there a particular 
link (or group of links) that is (are) being accused more than the 
others? For that we use the chi-squared test, which is used to 
determine whether the frequency distribution of a set of events 
matches some theoretical distribution. The chi-squared test 
sees whether the claims that a link is faulty is evenly spread 
among all the links considered, or if a particular subset of links 
have a significantly higher percentage of hosts claiming fault. It 
outputs a p-value ranging from 0 to 1. If the outputted p-value is 
“close” to 0 (a common cutoff is 0.05), then the link with the most 
“faulty verdicts” is considered to actually be faulty. In the case 
of multiple errors, that link can be removed from the set consid-
ered, and the chi-squared test can be run again.

Putting It All Together
We combine the functional components described thus far into 
an always-active fault detection system. Our system involves 
functional components at all servers, a subset of switches, and 
a centralized aggregator, depicted step-by-step in Figure 4. 
Switches mark packets (1) to indicate network path as described 
before. Hosts then independently compare the performance of 
their own flows to generate a host-local decision (a “verdict”) 
about the health of all network components (2), performing out-
lier analysis using the Student’s t-test on metrics such as TCP 
retransmits. Specifically, every host will output a verdict for 
the ToR to Agg and Agg to Core links in its own pod once every 
10 seconds. These verdicts are sent (3) to a central aggrega-
tor, which filters false positives to arrive at a final set of faulty 
components using the chi-squared test (4), aggregating data 
and outputting a result once every 10 seconds (configurable to 
increase sensitivity as a tradeoff to reaction time) as well. We do 
not consider host to ToR uplinks in this system. 

Detecting Faults
To validate our approach, we deployed a prototype of our fault 
detection system inside a production Facebook front-end data-
center serving user Web traffic. For the sake of reproducible 
experiments, we primarily focus on injected synthetic failures, 
which we describe momentarily. We also discuss experience 
gained in tracking down naturally occurring partial faults.

Induced Faults
Within one of Facebook’s datacenters, we instrumented 86 Web 
servers spread across three racks with the monitoring infra-
structure described previously. Path markings are provided by a 

Figure 3: TCP congestion window distribution per ToR uplink for cache 
server. The ToR to aggregation switch 1 link has 0.5% randomized packet 
loss, which has shifted the distribution towards smaller values.
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single Agg switch, which sets DSCP bits based on the core switch 
from which the packet arrived. To inject faults, we use iptable 
rules installed at end-hosts to selectively drop inbound packets 
that traversed specific links (according to DSCP markings). 
For example, we can configure an end-host to drop 0.5% of all 
inbound packets that transited a particular core-to-Agg link.

First, for a single faulty core-to-Agg link, we depict the per-
centage of hosts that flag the faulty link as having an error as 
a function of the packet loss rate over consecutive 10-second 
intervals in Figure 5. For drop rates at 0.5% and higher, close to 
all of the hosts flag the link as faulty. For drop rates below 0.5%, 
we observe a linear drop off in the percentage of hosts that catch 
the fault.

Recall the aggregator, which gives us the overall verdict on per 
link health, looks for a non-trivial difference in the number of 
hosts that claim that a link is faulty before marking it faulty. 
Thus, over a 10-second interval, it might not decide that the 
fraction of hosts marking a link as faulty is significant for the 
smaller magnitude errors. Note, however, that since a fault is 
likely to persist for longer periods of times, we can simply run the 
aggregator for longer to catch an error. Instead of processing N 
verdicts over 10 seconds, we could aggregate and operate on 3N 
verdicts over 30 seconds. We find that this allows us to reliably 
catch the more slight errors as well, without inducing false posi-
tives in the no-error case.

Figure 6 depicts the amount of time needed by the aggregator 
to catch errors ranging from 0.25% packet loss down to 0.1%. 
Recall that a chi-squared test outputs a p-value, where if the 
p-value is “close” to 0 (we arbitrarily use 0.05 as our cutoff for 
“close”) it means that the link with the most faulty verdicts from 
the end-hosts is likely to, in fact, be faulty. Thus, we depict the 
p5, p50, and p95 for the p-values outputted by the aggregator for 
each packet loss rate. We see that a 20-second interval will reli-
ably catch a 0.25% error—in other words, the aggregator almost 
always outputs a p-value of less than 0.05. However, a 0.15% 
packet loss rate requires 40 seconds, and we receive an intermit-
tent signal for a 0.1% error—at least some portion of the time the 
aggregator will find no fault.

Naturally Occurring Faults
To determine whether our system can successfully detect and 
localize network anomalies in the wild, we deployed our system 
on 30 Web servers for a two-week period in early 2017, without 
inducing any synthetic errors. On January 25, 2017, the soft-
ware agent managing a single switch linecard that our system 
was monitoring failed. The failure had no immediate impact on 
traffic, since the existing switch rule set installed by the agent 
remained in effect. Roughly a minute later, however, as the BGP 
peerings between the linecard and its neighbors began to time 

Figure 4: High-level system overview (single pod depicted)

Figure 5: Single fault loss rate sensitivity

Figure 6: Controller interval required to find single fault vs. packet loss rate
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out, traffic was preemptively routed away from the impacted 
linecard.

Our system observed that as traffic was routed away from the 
failed linecard, the distributions of TCP’s congestion window 
and slow start threshold metrics for the traffic remaining on the 
faulty linecard’s links rapidly diverged from those associated 
with non-faulty linecards (Figure 7). The deviations are imme-
diate and significant, with the mean congestion window for the 
faulty linecard dropping over 10% in the first interval after the 
majority of traffic is routed away, and continually diverging from 
the working links thereafter. Furthermore, the volume of mea-
sured flows at each host traversing the afflicted linecard rapidly 
drops from O(1000s) to O(10s) per link.

By contrast, one of Facebook’s monitoring systems, NetNORAD 
[1], took several minutes to detect the unresponsive linecard con-
trol plane and raise an alert. It is important to note that in this 
case, we did not catch the underlying software fault ourselves; 
that honor goes to BGP timeouts. However, we do observe a sud-
den shift in TCP statistics in real time as traffic is routed away, 
as our system was designed to do. Thus, this anecdote shows that 
our system can complement existing fault-detection systems 
and provide rapid notification of significant changes in network 
conditions on a per-link or per-device basis. 

Caveats
A couple of caveats apply to this methodology. First, it is conceiv-
able that for more complicated topologies, a single stamp on a 
packet might not be enough to uniquely resolve the path. Prior 
work [6] has explored marking multiple packets with partial 
path information, such that the overall network path can be 
recovered by examining enough packets. We leverage a similar 
technique to generalize our packet-stamping mechanism. Sup-

pose there is a maximum of H hops in the network between any 
pair of communicating servers. We provide every switch an ID 
instead of a select few. Suppose a flow has H or more packets. 
The first packet can be marked by the sender with some bits that 
instruct the first switch in the path to stamp the packet only—for 
example, we might use the IP TTL field to arrange this. The sec-
ond can be marked so the second switch in the path marks it, and 
so on until we send H packets to recover the full path.

Second, when it comes to applying per-switch stamps, we need 
to choose where in the packet we apply it. Our prototype stamps 
the packet DSCP field, but this is limited since it is only 6-bits 
wide and frequently has other uses—typically for choosing 
switch-queueing policies. A solution that could scale to much 
larger networks would be to write to the IPv6 flow label field 
in the packet header, which is 20-bits wide. We are necessarily 
limited to what switch ASICs support, though the capabilities of 
switch ASICs has been progressively improving.

Future Directions
While our existing prototype has leveraged some favorable 
characteristics of the Facebook datacenter environment—most 
notably, the heavily load balanced traffic distribution—we are 
optimistic that our approach can generalize to datacenters with 
different and more variable application traffic patterns, such as 
Hadoop cluster workloads. Additionally, we hope that our find-
ings incentivize router manufacturers to provide more options to 
allow packet header manipulation, perhaps through mechanisms 
such as P4 [3].

Figure 7: Mean cwnd per (host, link) during linecard fault
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