
From Batch Processing to Real Time Analytics:
Running Presto® at Scale

Zhenxiao Luo∗, Lu Niu‡, Venki Korukanti§§, Yutian Sun†, Masha Basmanova†, Yi He‡, Beinan Wang∗,
Devesh Agrawal§, Hao Luo∗, Chunxu Tang∗, Ashish Singh‡, Yao Li∗, Peng Du§, Girish Baliga§, Maosong Fu∗

∗Twitter, †Facebook, ‡Pinterest, §Uber
Email: rooservelt.luo@gmail.com

Abstract—Presto is an open source distributed query engine
used widely at Facebook, Uber, Twitter, Pinterest, and many
other internet companies. Since open sourced in 2013, the
Presto community has made several rounds of design and
implementations, to support a variety of use cases, including
interactive analytics, real time reporting and dashboard, ETL
workloads, A/B testing, monitoring and alerts, etc. In this paper,
we’d like to introduce some of the most important features and
performance improvements the open source Presto community
made in recent years, which enables companies running Presto
at scale, supporting millions of queries per day, with hundreds of
thousands of machines. Specifically, how Presto provides unified
SQL on heterogeneous storage systems without data copy; how
Presto deals with complex data, including nested columnar data
and schema evolution; How Presto supports geospatial queries
efficiently, and how file list cache works in Presto. We also
talk about cluster federation, and Presto on cloud. Experimental
results and our production experience could help others running
interactive SQL systems at scale.

Index Terms—SQL, query engine, big data

I. INTRODUCTION

Presto [1] is an open source distributed query engine
used widely at Facebook, Uber, Twitter, Pinterest, and many
other internet companies. Presto’s performance, scalability,
and reliability features make it a good fit for a variety of
use cases, including real time dashboards, A/B testing, ad-hoc
analytics, and warehouse ETL jobs. During recent years, the
industry is leveraging Presto for more challenging use cases,
e.g. geospatial analytics, processing complex data efficiently,
unified SQL on heterogeneous storage systems, running Presto
on cloud. To address the challenges, the Presto community
contributed the following design and implementations:

• It is not uncommon for big companies to have multiple
storage systems. Ideally, engineers, data analysts, and
product managers would love to run SQL analytics on a
unified view of all data, no matter where the data resides.
While, data copy between different storage systems is
computationally expensive. Presto meets the needs in
an efficient way. Presto connectors enable unified SQL
on heterogeneous storage systems without data copy.
With predicate pushdown, limit pushdown, projection
pushdown, and aggregation pushdown, Presto connectors
leverage the power of underlying systems, and provide
unified SQL with on demand data streaming.

§Author was affiliated with Uber during the contribution period

• Nested data is used widely in big companies. While, most
systems at scale could not handle nested data processing
efficiently. We will share our journey of improving Presto
performance for highly nested data. With nested column
pruning, columnar reads, predicate pushdown, dictionary
pushdown, lazy reads, and vectorized reads, we improved
Presto performance by more than 10X. The new version
of Presto could process highly nested data at the speed
of flattened data. Furthermore, we also talk about how
Presto supports schema evolution for nested data, which
provides flexibility to data consumers.

• There are increasing needs to use Presto for geospatial
analytics. To support geospatial queries efficiently in
Presto, we build QuadTree [2] on the fly for geospatial
queries, which achieves more than 50X speedup.

• It is challenging for one single Presto cluster to scale
larger than 1000 machines. We design and implement
Presto gateway, which provides cluster federation, sup-
porting multiple clusters with a unified view.

• Cache is a common technique to improve query perfor-
mance. We will discuss how Presto leverages file list
cache, and file footer cache to improve performance.

• With graceful expansion and shrink, Presto could leverage
the elasticity when running on clouds. We implement
PrestoS3FileSystem, which provides File System interface
on top of AWS S3 [3]. A number of performance im-
provements are implemented in PrestoS3FileSystem, e.g.
Lazy seek, exponential backoff, etc.

Section II talks about Presto use cases at Uber, Twitter,
Facebook, Pinterest, and other companies. Section III is a
general introduction to Presto. In section IV, we talk about
Presto connectors, which provides unified SQL on heteroge-
neous storage systems. Section V is about how Presto deals
with complex data, including nested columnar data and schema
evolution. In section VI, we discuss how to support geospatial
queries in Presto efficiently. Section VII is about caching in
Presto. Section VIII covers how to run cluster federation, to
achieve better scalability for Presto. In section IX, we talk
about running Presto on cloud, including graceful expansion
and shrink, and AWS S3 optimizations. Section X shows our
experimental results. We outline key related work in section
XI. Finally, we will share our experience.



II. PRESTO USE CASES

A. Uber use case

Uber is running more than 10 Presto clusters [14], with more
than 3 thousand machines, supporting more than 2 million
queries per day, with more than 10 thousand weekly active
users. Presto is used widely at Uber, from marketplace pricing,
growth marketing, city operations, geospatial analytics, to ad-
hoc querying, reporting, dashboards, etc. Uber data is highly
nested, with Apache Parquet™ as its default file format. More
than 50 Petabyte of Apache Hadoop®1 Distributed File System
data are processed by Presto daily.

B. Twitter use case

Twitter is running Presto both on premise and on Google
Cloud [25]. 5 Presto clusters are running on around 4 thousand
machines. Twitter has a lot of nested data, with Apache Parquet
and Lzo-thrift format. Presto is used mostly for interactive
analysis. There are around 40 thousand Presto queries per day.
Around 50 Petabyte of data are processed by Presto daily.

C. Facebook use case

Facebook is running thousands of Presto nodes across
several data centers, processing hundreds of petabytes of data
and quadrillions of rows per day [1]. Presto is used widely at
Facebook, including interactive and BI queries, long-running
batch extract-transform-load(ETL) jobs, end-user facing high
performance dashboards, SQL analytics for multiple internal
NoSQL systems, and Facebook’s A/B testing infrastructure.

D. Pinterest use case

Pinterest has a cloud native infrastructure, where data are
stored in Amazon S3, and Presto clusters are built on top of
Amazon Web Services (AWS) EC2 [17]. Presto clusters are
comprised of a fleet of 1000+ r5.12xl EC2 instances, which has
hundreds of TBs memory and tens of thousands vcpu cores.
Within Pinterest, there are close to thousands of monthly active
users (out of total 2000+ Pinterest employees) using Presto,
who run multi-million queries on these clusters per month.

Presto is also widely used at Linkedin [26], Netflix [19],
Airbnb [27], and many other companies. The Presto open
source community [28] has 19,433 commits, with 4.4 thousand
forks, 12.9 thousand stars, and more than 266 releases.

III. HOW PRESTO WORKS

Each Presto cluster has one coordinator and multiple work-
ers. As shown in figure 1, Presto coordinator parses incoming
SQL, and tokenizes it into Abstract Syntax Tree(AST). Ana-
lyzer generates logical plan from Abstract Syntax Tree(AST).
Then optimizers run several rounds of optimizations, and
finally generate a physical plan. The fragmenter divides the
plan into fragments. Each running plan fragment is called
a stage, which could be executed in parallel. Stage consists

1Apache®, Apache Hadoop®, Apache Parquet™, Apache Pinot™, Apache
Druid™ are either registered trademarks or trademarks of the Apache Software
Foundation in the United States and/or other countries. No endorsement by
The Apache Software Foundation is implied by the use of these marks.

of tasks, which are processing one or many splits of input
data. Scheduler assigns tasks on worker execution slots. Some
workers are scanning files, some workers are streaming data
from underlying connectors, and some workers are running
SQL aggregations, joins, etc.

Metastore

Scheduler

Node Manager

Fragmenter

Analyzer

Planner

2. Abstract Syntax Tree

3. Logical Plan

4. Tasks

5. Scheduling

6. Membership & Status Tracking

Coordinator

Client

Worker

Aggregation

Pinot

Table Scan

Worker

1. SQL Query

8. SQL Operations

10. Streaming Result

Table Scan

Worker

Table Scan

Worker

Hadoop Distributed File System Elasticsearch

7. Read from HDFS, Pinot, Druid, or Elasticsearch

Table Scan

Worker

Druid

9. Streaming Result

Fig. 1. How presto works internally

Presto supports columnar file formats, including Parquet
[4] and ORC [5]. Internally, Presto is a vectorized engine,
which processes a bunch of in memory encoded column values
vectorized, instead of row by row. Presto leverages ASM
[6] to do dynamic code generation for expression evaluation.
Although Presto could spill intermediate results to disk, most
Presto deployments are doing in memory only processing.

IV. PRESTO CONNECTORS

Presto has a connector interface and implementations to run
SQL queries on heterogeneous storage systems. In big com-
panies like Uber, Twitter, and Pinterest, it is not uncommon to
have multiple storage systems, each serving its own specific
needs. For example, Uber is leveraging Apache Pinot™ [7] for
real time streaming processing, Elasticsearch [8]for real time
monitoring, and Hadoop Distributed File System(HDFS) [9]
for batch analysis. Twitter is running Apache Druid™ [10] for
real time analytics, Hadoop Distributed File System(HDFS)
and Google Cloud Storage [11] for batch analysis. Pinterest
is running Druid for real time monitoring, and AWS S3 for
batch analytics. There are many other storage systems serving
online traffic and transactions, e.g. MySQL [12] is used widely
in all companies with transaction support.

Users have the need to run SQL analytics on a unified view
of all data. For example, it is desirable to join Hadoop batch
data with Pinot real time data to get fresh Uber Eats reports.
Traditionally, pipelines are created to copy data from one
system to another. Data engineers are maintaining pipelines
to copy data from MySQL to Hadoop, from Elasticsearch to
Hadoop, and from Pinot or Druid to Hadoop. While, this data
copy solution is not desirable:

• Data copy is computationally expensive. It is not uncom-
mon to get hours of data copy latency before data be-
comes queryable. Data copy also consumes huge network
bandwidth.



• maintaining data copy pipelines is resource intensive.
Engineers have to spend precious time carefully imple-
menting the copy and transformation logic. Whenever
system upgrades or API changes, the pipelines have to be
re-implemented. Engineers also have to deal with fault-
tolerance, backfill, etc.

• maintaining multiple copies of the same data is resource
intensive. A majority of users only need interactively
exploratory of data.

Presto connector solves the problem gracefully. Presto con-
nector provides:

• ConnectorMetadata, which defines schemas, tables,
columns etc.

• ConnectorSplitManager, which defines how Presto divide
the underlying data into splits, and process them in
parallel.

• ConnectorSplit, which defines one processing unit, or one
shard of underlying data.

• ConnectorRecordSetProvider, which defines upon getting
data streams from underlying systems, how Presto parse
and transform them into Presto engine.

To get a unified view of all data, Presto connector in-
troduces catalog.schema.table for each table. catalog marks
connector name. For example, in Presto-MySQL-connector,
a table’s qualified name is: mysql.schemaName.tableName.
Similarly, in Presto-Druid-connector, a table’s qualified name
is: druid.shcemaName.tableName. In Presto-Elasticsearch-
connector, we map each Elasticsearch index into a table. Each
Elasticsearch field is mapped into a column. Presto-Pinot-
connector and Presto-Druid-connector are more straightfor-
ward, where Pinot table and Druid table are mapped into
Presto table.

A. Pushdown

An implemented Presto connector enables users to run SQL
analytics on a unified view of all data, without data copy. Users
could join Hadoop data with MySQL data using Presto-Hive-
connector and Presto-MySQL-connector, no need to copy any
data between Hadoop and MySQL. Hadoop data and MySQL
data are streamed in Presto pages into the Presto engine. Presto
did the join and stream results to end users.

When Presto is streaming data from connectors, it is de-
sirable to pushdown projections, predicates, and limits to
underlying storage systems. For example, it is desirable to
let MySQL only stream filtered, projected, and limited rows
into Presto, instead of streaming the whole table into Presto.
Presto connector has mechanisms to support projection push-
down, predicate pushdown, and limit pushdown. All presto
connectors have implemented these pushdown techniques.

B. AggregationPushdown

Druid and Pinot are real time systems, which have in
memory bitmap indices, inverted indices, pre-aggregations or
dictionaries, enabling sub-second query latency. It is desir-
able to pushdown aggregations to Presto-Druid-connector and
Presto-Pinot-connector, so that only aggregated results are

streamed into the Presto engine. This not only greatly improves
query latency, as Druid and Pinot could leverage their in
memory data structure to speedup aggregation queries, but
also saves network bandwidth. Instead of streaming filtered
data into Presto engine, and letting Presto do the aggregation,
with aggregation pushdown, Presto connector only streams
aggregated data into Presto engine, and lets connectors do the
aggregations.

A flexible approach would be to push down the entire
expression which is currently represented as an Abstract
Syntax Tree(AST) to Presto connectors. One problem with
this approach is that the AST evolves over time such as when
new language features are added. Additionally the AST does
not contain type information as well as enough information
to perform function resolution. We resolve this by storing
function resolution information in the expression represen-
tation itself as a serializable functionHandle. This makes it
possible to consistently reference a function when we reuse
the expressions containing the function.

We replaced Presto’s old Abstract Syntax Tree(AST)
based expression representation with a new representation
called RowExpression. [13] RowExpression is completely self-
contained and can be shared across multiple systems. The new
representation has several subtypes shown in table 1.

With RowExpression, we could pushdown arbitrary sub-
expressions to Presto connectors. Pushdown optimizations
could be implemented for each connector as a connector spe-
cific optimizer rule, based on the connector’s storage character-
istics, e.g. indices, sort order, in memory data cache. In Presto-
Druid-connector and Presto-Pinot-connector, we implemented
aggregation pushdown, which will execute aggregations in
Druid and Pinot, and only stream aggregated results to Presto,
as shown in figure 2.

Druid
SELECT columnA, columnB

FROM T
WHERE predicate

GROUP BY columnA

Presto 
Worker

Partial aggregation on columnA

Presto 
Worker

Final aggregation max(columnB)

Output

Druid
SELECT columnA, max(columnB)

FROM T
WHERE predicate

GROUP BY columnA

Output

Presto 
Worker

Final aggregation max(columnB)

Fig. 2. Aggregation pushdown in presto connector

Generally, Druid and Pinot could support sub-second query
latency, while they only have limited support for joins and
subquery. Presto connectors bridge the gap between sub-
second query latency, and full SQL functionalities. With Presto
connectors and aggregation pushdown, users could get sub-
second query latency via Presto-Druid-connector and Presto-
Pinot-connector, and get full SQL support, with joins, sub-
query functionalities in Presto.



TABLE I
SELF CONTAINED ROWEXPRESSIONS

ExpressionType Represents
ConstantExpression Literal values such as (1L, BIGINT), (”string”, VARCHAR)

VariableReferenceExpression Reference to an input column and a field of the output from previous relation expression.
CallExpression Function calls, which includes all arithmetic operations, casts, UDFs.

SpecialFormExpression Special built-in function calls. E.g. IN IF, IS NULL, AND, DEREFERENCE
LambdaDefinitionExpression Definition of anonymous (lambda) functions. E.g. (x:BIGINT,y:BIGINT):BIGINT → x+y

We also implemented Presto-Iceberg-connector [21] and
Presto-Hoodie-connector [20], which enables Presto querying
update-able data lakes.

V. DEALING WITH COMPLEX DATA TYPES

Production data is always nested. To leverage columnar
storage and deal with nested data, Parquet is popular as the
default columnar file format.

A. Schema Evolution

Nested structs are used widely at Uber [14], Twitter [25],
and Pinterest [17] , where users define one high level column
with struct type. The struct consists of 20 or sometimes up
to 50 fields. Each field could be another struct, which has
subfields inside. It is not uncommon to see more than 5 levels
of nesting. In addition, users are making schema changes to
structs. Some users are adding fields to structs, some users are
deleting fields from structs. We have to make company wide
schema evolution rules, so that the query engine could return
meaningful results with frequent schema updates.

We allow adding new fields to existing struct. When query-
ing newly added fields in old data(before the fields are added in
the schema), Presto will return null. Removing existing fields
from struct is also allowed. When data is continuously ingested
into the already removed field, Presto just ignores them.

Field rename and type change are not allowed. In Parquet,
field name is used to identify metastore schema and Parquet
file schema. Field name change will trigger schema mismatch
between metastore schema and Parquet file schema. In ad-
dition, Presto is type strict, we do not allow automatic type
coercion when querying Parquet via Presto.

Schemas are managed as a service outside of Presto, which
tracks different versions of schemas, enforces schema evolu-
tion rules, and guarantees schema matching between Parquet
file schema and metastore schema.

B. Parquet

Columnar file formats, e.g. Parquet and ORC, enables Presto
to answer queries more efficiently. By not having to scan and
discard unwanted data in rows, columnar storage saves disk
space and improves query performance for larger data sets.
Another benefit of Parquet is, Parquet is storing nested fields
as separate columns on disk. This gives us the opportunity not
to scan unwanted fields even within the same struct.

In Parquet, data is first horizontally partitioned into groups
of rows, then within each group, data is vertically partitioned
into columns. Data for a particular column is stored together

Column Chunk Column ChunkColumn Chunk Row Group

Column Chunk Column ChunkColumn Chunk Row Group

Column Chunk Column ChunkColumn Chunk Row Group

Column 
Chunk 

Metadata

Column 
Chunk 

Metadata

Column 
Chunk 

Metadata

Row Group MetadataRow Group Metadata

Column 
Chunk 

Metadata

Column 
Chunk 

Metadata

Column 
Chunk 

Metadata

Parquet File

Parquet Footer

Fig. 3. Parquet is an open source columnar storage format, used widely at
Uber, Twitter, and Pinterest, partitioning data horizontally into rows and then
vertically into columns for easy compression

via compression and encoding to save space and improve
performance. Each Parquet file has a footer that stores codecs,
encoding information, as well as column-level statistics, e.g.,
the minimum and maximum number of column values.

C. Old Parquet Reader

On a theoretical level, Parquet was the perfect match for
our Presto architecture, but would this magic transfer to our
system’s columnal needs? Actually, Parquet is supported in
Presto using the original open source Parquet reader. While
working well with open source Presto, this reader neither
fully incorporates columnar storage nor employs performance
optimizations with Parquet file statistics, making it ineffective
for our use case.

To tackle this performance issue, we developed a new
Parquet reader for Presto to leverage the potential of Parquet
in our data analytics system. Below is an example query to
determine which drivers to target in a specific city on a given
date based on expected rider demand:

SELECT base.driver_uuid FROM
rawdata.schemaless_mezzanine_trips_rows
WHERE datestr = ‘2017-03-02’
AND base.city_id in (12)

In this scenario, the nested table raw-
data.schemaless mezzanine trips rows stores more than
100 terabytes of raw trip data in Parquet. Using the above
example, we will demonstrate how queries are processed
using both the original open source reader and an open source
reader of our own invention.



base.driver_uuid base.client_uuid base.city_id …... base.vehicle_id base.status

base.driver_uuid

base.driver_uuid

base.driver_uuid

base.vehicle_id

base.vehicle_id

base.vehicle_id

base.status

base.status

base.status

base.client_uuid

base.client_uuid

base.client_uuid

base.city_id

base.city_id

base.city_id

…...

base.driver_uuid base.client_uuid base.city_id …... base.vehicle_id base.status

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.status

Column Chunk 
base.vehicle_id

Column Chunk 
base.city_id

Row Group

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.city_id

Column Chunk 
base.vehicle_id

Column Chunk 
base.status

Row Group

Parquet

Parquet Footer: File Metadata, Row Group Metadata

Presto Columnar Engine

Step 1: Read all Parquet nested fields from disk

Step 2: Transform Parquet rows into Presto columnar blocks 

Step 3: Evaluate predicates on columnar blocks

Fig. 4. The legacy open source Parquet reader does not fully incorporate
columnar storage, making it inefficient to analyze data at scale

The original reader conducts analysis in three steps: (1)
reads all Parquet data row by row using the open source
Parquet library; (2) transforms row-based records into colum-
nar Presto blocks in-memory for all nested columns; and
(3) evaluates the predicate (base.city id=12) on these blocks,
executing the queries in our Presto engine.

To accommodate data’s size and scale at Uber, Twitter,
and Pinterest, we created a new open source Parquet reader
that uses memory and CPU more efficiently. This new reader
implements the following optimizations geared towards en-
hancing performance and speeding up querying.

D. Nested Column Pruning

One way the new reader optimizes querying is by skipping
over unnecessary data, referred to as nested column pruning.
As the name suggests, this optimization is most effective
when used with nested data. The new reader executes nested
column pruning in three steps: (1) read only required columns
in Parquet; (2) transform row-based records into columnar
blocks; and (3) evaluate the predicate on columnar blocks in
the Presto engine.

base.driver_uuid base.city_id

base.driver_uuid

base.driver_uuid

base.driver_uuid

base.city_id

base.city_id

base.city_id

base.driver_uuid base.city_id

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.status

Column Chunk 
base.vehicle_id

Column Chunk 
base.city_id

Row Group

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.city_id

Column Chunk 
base.vehicle_id

Column Chunk 
base.status

Row Group

Parquet

Parquet Footer: File Metadata, Row Group Metadata

Presto Columnar Engine

Step 1: Only read required fields from disk

Step 2: Transform Parquet rows into Presto columnar blocks 

Step 3: Evaluate predicates on columnar blocks

Fig. 5. Brand new Parquet reader can skip over unnecessary data via nested
column pruning

E. Columnar Reads

The new reader can also read columns in Parquet directly
instead of row-by-row and then execute a row-to-column trans-
formation, which speeds up querying. It executes columnar
reads in two steps: (1) read only required columns in Parquet
and build columnar blocks on the fly, saving CPU and memory
to transform row-based records into columnar blocks, and (2)
evaluate the predicate using columnar blocks in the Presto
engine.

base.driver_uuid

base.driver_uuid

base.driver_uuid

base.city_id

base.city_id

base.city_id

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.status

Column Chunk 
base.vehicle_id

Column Chunk 
base.city_id

Row Group

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.city_id

Column Chunk 
base.vehicle_id

Column Chunk 
base.status

Row Group

Parquet

Parquet Footer: File Metadata, Row Group Metadata

Presto Columnar Engine

Step 1: Read required fields from disk;
Build columnar blocks on the fly

Step 2: Evaluate predicates on columnar blocks

Fig. 6. Brand new Parquet reader enhances querying by reading columns
directly as opposed to row-by-row

F. Predicate Pushdown

With our new reader, we can evaluate SQL predicates while
scanning Parquet files. By using Parquet statistics, we can also
skip reading parts of the file, thereby saving memory and
streamlining processing. Predicate pushdowns are primarily
used for “needle in a haystack” queries. The new reader
executes predicate pushdowns by merging three actions into
one step: simultaneously read the required columns in Parquet,
evaluate columnar predicates on the fly, and build columnar
blocks. In this scenario, the reader skips reading a group of
rows if the predicates do not match to the one being queried.

base.driver_uuid

base.driver_uuid

base.driver_uuid

base.city_id

base.city_id

base.city_id

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.status

Column Chunk 
base.vehicle_id

Column Chunk 
base.city_id

Row Group

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.city_id

Column Chunk 
base.vehicle_id

Column Chunk 
base.status

Row Group

Parquet

Parquet Footer: File Metadata, Row Group Metadata

Presto Columnar Engine

Step 1: Read required fields from disk;
Evaluate predicates on the fly:

predicate: base.city_id = 12
row group city_id max = 10

Skip reading row group;
Build columnar blocks on the fly

Fig. 7. Predicate pushdowns allow us to skip reading Parquet row groups to
save disk IOs. In this example, the query is looking for city id = 12, one row
group city id max is 10, new Parquet reader will skip this row group



G. Dictionary Pushdown

Even if Parquet statistics match the predicate, we can read
the dictionary page for each column to determine whether the
dictionary can potentially match the predicate. If not, we can
skip reading that row group. Like predicate pushdowns, dictio-
nary pushdowns make querying faster and are most effective
for needle in a haystack queries. Dictionary pushdowns are
also executed by our new reader in only one step: read required
columns in Parquet, evaluate columnar predicates on the fly
and build columnar blocks. Similar to predicate pushdowns,
dictionary pushdowns enable the reader to skip reading groups
of rows if dictionary values do not match the predicate.

base.driver_uuid

base.driver_uuid

base.driver_uuid

base.city_id

base.city_id

base.city_id

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.status

Column Chunk 
base.vehicle_id

Column Chunk 
base.city_id

Row Group

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.city_id

Column Chunk 
base.vehicle_id

Column Chunk 
base.status

Row Group

Parquet

Parquet Footer: File Metadata, Row Group Metadata

Presto Columnar Engine

Step 1: Read required fields from disk;
Evaluate predicates on the fly:

predicate: base.city_id = 12
row group city_id dictionary: {3, 5, 9, 14, 21}

Skip reading row group;
Build columnar blocks on the fly

Fig. 8. Like predicate pushdowns, dictionary pushdowns are executed in
one step that simultaneously reads and evaluates data columns while building
columnar blocks for our Presto engine. In this example, the query is looking
for city id = 12; since one row group’s city id dictionary includes the IDs 3,
5, 9, 14, 21, the new reader will skip this group

H. Lazy Reads

Our reader can also be programmed to read projected
columns as lazily as possible. This means that we read
projected columns only when they match the predicate, thereby
speeding up our querying. Lazy reads are executed in a single
step: read the required columns in Parquet, evaluate columnar
predicates on the fly, and build columnar blocks only if the
predicate matches.

base.driver_uuid

base.driver_uuid

base.driver_uuid

base.city_id

base.city_id

base.city_id

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.status

Column Chunk 
base.vehicle_id

Column Chunk 
base.city_id

Row Group

Column Chunk 
base.client_uuid

Column Chunk 
base.driver_uuid

Column Chunk 
base.city_id

Column Chunk 
base.vehicle_id

Column Chunk 
base.status

Row Group

Parquet

Parquet Footer: File Metadata, Row Group Metadata

Presto Columnar Engine

Step 1: Read required fields from disk;
Evaluate predicate on the fly;

Build columnar blocks only if predicate matches

Fig. 9. Lazy reads are performed only when they match the predicate, saving
CPU and memory

I. Vectorized Reader

Furthermore, we implement a vectorized reader for parquet.
Instead of reading repetition level, definition level, and value
one by one, a vectorized parquet reader batch reads 1000
triplets of repetition level, definition level, and value. The
decoder state is kept in registers, so that only one end of stream
check is needed, with only one status update. For dictionary
encoding, the dictionary is cached, so that dictionary lookups
are saved. Vectorized parquet reader could seek to non-nullable
and non-nested value directly, saving unnecessary reading of
repetition level and definition level.

Since putting our new Parquet reader into production, data
is processed anywhere from 2-10x faster compared to when
we used the original open source reader.

J. Native Parquet Writer

Presto is also running ETL jobs at Facebook, Uber, Twitter,
and Pinterest. It is important to optimize write performance for
Presto. The legacy Presto Parquet writer iterates each columnar
block in a page and reconstructs every single record, then it
consumes each individual record and writes value bytes to
Parquet pages. The old Parquet writer was adding unnecessary
overhead to convert Presto’s columnar in-memory data into
row based records, and then doing one more conversion to
write row based records to Parquet’s columnar on disk file
format. The unnecessary data transformation adds significant
performance overhead, especially when complex data types
are involved such as nested structs.

We design and implement a brand new native Parquet writer
for Presto [15], which writes directly from Presto’s in-memory
data structure to Parquet’s columnar file format, including data
values, repetition values, and definition values. The native Par-
quet writer significantly reduces CPU and memory overhead
for Presto.

VI. GEOSPATIAL QUERIES

One of the distinct challenges for Uber is analyzing geospa-
tial data at scale. City locations, trips, and event informa-
tion, for instance, provide insights that can improve business
decisions and better serve users. Geospatial data analysis is
particularly challenging, especially in a big data scenario,
such as computing how many rides start at a transit location,
how many drivers are crossing state lines, and so on. For
these analytical requests, we must achieve efficiency, usability,
and scalability in order to meet user needs and business
requirements

A. Geospatial Data Model

Modeling geospatial data has distinct complexities. To
model real-world cities and trips into simplified shapes and
points represented in big data tables, we use the Well-Known
Text (WKT) [29] used in ESRI Geometry API [30] to represent
geometries.

A point represents a single location in a two-dimensional
space. Internally, we store each point as a pair of (longitude,
latitude). e.g.:



POINT (77.3548351 28.6973627)

We simply store a polygon as a collection of points, such
that the start point and the end point match. e.g.:

POLYGON ((36.814155579 − 1.3174386070000002,

36.814863682 − 1.317545867,

36.814863682 − 1.318221605,

36.813973188 − 1.317910551,

36.814155579 − 1.3174386070000002))

B. Geospatial Use Cases

At Uber, geospatial data is organized as geofences, where a
geofence is either a polygon or a multi-polygon. We provide
internal tools to create, edit, and delete geofences. Every
few minutes, any geofence changes will be dumped into a
Hadoop table, which is queryable by Presto. In this system,
we have a trips table, which records trip start points and
endpoints, as well as the cities table, which contains the city
identification column city id and its corresponding geofence
column geo shape.

Geospatial data is used for promotions, driver supply iden-
tification, and events regulation, among other use cases. For
example, Uber could launch a promotion for free basketball
tickets for riders who are taking Uber trips to a Warriors game.
In this scenario, our engineer would create a new geofence that
contains Oracle Arena Stadium, then write a Presto query to
target all users who are taking trips to the stadium before the
game for the promotion, and, then, randomly select the winner,
as portrayed in figure 10.

Fig. 10. An example geofence containing Oracle Arena Stadium

C. Challenges

To discern how many trips occur within a given city on a
specific date, we run the following SQL query:

SELECT c.city_id, count(*)
FROM trips_table as t
JOIN city_table as c
ON st_contains(

c.geo_shape,
st_point(t.dest_lng, t.dest_lat)

)
WHERE datestr = ‘2017-08-01’
GROUP BY 1

st point is the standard geo function to construct a two-
dimensional point using longitude and latitude. st contains is
the standard geo function to compute whether a point is within
a geo shape.

This query needs to compute st contains for each point
and geofence pair. For a real city, it is not uncommon to see
its geofence composed of hundreds or thousands of points.
The time cost of executing st contains for one pair of point
and geofence is proportional to the number of points in the
geofence. Given that millions of Uber trips are requested each
day across hundreds of cities, this simple query could cost
hundreds of millions of st contains, which in turn computes
hundreds of thousands Point-Point operations. One simple
query with a brute force Hive MapReduce execution could
take days to complete!

D. QuadTree
This huge time commitment is insufficient for Uber’s use

case. To ensure we provide optimal trip experiences for our
users, we need to optimize how we processed this data.

Quadtrees represent a partition of space in two dimensions
by decomposing the region into four quadrants, sub-quadrants,
and so on until the contents of the cells meet some criterion of
data occupancy. For example, in figure 11, we built QuadTree
to index a 4X4 square space.

Fig. 11. QuadTree indexes 4X4 squares

For our use case, we can use rectangles and squares to divide
and index real city boundaries.

Using QuadTree, the majority of bounded rectangles that do
not contain target point could be filtered out. We run geospatial
functions (e.g., st contains) only for rectangles that contain
target point.

E. Presto Geospatial Plugin
Using the Presto plugin framework, we implemented a

Presto Geospatial plugin [18], which possesses a variety of



Fig. 12. Using QuadTree to index San Francisco and glean valuable data for
our Presto analytics

geo-functions. One of them is a Presto aggregation function,
build geo index, which serializes/deserializes geospatial poly-
gons into a QuadTree. During query execution, we build a
QuadTree on the fly. QuadTree is used to filter out geofences
that do not contain target point. During this phase, majority of
geofences would be filtered out. Finally, we run st contains for
remaining geofences. To improve usability, we added Presto
query optimizations to automatically rewrite user queries into
optimized ones, as portrayed in figure 13.

Plan Node Plan Node Plan Node
Aggregation 

Node
build_geo_index

Join Node

Filter Node
st_contains

Project Node

Filter Node
geo_contains

Join Node

Project Node

Rewrite To

Fig. 13. Presto optimizes a query using QuadTree

The Presto GeoSpatial plugin is running in production
at Uber. Among our GeoSpatial traffic, more than 90% is
completed within five minutes. Compared with the brute force
Hive MapReduce execution, our Presto Geospatial Plugin is
more than 50X faster, leading to greater efficiency.

Our users are happy with the five minutes query latency,
therefore, we did not optimize geospatial query performance
further. Actually, we could build geo-indices offline, and
during runtime, let Presto make use of the pre-built indices.

VII. CACHE

In production experience, we found the single Hadoop Dis-
tributed File System (HDFS) NameNode listFiles performance
degradation, could hurt Presto performance badly. To address
the performance challenge, we initiated two efforts, one is to

roll out HDFS Observer NameNode [31] in production. The
other is to do caching inside Presto [16]:

A. File list cache

Presto coordinator caches file lists in memory to avoid long
listFile calls to remote storage, e.g. Hadoop Distributed File
System (HDFS). This can only be applied to sealed directories.
For open partitions, Presto will skip caching those directories
to guarantee data freshness. One major use case for open
partitions is to support the need of near-real time ingestion
and serving. In such cases, the ingestion engines (e.g., micro
batch) will keep writing new files to the open partitions so
that Presto can read near-real time data. With file list cache
enabled for 5 of our most popular tables, our production traffic
shows overall listFile calls is reduced to less than 40%.

B. File handle and footer cache

Presto worker caches the file descriptors in memory to
avoid long getFileInfo calls to remote storage. Also, a worker
caches common columnar files and stripe footers in memory.
The current supported file formats are ORC and Parquet. The
reason to cache such information in memory is due to the
high hit rate of footers as they are the indexes to the data
itself. With file handle and footer cache, our production traffic
shows almost 90% of getFileInfo calls could be reduced.

A number of cache techniques are developed for Presto,
including Metastore versioned cache, fragment result cache,
Alluxio [24] data cache, and affinity scheduler, details in [16].

VIII. CLUSTER FEDERATION

Presto coordinator is stateful. It is doing query planning,
query optimization, task status tracking, worker status track-
ing, for all queries and workers. There is one single coordi-
nator in one Presto cluster. Due to the limitation of CPU and
memory, Presto coordinator could become the bottleneck in
large production deployments. For example, at Uber, Twitter,
Facebook, and Pinterest, we see performance degradation with
Presto coordinator when a single cluster becomes bigger than
1000 machines, or there are more than 500 complex queries
running concurrently.

To resolve the scalability problem, we design and implement
a cluster federation solution. Using HTTP Redirect, we devel-
oped a presto gateway. The gateway will redirect incoming
queries to specific presto clusters, based on user name and
group information. The user and group to cluster mapping
data is stored in MySQL. Presto administrators could play with
MySQL to dynamically redirect any traffic to any cluster.

This is very useful, as big companies always have more
than one Presto cluster. There are dedicated Presto clusters
for latency sensitive queries. A few big clusters are shared by
all teams. At Facebook, Uber and Twitter, we are managing
more than 5 production clusters. When we are doing cluster
maintenance or software upgrade, we will redirect traffic either
to shared cluster, or newly launched new cluster, to guarantee
no downtime for end users.



Dedicated 
Presto 
Cluster

...

Presto 
Gateway

Dedicated 
Presto 
Cluster

Shared 
Presto 
Cluster

User Traffic

Traffic Dispatch

Fig. 14. Presto gateway will dispatch user traffic to appropriate cluster

IX. PRESTO ON CLOUD

Another popular use case is running Presto on cloud. We
could store data in Amazon S3 or Google GCS, and launch
Presto to query it. Presto supports Amazon S3 and Google
GCS natively. We developed the PrestoS3FileSystem [19],
which provides a FileSystem api on top of Amazon S3.

Amazon S3 is an object storage system. To support general
FileSystem api and run it efficiently for Presto, we did a num-
ber of optimizations: (1) Lazy seek: which saves unnecessary
seeks in Amazon S3, and seek to destination until needed
for input stream or output stream; (2) Exponential backoff :
which backoff request exponentially when Amazon S3 is not
responding; (3) Leverage Amazon S3 select: Amazon S3 select
has better performance, we pushdown projections directly to
Amazon S3 to get optimal performance. (4) Multi-part upload:
When loading a big object to Amazon S3, we break it up into
multiple parts, and upload to S3 in parallel. This improves
uploading throughput and recovery time.

Amazon S3

Presto Coordinator
PrestoS3FileSystem

Presto Worker
PrestoS3FileSystem

Presto Worker
PrestoS3FileSystem

Presto Worker
PrestoS3FileSystem

...

Fig. 15. Presto could expand and shrink gracefully on AWS, querying data
from Amazon S3

Presto has graceful expansion and shrink, leveraging cloud
elasticity. During busy hours, to expand on Amazon or GCP,
we could simply add more workers, configured with the
same coordinator. New workers are automatically added to the
existing cluster. During non-busy hours, to gracefully shrink
workers from existing clusters, administrators could send a
command to presto workers. Upon receiving the command,

presto worker will enter SHUTTING DOWN state: sleep for
shutdown.grace-period, which defaults to 2 minutes. After
this, the coordinator is aware of the shutdown and stops
sending tasks to the worker. The worker will block until all
active tasks are complete. The worker will sleep for the grace
period again in order to ensure the coordinator sees all tasks
are complete. Finally, the presto worker will shut down.

X. EXPERIMENTAL RESULTS

A number of experiments are conducted to show the effi-
ciency and performance of our Presto clusters. Most of the
experiments are from our production Presto traffic at Uber,
Twitter, and Pinterest.

A. Presto Druid Connector

To demonstrate the efficiency of Presto connectors with
predicate pushdown, limit pushdown, and aggregation push-
down, we set up a 100 node druid cluster, and load 100TB
production data into it. The Druid cluster is running in
Twitter’s data center. Each machine has 32 core CPU and
128GB Memory. Hadoop Distributed File System(HDFS) is
configured as Druid deep storage. Our Presto cluster has 100
nodes, each has 32 core CPU and 128Gb memory.

20 druid production queries are used in the experiment.
14 of them have predicates, 5 of them have limits, and 12
of them are aggregation queries. We compare the 20 queries
performance running them on Druid and on Presto-Druid
connector.

m
ill

is
ec

on
ds

0

500

1000

1500

2000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Druid Presto Druid Connector

Druid and Presto Druid Connector performance comparison

Fig. 16. With predicate pushdown, limit pushdown, and aggregation push-
down, presto druid connector could achieve real time query latency, with less
than 15% overhead, compared with druid performance

As shown in figure 16, with predicate pushdown, limit
pushdown, and aggregation pushdown, Presto-Druid connec-
tor adds less than 15% overhead, compared with Druid query
latency. Most of the queries complete within 1 second in the
Presto-Druid connector. This demonstrates that, with push-
down techniques, presto connectors could achieve real time
query latency. We could use presto for monitoring, decision
making, and real time reports.



B. Parquet Reader Improvements

To demonstrate the efficiency gain of Presto new Parquet
reader, we run the second experiment on a 200 node Presto
cluster. Each machine has 32 core CPU and 256GB Memory.

We take 21 of Uber production Presto queries, 4 of them
are table scans, where 2 of them are needle in a haystack type
table scan. 5 of them are group by queries, and another 12 of
them are joins.

The experiment is running on Uber production data, which
are stored on the Hadoop Distributed File System, in Parquet
format.

Fig. 17. Brand new Parquet reader demonstrated 2-10X speedup for Uber’s
benchmark SQL queries

As shown in figure 17, we could see with nested column
pruning, columnar reads, predicate pushdown, dictionary push-
down, lazy reads and vectorized reader, our new Parquet reader
consistently achieves 2X – 10X speedup. For needle in a
haystack type table scans, the new Parquet reader is pretty
efficient. Actually, when we turned on using the new Parquet
reader by default at Uber, Presto traffic P90 query latency
reduced from 5 minutes to 40 seconds.

C. Parquet Writer Improvements

To show the efficiency of the Presto native Parquet writer,
we run the experiment on a 100 node Presto cluster on AWS.
The machine is r5.8xlarge, each has 32 CPU and 256GB
Memory.

We run the experiments by using Presto writing a list of
pages with millions of rows. The following figures show
various types of data throughput with Snappy compression,
Gzip compression, and no compression.

In figure 18, figure 19, and figure 20, we could see that,
compared with the old writer, our native Parquet writer could
consistently achieve more than 20% throughput. For bigint
type with Gzip compression, our native parquet writer per-
forms best, with more than 650% throughput improvements.
When writing all columns of TPCH LINEITEM, the through-
put gain is around 50%.

M
B

/s

0

25

50

75

100

125

All LineItem 
columns

Bigint 
Sequential

Bigint 
Random

Small 
Varchar

Large 
Varchar

Varchar 
Dictionary

Map Varchar 
To Double

Large Map 
Varchar To 

Double

Map Int To 
Double

Large Map 
Int To 

Double

Array 
Varchar

Old Writer Native Parquet Writer

Writer Throughput Comparison: Snappy

Fig. 18. Native parquet writer consistently improves throughput by 20% for
snappy compressed files

M
B

/s

0

25

50

75

100

125

All 
LineItem 
columns

Bigint 
Sequential

Bigint 
Random

Small 
Varchar

Large 
Varchar

Varchar 
Dictionary

Map 
Varchar To 

Double

Large Map 
Varchar To 

Double

Map Int To 
Double

Large Map 
Int To 

Double

Array 
Varchar

Old Writer Native Parquet Writer

Writer Throughput Comparison: GZip

Fig. 19. Native parquet writer consistently improves throughput by 20% for
Gzip compressed files

M
B

/s

0

50

100

150

200

All LineItem 
columns

Bigint 
Sequential

Bigint 
Random

Small 
Varchar

Large 
Varchar

Varchar 
Dictionary

Map 
Varchar To 

Double

Large Map 
Varchar To 

Double

Map Int To 
Double

Large Map 
Int To 

Double

Array 
Varchar

Old Writer Native Parquet Writer

Writer Throughput Comparison: No Compression

Fig. 20. Native parquet writer consistently improves throughput by 20% for
no compressed files



XI. RELATED WORK

Systems that run SQL against large data sets have become
popular over the past decade, especially for SQL engines on
cloud. A comprehensive examination of the space is outside
the scope of this paper. We focus on some of the notable work
in the area.

A number of SQL engines are provided on cloud, including
Google BigQuery [33], Amazon Redshift [34], Snowflake
[35]. Most of them could read external data to varying degrees,
however, they are built around an internal data store and
achieve peak performance when operating on data loaded into
the system. In contrast, Presto is data source agnostic. More
than 20 connectors are supported in Presto, e.g. Presto-Druid
connector, Presto-Kafka connector, Presto-Delta Lake connec-
tor, Presto-MySQL connector, Presto-MongoDB connector,
and Presto-Cassandra connector. Users could leverage Presto
connectors to run SQL analytics on heterogeneous storage
systems without data copy.

Druid [10], Pinot [7], and Clickhouse [32] could achieve
sub-second query latency with customized storage techniques,
e.g. pre-aggregation, inverted index, columnar storage. They
have advantages in query performance, however, sacrifice
SQL functionlities, e.g. distributed hash join, sub queries.
The Presto community has built Presto-Druid connector,
Presto-Pinot connector, Presto-Clickhouse connector, with
pushdowns. Users could leverage Presto connectors to query
data across Druid, Pinot, and Clickhouse, with full SQL
functionalities, and little performance overhead.

Apache Hive [23] provides a SQL-like interface over data
stored in Hadoop Distributed FileSystem [9], and executes
queries by compiling them into MapReduce [36] jobs. Spark-
SQL [22] is a modern system built on the popular Spark engine
[37], which addresses many of the limitations of MapReduce.
SparkSQL can run large queries over multiple distributed data
stores, and can operate on intermediate results in memory.
However, these systems do not support end-to-end pipelining,
and usually persist data to a filesystem during inter-stage
shuffles. Although this improves fault tolerance, the additional
latency causes such systems to be a poor fit for interactive or
low-latency use cases.

XII. EXPERIENCES

A. Collecting statistics is hard

Presto has both rule based optimizer and cost based op-
timizer. To enable cost based optimizer running effectively,
we need to make sure all statistics are up-to-date, including
table statistics, partition statistics, and column statistics. We
indeed would love to leverage a cost based optimizer for join
re-ordering and join algorithm selection. While, in production
environments, we found keeping statistics up-to-date is pretty
challenging. There are pipelines ingesting data all the time. It
is prohibitively computationally expensive to update statistics
upon every data ingestion. It is also not affordable to run
analyze table before every query execution. We tried adding
statistics collection only before joins, still, users queries are

coming arbitrarily, either we might add unnecessary overhead
to small joins, or data are updated so frequently that we could
not update statistics in time.

A practical way is using a rule based optimizer, ignoring
statistics, and setting Presto session properties to enable spe-
cific join algorithms or manually rewrite users queries for join
re-ordering. Presto has session properties to turn on broadcast
join for all queries in this session. In production cases, we
configure distributed hash join as default to support larger
joins. For a number of known use cases, where the smaller
table size could be broadcasted, we will set Presto session
property to turn on broadcast join for these queries, to have
better performance. More research is being conducted to see
if machine learning models could help to automatically decide
join type, with limited and potentially corrupted statistics.

B. A general gateway is hard

We were building a general gateway for all query systems,
including Presto, Hive, and Spark. Our original idea was to
estimate query cost in the gateway, and do dynamic dispatch
based on clusters’ status. We also added security checks and
admission control in the gateway. Surprisingly, the gateway
is a failure. When traffic grew, the gateway could not scale.
Sharding could help to some extent, while we still need to
deal with load balance and fault tolerance. Many times, our
Presto and Spark clusters are in a good state, but the gateway
is not reliable.

The problem is resolved by letting users connect directly
with each Presto cluster. Actually, building a scalable service
supporting millions of queries per day is challenging. Would
be nice if we could re-use existing scalable services, instead of
building from scratch. Our Presto gateway implementation is
based on the Presto coordinator. In addition, a general gateway
could not resolve security problems. We need to implement
security and admission control inside Presto.

C. Automatic query translation is important

Presto has limitations for big joins. When users are joining
two large tables, Presto will return an error, with message
”Insufficient Resource ...”. Users are not happy with this error.
Even after our explanation, users have to spend time translating
Presto queries into SparkSQL [22] or Hive [23]. Whenever we
do user surveys, the ”Insufficient Resource ...” error and query
translation is always on the top of users’ complaints.

We need to resolve the problem either via: adding fault
tolerance to Presto, or automatically translate failed Presto
queries to other systems. Presto on Spark is a good option,
which enables users writing the same Presto SQL, with
automatic translation it into SparkSQL.

D. SQL engine is only one part of data systems

In our customer survey, we found users are complaining
about data schema not flexible to be updated and perfor-
mance degradation. After investigation, we found performance
degradation is due to the single Hadoop Distributed File
System (HDFS) NameNode listFiles stuck, which hurts Presto



performance badly. Schema management is another service
outside of Presto. Actually, from users’ point of view, they
would like a smooth SQL experience, including a flexible
schema management service, a performant SQL engine, a
reliable storage system, an easy to play-with message queue
pipeline, etc. Users only care about end to end experience. A
performant SQL engine is only one part of a big data system.
All parts of big data systems need to collaborate together to
provide a nice end to end user experience.

ACKNOWLEDGMENT

We’d like to thank the Presto community for several rounds
of design and implementation improvements. They also keep
a high quality code review. Thanks goes to: Nezih Yigit-
basi, Wenlei Xie, Andrii Rosa, Rebecca Schlussel, Rongrong
Zhong, Bin Fan, Shixuan Fan, Jiexi Lin, Leiqing Cai, Tim
Meehan, Ying Su, James Petty, and many others, who support
Presto at numerous companies in production, answering user
questions, and contribute patches and ideas to Presto.

REFERENCES

[1] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun,
N. Yegitbasi, H. Jin, E. Hwang, N. Shingte, and C. Berner, “Presto:
SQL oneverything.“ in 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, April 8-11, 2019, 2019, pp.
1802–1813

[2] Finkel, R.A., Bentley, J.L. “Quad trees a data structure for re-
trieval on composite keys.“ Acta Informatica 4, 1–9 (1974).
https://doi.org/10.1007/BF00288933

[3] https://aws.amazon.com/s3/
[4] https://blog.twitter.com/engineering/en us/a/2013/announcing-parquet-

10-columnar-storage-for-hadoop
[5] https://orc.apache.org/
[6] Eric Bruneton “ASM 4.0: A Java bytecode engineering library“

https://asm.ow2.io/asm4-guide.pdf
[7] Jean-François Im, Kishore Gopalakrishna, Subbu Subramaniam, Mayank

Shrivastava, Adwait Tumbde, Xiaotian Jiang, Jennifer Dai, Seunghyun
Lee, Neha Pawar, Jialiang Li, et al. 2018. “Pinot: Realtime olap for 530
million users.“ In Proceedings of the 2018 International Conference on
Management of Data. 583–594

[8] Clinton Gormley, Zachary Tong “Elasticsearch: The Definitive Guide“
O’Reilly Media, Inc. 2015, ISBN:978-1-4493-5854-9

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The Hadoop Dis-
tributed File System“ Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium, page 1 -10

[10] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino,
Deep Ganguli “Druid: a real-time analytical data store“ In Proceedings
of the 2014 ACM SIGMOD International Conference on Management
of Data. June 2014 Pages 157–168

[11] https://cloud.google.com/storage/
[12] https://www.mysql.com/
[13] https://prestodb.io/blog/2019/12/23/improve-presto-planner
[14] https://eng.uber.com/presto/
[15] https://prestodb.io/blog/2021/06/29/native-parquet-writer-for-presto
[16] https://prestodb.io/blog/2021/02/04/raptorx
[17] https://medium.com/pinterest-engineering/presto-at-pinterest-

a8bda7515e52
[18] https://www.oreilly.com/radar/query-the-planet-geospatial-big-data-

analytics-at-uber/
[19] https://netflixtechblog.com/using-presto-in-our-big-data-platform-on-

aws-938035909fd4?gi=2c425020ac56
[20] https://hudi.apache.org/
[21] https://iceberg.apache.org/
[22] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,

Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, Matei Zaharia “Spark SQL: Relational Data Processing
in Spark“ In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. May 2015 Pages 1383–1394

[23] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Antony, Hao Liu, Pete Wyckoff “Hive – A Warehousing
Solution Over a Map-Reduce Framework“ International Conference on
Very Large Data Bases (VLDB) VLDB ‘09, August 24-28, 2009, Lyon,
France

[24] Haoyuan Li “Alluxio: A Virtual Distributed File System“
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-
29.pdf

[25] Chunxu Tang, Beinan Wang, Huijun Wu, Zhenzhao Wang, Yao Li,
Vrushali Channapattan, Zhenxiao Luo, Ruchin Kabra, Mainak Ghosh,
Nikhil Kantibhai Navadiya, Prachi Mishra “Hybrid-Cloud SQL Federa-
tion System at Twitter“ ECSA (Companion) 2021

[26] Walaa Eldin Moustafa, Wenye Zhang, Sushant Raikar, Raymond Lam,
Ron Hu, Shardul Mahadik, Laura Chen, Khai Tran, Chris Chen, and Na-
garathnam Muthusamy https://engineering.linkedin.com/blog/2020/coral

[27] https://www.informationweek.com/big-data-analytics/airbnb-boosts-
presto-sql-query-engine-for-hadoop

[28] https://github.com/prestodb/presto
[29] https://en.wikipedia.org/wiki/Well-known text representation of geometry
[30] https://github.com/Esri/geometry-api-java
[31] https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-

hdfs/ObserverNameNode.html
[32] https://clickhouse.com
[33] https://cloud.google.com/files/BigQueryTechnicalWP.pdf
[34] https://aws.amazon.com/redshift
[35] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov,

Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin
Hentschel, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q.
Munir, Steven Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis,
Philipp Unterbrunner “The Snowflake Elastic Data Warehouse“ In
Proceedings of the 2016 ACM SIGMOD International Conference on
Management of Data. June 2016 Pages 215-226

[36] Jeffrey Dean, Sanjay Ghemawat “MapReduce: simplified data process-
ing on large clusters“ In Proceedings of the 2008 Communications of
the ACM. January 2008 Pages 107–113

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica
“Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing“ In Proceedings of the 2012 USENIX
Symposium on Networked Systems Design and Implementation. April
2012 Pages 15-28


