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Abstract

Ideally, 360◦ imagery could inherit the deep convolu-
tional neural networks (CNNs) already trained with great
success on perspective projection images. However, exist-
ing methods to transfer CNNs from perspective to spheri-
cal images introduce significant computational costs and/or
degradations in accuracy. We present the Kernel Trans-
former Network (KTN) to efficiently transfer convolution
kernels from perspective images to the equirectangular pro-
jection of 360◦ images. Given a source CNN for perspective
images as input, the KTN produces a function parameter-
ized by a polar angle and kernel as output. Given a novel
360◦ image, that function in turn can compute convolutions
for arbitrary layers and kernels as would the source CNN
on the corresponding tangent plane projections. Distinct
from all existing methods, KTNs allow model transfer: the
same model can be applied to different source CNNs with
the same base architecture. This enables application to mul-
tiple recognition tasks without re-training the KTN. Validat-
ing our approach with multiple source CNNs and datasets,
we show that KTNs improve the state of the art for spherical
convolution. KTNs successfully preserve the source CNN’s
accuracy, while offering transferability, scalability to typi-
cal image resolutions, and, in many cases, a substantially
lower memory footprint1.

1. Introduction
The 360◦ camera is an increasingly popular technol-

ogy gadget, with sales expected to grow by 1500% before
2022 [41]. As a result, the amount of 360◦ data is increasing
rapidly. For example, users uploaded more than a million
360◦ videos to Facebook in less than 3 years [2]. Besides
videography, 360◦ cameras are also gaining attention for
self-driving cars, automated drones, and VR/AR. Because
almost any application depends on semantic visual features,
this rising trend prompts an unprecedented need for visual
recognition algorithms on 360◦ images.

Today’s wildly successful recognition CNNs are the re-
sult of tremendous data curation and annotation effort [6,
1Code and data available at http://vision.cs.utexas.edu/projects/ktn/
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Figure 1: Our goal is to transfer CNNs trained on planar
images to 360◦ images. Common approaches either (A) ap-
ply CNNs directly on the equirectangular projection of a
360◦ image or (B) project the content to tangent planes and
apply the models on the tangent planes. In contrast, Kernel
Transformer Network (KTN) adapts the kernels in CNNs to
account for the distortion in 360◦ images.

14, 16, 30, 35, 40], but they all assume perspective pro-
jection imagery. How can they be repurposed for 360◦

data? Existing methods often take an off-the-shelf model
trained on perspective images and either 1) apply it repeat-
edly to multiple perspective projections of the 360◦ im-
age [10,37,39,42] or 2) apply it once to a single equirectan-
gular projection [19,29]. See Fig. 1(A,B). These two strate-
gies, however, have severe limitations. The first is expensive
because it has to project the image and apply the recogni-
tion model repeatedly. The second is inaccurate because the
visual content is distorted in equirectangular projection.

To overcome these challenges, recent work designs CNN
models specifically for spherical data [11, 12, 15, 36, 45].
Broadly speaking, they pursue one of three approaches.
The first adapts the network architecture for equirectangu-
lar projection and trains kernels of variable size to account
for its distortions [36]. While accurate, this approach suf-
fers from significant model bloat. The second approach
instead adapts the kernels on the sphere, resampling the
kernels or projecting their tangent plane features [12, 45].
While allowing kernel sharing and hence smaller mod-
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els, this approach degrades accuracy—especially for deeper
networks—due to an implicit interpolation assumption, as
we will explain below. The third approach defines convo-
lution in the spectral domain [11, 15], which has significant
memory overhead and thus far limited applicability to real-
world data. All of the above require retraining to handle a
new recognition task.

In light of these shortcomings, we propose the Ker-
nel Transformer Network (KTN). The KTN adapts source
CNNs trained on perspective images to 360◦ images. In-
stead of learning a new CNN on 360◦ images for a specific
task, KTN learns a function that takes a kernel in the source
CNN as input and transforms it to be applicable to a 360◦

image in its equirectangular projection. See Fig. 1 (C). The
function accounts for the distortion in 360◦ images, return-
ing different transformations depending on both the polar
angle θ and the source kernel. The model is trained to re-
produce the outputs of the source CNN on the perspective
projection for each tangent plane on an arbitrary 360◦ im-
age. Hence, KTN learns to behave similarly to the source
CNN while avoiding repeated projection of the image.

Key highlights of the proposed KTN are its transferabil-
ity and compactness—both of which owe to our function-
based design. Once trained for a base architecture, the same
KTN can transfer multiple source CNNs to 360◦ images.
For example, having trained a KTN for VGG [35] on Ima-
geNet classification, we can transfer the same KTN to run
a VGG-based Pascal object detector on 360◦ panoramas.
This is possible because the KTN takes the source CNN as
input rather than embed the CNN kernels into its own pa-
rameters (unlike [11,12,15,36,45]). Furthermore, since the
KTN factorizes source kernels from transformations, it is
implementable with a lightweight network (e.g., increasing
the footprint of a VGG network by only 25%).

Results show KTN models are orders of magnitude
smaller than the most accurate competitor, SphConv [36].
Compared with Spherical U-Net [45] and SphereNet [12],
KTN is much more data efficient because it does not require
any annotated 360◦ images for training, and it is more accu-
rate because it avoids their feature interpolation assumption.

2. Related Work
360◦ vision Ongoing work explores new projection mod-
els optimized for image display [5, 25, 43] or video stor-
age [1, 4, 27, 28, 38]. We adopt the most common equirect-
angular projection so our algorithm can be readily applied
to existing data. Other work explores how to improve the
display of 360◦ video via video stabilization [22, 23, 26],
new display interfaces [31–33], and automatic view selec-
tion [7, 10, 19, 29, 37, 39, 42]. The latter all rely on applying
CNNs to 360◦ data, and could benefit from our method.

CNNs on spherical data As discussed above, early meth-
ods take either the expensive but accurate reprojection ap-

proach [37, 39, 42, 44], or the inaccurate but fast direct
equirectangular approach [19, 29]. Recent work improves
accuracy by training vanilla CNNs on the cubemap projec-
tion, which introduces less distortion [3, 7], but the model
still suffers from cubemap distortion and discontinuities and
has sub-optimal accuracy for tasks such as object detection.

In the last year, several methods develop new spherical
CNN models. Some design CNN architectures that account
for the distortion in 360◦ images [12,36,45]. SphConv [36]
learns separate kernels for each row of the equirectangular
projection, training to reproduce the behavior of an off-the-
shelf CNN and adjusting the kernel shape based on its lo-
cation on the sphere. While more accurate than a vanilla
CNN, SphConv increases the model size significantly be-
cause it unties kernel weights along the rows. In contrast,
SphereNet [12] defines the kernels on the tangent plane and
projects features to the tangent planes before applying the
kernels. Similarly, Spherical U-Net [45] defines the kernels
on the sphere and resamples the kernels on the grid points
for every location in the equirectangular projection. Both
allow weight sharing, but they implicitly assume that fea-
tures defined on the sphere can be interpolated in the 2D
plane defined by equirectangular projection, which we show
is problematic. Instead of learning independent kernels or
using a fixed 2D transformation, our KTN learns a transfor-
mation that considers both spatial and cross-channel corre-
lation. Our model is more compact than SphConv by shar-
ing the kernels, and it is more accurate than SphereNet and
Spherical U-Net by learning a more generic transformation.

Another strategy is to define convolution in the spectral
domain in order to learn rotation invariant CNNs. One ap-
proach is to apply graph convolution and design the graph
structure [24] such that the outputs are rotation invariant.
Another approach transforms both the feature maps and
kernels into the spectral domain and applies convolution
there [11, 15]. However, orientation is often semantically
significant in real data (e.g., cars are rarely upside down)
and so removing orientation can unnecessarily restrict dis-
crimination. In addition, these approaches require caching
the basis functions and the frequency domain feature maps
in order to achieve efficient computation. This leads to sig-
nificant memory overhead and limits the viable input res-
olution. Both constraints limit the spectral methods’ accu-
racy on real world 360◦ images. Finally, unlike any of the
above prior work [3,7,11,12,15,36,45], our KTN can trans-
fer across different source CNNs with the same architecture
to perform new tasks without re-training; all other methods
require training a new model for each task.

CNNs with geometric transformations For perspective
images, too, there is interest in encoding geometric trans-
formations in CNN architectures. Spatial transformer net-
works [20] transform the feature map into a canonical
view to achieve transformation invariance. Active convo-
lution [21] and deformable convolution [13] model geomet-



ric transformations using the receptive field of the kernel.
While these methods account for geometric transformations
in the input data, they are not suitable for 360◦ images be-
cause the transformation is location dependent rather than
content dependent in 360◦ images. Furthermore, all of them
model only geometric transformation and ignore the cor-
relation between different channels in the feature map. In
contrast, our method captures the properties of 360◦ images
and the cross channel correlation in the features.

3. Approach
In this section, we introduce the Kernel Transformer Net-

work for transferring convolutions to 360◦ images. We first
introduce the KTN module, which can replace the ordinary
convolution operation in vanilla CNNs. We then describe
the architecture and objective function of KTN. Finally, we
discuss the difference between KTN and existing methods
for learning CNNs on 360◦ data.

3.1. KTN for Spherical Convolution
Our KTN can be considered as an generalization of or-

dinary convolutions in CNNs. In the convolution layers of
vanilla CNNs, the same kernel is applied to the entire in-
put feature map to generate the output feature map. The
assumption underlying the convolution operation is that the
feature patterns, i.e., the kernels, are translation invariant
and should remain the same over the entire feature map.
This assumption, however, does not hold in 360◦ images. A
360◦ image is defined by the visual content projected on the
sphere centered at the camera’s optical center. To represent
the image in digital format, the sphere has to be unwrapped
into a 2D pixel array, e.g., with equirectangular projection
or cubemaps. Because all sphere-to-plane projections in-
troduce distortion, the feature patterns are not translation
invariant in the pixel space, and ordinary CNNs trained for
perspective images do not perform well on 360◦ images.

To overcome this challenge, we propose the Kernel
Transformer Network, which can generate kernels that ac-
count for the distortion. Assume an input feature map
I ∈ RH×W×C and a source kernel K ∈ Rk×k×C defined
in undistorted images (i.e., perspective projection). Instead
of applying the source kernel directly

F [x, y] = Σi,jK[i, j] ∗ I[x− i, y − j], (1)

we learn the KTN (f ) that generates different kernels for
different distortions:

KΩ = f(K,Ω) (2)
F [x, y] = Σi,jKΩ[i, j] ∗ I[x− i, y − j] (3)

where the distortion is parameterized by Ω. Because the dis-
tortion in 360◦ images is location dependent, we can define
Ω as a function on the sphere

Ω = g(θ, ϕ), (4)

where θ and ϕ are the polar and azimuthal angle in spheri-
cal coordinates, respectively. Given the KTNs and the new
definition of convolution, our approach permits applying an
ordinary CNN to 360◦ images by replacing the convolution
operation in Eq. 1 with Eq. 3.

KTNs make it possible to take a CNN trained for some
target task (recognition, detection, segmentation, etc.) on
ordinary perspective images and apply it directly to 360
panoramas. Critically, KTNs do so without using any an-
notated 360◦ images. Furthermore, as we will see below,
once trained for a given architecture (e.g., VGG), the same
KTN is applicable for a new task using that architecture
without retraining the KTN. For example, we could train
the KTN according to a VGG network trained for ImageNet
classification, then apply the same KTN to transfer a VGG
network trained for Pascal object detection; with the same
KTN, both tasks can be translated to 360◦ images.

3.2. KTN Architecture

In this work, we consider 360◦ images that are un-
wrapped into 2D rectangular images using equirectangular
projection. Equirectangular projection is the most popular
format for 360◦ images and is part of the 360◦ video com-
pression standard [8]. The main benefit of equirectangu-
lar projection for KTNs is that the distortion depends only
on the polar angle. Because the polar angle has an one-to-
one correspondence with the image row (y=θH/π) in the
equirectangular projection pixel space, the distortion can be
parameterized easily using Ω = g(θ, ϕ) = y. Furthermore,
we can generate one kernel and apply it to the entire row
instead of generating one kernel for each location, which
leads to more efficient computation.

A KTN instance is based on a given CNN architecture.
There are two basic requirements for the KTN module.
First, it has to be lightweight in terms of both model size
and computational cost. A large KTN module would in-
cur a significant overhead in both memory and computation,
which would limit the resolution of input 360◦ images dur-
ing both training and test time. Because 360◦ images by
nature require a higher resolution representation in order to
capture the same level of detail compared with ordinary im-
ages, the accuracy of the model would degrade significantly
if we were forced to use lower resolution inputs.

Second, KTNs need to generate output kernels with vari-
able size, because the appropriate kernel shape may vary in
a single 360◦ image. A common way to generalize convo-
lution kernels on the 2D plane to 360◦ images is to define
the kernels on the tangent plane of the sphere. As a result,
the receptive field of the kernel on the 360◦ image is the
back projection of the receptive field on the tangent plane,
which varies at different polar angles [12,36,45]. While one
could address this naively by always generating the kernels
in the largest possible size, doing so would incur significant
overhead in both computation and memory.



360◦ Image

θ

Equirectangular Projection

K

⊕
Kθ

θ

θ

Channel-wise
Projection

Depth-wise
Convolution

1x1 Convolution

Figure 2: KTN consists of row dependent channel-wise
projections that resize the kernel to the target size and depth
separable convolution blocks. It takes a source kernel K
and θ as input and generates an output kernel KΩ. KΩ is
then applied to the 360◦ image in its equirectangular projec-
tion at row y=θH/π. The transformation accounts for the
distortion in equirectangular projection, while maintaining
cross-channel interactions.

We address the first requirement (size and cost) by em-
ploying depthwise separable convolutions [9,18] within the
KTN. Instead of learning 3D (i.e., height×width×channels)
kernels, KTN alternates between pointwise convolution that
captures cross-channel correlation and depthwise convolu-
tion that captures spatial correlation. Using the same 3x3
depthwise convolutions as in MobileNet [18], the computa-
tion cost is about 8 to 9 times less than standard convolution.
Furthermore, the model size overhead for KTN is roughly
1/k2 of the source kernels, where most of the parameters
are in the 1x1 convolution. The size overhead turns out to
be necessary, because cross channel correlation is captured
only by the 1x1 convolution in KTN, and removing it re-
duces the final spherical convolution accuracy significantly.

To address the second requirement (variable-sized ker-
nels), we learn a row dependent depthwise projection to re-
size the source kernel. The projection consists of h projec-
tion matrices Pi, for i ∈ [1, h], where h is the number of
rows in the 360◦ image. Let ri = hi × wi be the target
kernel receptive field at row i. The projection matrix has
the size Pi ∈ Rri×k2

, which projects the source kernel into
the target size. Similar to the depthwise convolution, we
perform channel-wise projection to reduce the model size.

The complete architecture for KTN is in Fig. 2. We use a
Residual Network [17]-like architecture. For both the resid-
ual and shortcut branches, we first apply the row depen-
dent projection to resize the kernel to the target size. The
residual branch then applies depthwise separable convolu-
tion twice. Our depthwise separable convolution block con-
sists of ReLU-pointwise conv-ReLU-depthwise conv. This

design removes the batch normalization used in MobileNet
to reduce the model size and memory consumption. The
two branches are added together to generate the output ker-
nel, which is then applied to a 360◦ feature map as in Eq. 3.
Note that while the KTN can be applied to different kernels,
the structure of a KTN depends on Pi, which is determined
by the receptive field of the source kernel. Therefore, we
need one KTN for each layer of a source CNN.

3.3. KTN Objective and Training Process

Having introduced the KTN module and how to apply it
for CNNs on 360◦ images, we now describe the KTN ob-
jective function and training process. The goal of the KTN
is to adapt the source kernel to the 360◦ domain. Therefore,
we train the model to reproduce the outputs of the source
kernels. Let F l ∈ RH×W×Cl

and F l+1 ∈ RH×W×Cl+1

be the feature maps generated by the l-th and (l+1)-th layer
of a source CNN respectively. Our goal is to minimize the
difference between the feature map generated by the source
kernels Kl and that generated by the KTN module:

L = ∥F l+1 − f l(Kl,Ω) ∗ F l∥2 (5)

for any 360◦ image. Note that during training the feature
maps F l are not generated by applying the source CNN di-
rectly on the equirectangular projection of the 360◦ images.
Instead, for each point (x, y) in the 360◦ image, we project
the image content to the tangent plane of the sphere at

(θ, ϕ) = (
π × y

H
,
2π × x

W
) (6)

and apply the source CNN on the tangent plane. This en-
sures that the target training values are accurately computed
on undistorted image content. F l[x, y] is defined as the l-th
layer outputs generated by the source CNN at the point of
tangency. Our objective function is similar to that of Sph-
Conv [36], but, importantly, we optimize the model over the
entire feature map instead of on a single polar angle in order
to factor the kernel itself out of the KTN weights.

The objective function depends only on the source pre-
trained CNN and does not require any annotated data for
training. In fact, it does not require image data specific to
the target task, because the loss is defined over 360◦ images.
In practice, we sample arbitrary 360◦ images for training
regardless of the source CNN. For example, in experiments
we train a KTN on YouTube video frames and then apply it
for a Pascal object detection task. Our goal is to fully repro-
duce the behavior of the source kernel. Therefore, even if
the training images do not contain the same objects, scenes,
etc. as are seen in the target task, the KTN should still mini-
mize the loss in Eq. 5. Although KTN takes only the source
kernels and θ as input, the exact transformation f may de-
pend on all the feature maps F l, F l−1, . . . , F 1 to resolve
the error introduced by non-linearities. Our KTN learns the
important components of those transformations from data.



Table 1: Comparison of different approaches. EQUIRECTANGULAR and CUBEMAP refer to applying the given CNN directly
to the equirectangular and cubemap projection, respectively. Supervised training means that the method requires annotated
360 images. The model size is the size for a single layer, where c, k,H refer to the number of channels, kernel size, and input
resolution (bandwidth) respectively. Note that c ∼ H ≫ k for real images and source CNNs, and we keep only the leading
term for each method.

Translation Rotation Supervised Model Transferable
Invariance Invariance Training Size Across Models

EQUIRECTANGULAR No No No c2k2 No
CUBEMAP No No No c2k2 No
S2CNN [11] Yes Yes Yes c2H No
SPHERICAL CNN [15] Yes Yes Yes c2H No
SPHERICAL U-NET [45] Yes No Yes c2k2 No
SPHERENET [12] Yes No Yes c2k2 No
SPHCONV [36] Yes No No c2k2H No

KTN Yes No No c2k2 + c2 Yes

KTN’s transferability across source kernels is analogous to
the generalizability of visual features across natural images.
In general, the more visual diversity in the unlabeled train-
ing data, the more accurately we can expect the KTN to be
trained. While one could replace all convolution layers in a
CNN with KTNs and train the entire model end-to-end us-
ing annotated 360◦ data, we believe that Eq. 5 is a stronger
condition while also enjoying the advantage of bypassing
any annotated training data.

3.4. Discussion
Compared to existing methods for convolution for 360◦

images, the main benefits of KTN are its compactness and
transferability. The information required to solve the target
task is encoded in the source kernel, which is fed into the
KTN as an input rather than part of the model. As a result,
the same KTN can be applied to another CNN having the
same base architecture but trained for a different target task.
In other words, without additional training, the same KTN
model can be used to solve multiple vision tasks on 360◦

images by replacing the source kernels, provided that the
source CNNs for each task have the same base architecture.

Most related to our work is the spherical convolution ap-
proach (SphConv) [36]. SphConv learns the kernels adapted
to the distortion in equirectangular projection. Instead of
learning the transformation function f in Eq. 2, SphConv
learns KΩ directly, and hence must learn one KΩ for every
different row of the equirectangular image. While SphConv
should be more accurate than KTN theoretically (i.e., re-
moving any limitations on memory and training time and
data) our experimental results show that the two methods
perform similarly in terms of accuracy. Furthermore, the
number of parameters in SphConv is hundreds of times
larger than KTN, which makes SphConv much more dif-
ficult to train and deploy. The difference in model size be-
comes even more significant when there are multiple mod-
els to be evaluated: the same KTN can apply to multi-
ple source CNNs and thus incurs only constant overhead,
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Figure 3: Beyond the first CNN layer, the feature interpo-
lation assumption in SphereNet [12] yields only approxi-
mated results. See text for details.

whereas SphConv must fully retrain and store a new model
for each source CNN. For example, if we want to apply
five different VGG-based CNNs to 360◦ images, SphConv
will take 29×5=145GB of space, while KTN takes only
56×5+14=294MB (cf. Sec. 4.3). In addition, since Sph-
Conv trains KΩ for a single source kernel K, the model
does not generalize to different source CNNs.

SphereNet [12] formulates the transformation function f
using the sphere-to-tangent-plane image projection. While
the projection transformation leads to an analytical solution
for f , it implicitly assumes that CNN feature maps can be
interpolated like pixels. This assumption is only true for
the first layer in a network because of non-linear activation
functions used in modern CNNs between convolution lay-
ers. Consider a two layer 1D convolution with a kernel of
size 1, as sketched in Fig. 3. If we interpolate the pixel first
and apply the kernels, the output of at location x is

c(x) = w2 × σ(w1(ax1 + bx2)). (7)

However, if we apply the kernels and then interpolate the
features, the result is

c(x) = aw2 × σ(w1x1) + bw2 × σ(w1x2). (8)

These two values are not equal because σ is non-linear, and
the error will propagate as the network becomes deeper. The
interpolated feature can at most be an approximation for the
exact feature. Our experimental results show that a projec-
tion transformation for f leads to sub-optimal performance.



Finally, other methods attempt to reduce distortion by
unwrapping a single 360◦ image into multiple images using
perspective projection locally [3,7], e.g., with cubemap pro-
jection. It is non-trivial to define convolution across multi-
ple image planes, where two cube faces meet. Prior work
addresses this problem by “cube-padding” the feature maps
using output from adjacent image planes [3, 7], but exper-
imental results indicate that the resultant features are not
accurate enough and degrade the accuracy. The reason is
that the same object may have different appearance on dif-
ferent tangent planes, especially when the field-of-view is
large and introduces significant perspective distortion. Al-
ternatively, one could sample the tangent planes densely and
apply convolution on each tangent plane independently, but
doing so incurs unrealistic computational overhead [37].

Table 1 summarizes the tradeoffs between existing
spherical convolution models. In short, KTN is distinct
from all others in its ability to transfer to new tasks without
any labeled data. Furthermore, KTN has the favorable prop-
erties of a highly compact model and the ability to preserve
orientation-specific features (typically desirable for recog-
nition and other high-level tasks).

4. Experiments
We evaluate KTN on multiple datasets and multiple

source models. The goal is to 1) validate the accuracy of
KTN as compared to other methods for learning CNNs on
360◦ images, 2) demonstrate KTN’s ability to generalize to
novel source models, and 3) examine KTN’s memory and
computation overhead compared to existing techniques.

Datasets Our experiments make use of both unannotated
360◦ videos and 360◦ images with annotation.

Spherical MNIST is constructed from the MNIST dataset
by back projecting the digits into equirectangular projection
with 160×80 resolution. The digit labels are used to train
the source CNN (recognition model), but they are not used
to train the KTN. Classification accuracy on the 360◦-ified
test set is used as the evaluation metric.

Pano2Vid is a real world 360◦ video dataset [39]. We
sample frames from non-overlapping videos for training
and testing, and the frames are resized to 640×320 reso-
lution. The models are trained to reproduce the convolution
outputs of the source model, so no labels are required for
training. The root-mean-square error (RMSE) of the final
convolution outputs is used as the evaluation metric.

Pascal VOC 2007 is a perspective image dataset with
object annotations. We backproject the object bounding
boxes to equirectangular projection with 640×320 resolu-
tion. Following [36], we use the accuracy of the detector
network in Faster R-CNN on the validation set as the eval-
uation metric. This dataset is used for evaluation only.

Source Models For Spherical MNIST, we train the source
CNN on the MNIST training set. The model consists

of three convolution layers followed by one fully con-
nected layer. Each convolution layer consists of 5x5Conv-
MaxPool-ReLU, and the number of kernels is 32, 64, and
128, respectively. For Pano2Vid and Pascal VOC, we take
off-the-shelf Faster R-CNN [34] models with VGG archi-
tecture [35] as the source model. The Faster R-CNN is
trained on Pascal VOC if not mentioned specifically. Source
models are not fine-tuned on 360◦ data in any form.

Baselines We compare to the following existing methods:

• EQUIRECTANGULAR—Apply ordinary CNNs on the
360◦ image in its equirectangular projection.

• CUBEMAP—Apply ordinary CNNs on the 360◦ image in
its cubemap projection.

• S2CNN [11]—We train S2CNN using the authors’ im-
plementation. For Pano2Vid and Pascal VOC, we reduce
the input resolution to 64×64 due to memory limits (see
Supp). We add a linear read-out layer at the end of the
model to generate the final feature map.

• SPHERICAL CNN [15]—We train SPHERICAL CNN us-
ing the authors’ implementation. Again, the resolution of
input is scaled down to 80×80 due to memory limits for
Pano2Vid and Pascal VOC.

• SPHERICAL U-NET [45]—We use the spherical convo-
lution layer in Spherical U-Net to replace ordinary con-
volution in CNN. Input resolution is reduced to 160×80
for Pano2Vid and Pascal VOC due to memory limits.

• SPHERENET [12]—We implement SPHERENET using
row dependent channel-wise projection.2 We derive the
weights of the projection matrices using the feature pro-
jection operation and train the source kernels. For the
Pano2Vid dataset, we train each layer independently us-
ing the same objective as KTN due to memory limits.

• SPHCONV [36]—We use the authors’ implementation.
• PROJECTED—Similar to SPHERENET, except that it uses

the source kernels without training.

The network architecture for EQUIRECTANGULAR and
CUBEMAP is the same as the source model. For all meth-
ods, the number of layers and kernels are the same as the
source model.

Note that the resolution reductions specified above were
necessary to even run those baseline models on the non-
MNIST datasets, even with state-of-the-art GPUs. All ex-
periments were run on NVIDIA V100 GPU with 16GB
memory—the largest in any generally available GPU to-
day. Therefore, the restriction is truly imposed by the latest
hardware technology. Compatible with these limits, the res-
olution in the authors’ own reported results is restricted to
60 × 60 [11], 64 × 64 [15], or 150 × 300 [45]. On the
SphericalMNIST dataset, all methods use the exact same

2The authors’ code and data were not available at the time of publication.



Table 2: Model accuracy.
MNIST Pano2Vid Pascal VOC
(Acc.↑) (RMSE ↓) (Acc.↑)

EQUIRECTANGULAR 95.24 3.44 41.63
CUBEMAP 68.53 3.57 49.29

S2CNN [11] 95.79 2.37 4.32
SPHERICAL CNN [15] 97.48 2.36 6.06
SPHERICAL U-NET [45] 98.43 2.54 24.98
SPHERENET [12] 87.20 2.46 46.68
SPHCONV [36] 98.72 1.50 63.54
PROJECTED 10.70 4.24 6.15

KTN 97.94 1.53 69.48

image resolution. The fact that KTN scales to higher res-
olutions is precisely one of its technical advantages, which
we demonstrate on the other datasets.

For Spherical MNIST, the baselines are trained to predict
the digit projected to the sphere except SPHCONV. SPH-
CONV and our KTN are trained to reproduce the conv3
outputs of the source model. For Pano2Vid, all methods
are trained to reproduce the conv5 3 outputs.

Please see Supp. file for additional details.

4.1. Model Accuracy

Table 2 summarizes the methods’ CNN accuracy on all
three 360◦ datasets. KTN performs on par with the best
baseline method (SPHCONV) on Spherical MNIST. The re-
sult verifies that KTN can transfer the source kernels to the
entire sphere by learning to reproduce the feature maps, and
it can match the accuracy of existing models trained with
annotated 360◦ images.

KTN and SPHCONV perform significantly better than
the other baselines on the high resolution datasets, i.e.,
Pano2Vid and Pascal VOC. S2CNN , SPHERICAL CNN,
and SPHERICAL U-NET suffer from their memory con-
straints, which as discussed above restricts them to lower
resolution inputs. Their accuracy is significantly worse
on realistic full resolution datasets. These models cannot
take higher resolution inputs even after using model paral-
lelism over four GPUs with a total of 64GB of memory.
Although EQUIRECTANGULAR and CUBEMAP are trained
and applied on the full resolution inputs, they do not account
for the distortion in 360◦ images and yield lower accuracy.
Finally, the performance of PROJECTED and SPHERENET
suggests that the transformation f cannot be modeled by a
tangent plane-to-sphere projection. Although SPHERENET
shows that the performance can be significantly improved
by training the source kernels on 360◦ images, the accu-
racy is still worse than KTN because feature interpolation
introduces error. The error accumulates across layers, as
discussed in Sec. 3.4, which substantially degrades the ac-
curacy when applying a deep CNN. Note that the number of
learnable parameters in KTN is much smaller than that in

Figure 4: KTN object detection examples on Pano2Vid.
See Supp. for detection examples on Pascal VOC.

SPHERENET, but it still achieves a much higher accuracy.
Interestingly, although SPHCONV performs better in

RMSE on Pano2Vid, KTN peforms better in terms of object
classification accuracy on Pascal VOC. We attribute this to
KTN’s inherent generalizability. SPHCONV has a larger
number of parameters, and the kernels at different θ are
trained independently. In contrast, the parameters in KTN
are shared across different θ and thus trained with richer in-
formation. Therefore, SPHCONV is more prone to overfit
the training loss, which is to minimize the RMSE for both
models. Furthermore, our KTN has a significant compact-
ness advantage over SPHCONV, as discussed above.

Similarly, although SPHERICAL U-NET and
SPHERENET perform slightly worse than S2CNN
and SPHERICAL CNN on Pano2Vid, they are significantly
better than those baselines on Pascal VOC. This result
reinforces the practical limitations of imposing rotation
invariance. S2CNN and SPHERICAL CNN require full
rotation invariance; the results show that orientation infor-
mation is in fact important in tasks like object recognition.
Thus, the additional rotational invariance constraince limits
the expressiveness of the kernels and degrades the perfor-
mance of S2CNN and SPHERICAL CNN. Furthermore,
the kernels in S2CNN and SPHERICAL CNN may span
the entire sphere, whereas spatial locality in kernels has
proven important in CNNs for visual recognition.

Fig. 4 shows example outputs of KTN with a Faster R-
CNN source model. The detector successfully detects ob-
jects despite the distortion. On the other hand, KTN can fail
when a very close object cannot be captured in the field-of-
view of perspective images.

4.2. Transferability
Next, we evaluate the transferability of KTN across dif-

ferent source models on Pano2Vid. In particular, we eval-
uate whether KTNs trained with a Faster R-CNN that is
trained on COCO can be applied to another Faster R-CNN
(both using VGG architecture) that is trained on Pascal
VOC and vice versa. We denote KTN trained on a different
source CNN than it is being tested on as KTN-TRANSFER
and KTN otherwise.
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Figure 5: Model transferability. The title indicates the
source CNN being tested. KTN performs almost identi-
cally regardless of the source network it is trained on. The
results show we can learn a single KTN and apply it to other
source CNNs with the same architecture, even if that source
model is trained for a different task.

Fig. 5 shows the results. The accuracy of KTN-
TRANSFER is almost identical to KTN. The results demon-
strate that KTN indeed learns a task-independent transfor-
mation and can be applied to different source models with
the same base architecture. None of the existing mod-
els [11, 12, 15, 36, 45] are equipped to perform this kind
of transfer, because they learn fixed kernels for a specific
task in some form. Hence, the PROJECTED baseline is the
only baseline shown in Fig. 5. Although PROJECTED can
be applied to any source CNN without training, the per-
formance is significantly worse than KTN. Again, the re-
sults indicate that a projection operation is not sufficient to
model the required transformation f . The proposed KTN
is the first approach to spherical convolution that translates
across models without requiring labeled 360◦ images or re-
training. We also perform the same experiments between
VGG trained for ImageNet classification and Faster R-CNN
trained for Pascal object detection, and the results are simi-
lar. See Supp.

4.3. Size and Speed

Finally, we compare the overhead introduced by KTN
versus that required by the baseline methods. In particular,
we measure the model size and speed for the convolution
layers in the VGG architecture. For the model size, we com-
pute the total size of the parameters using 32-bit floating
point numbers for the weights. While there exist algorithms
that compress neural networks, they are equally applicable
for all methods. For the speed, we measure the average pro-
cessing time (I/O excluded) of an image for computing the
conv5 3 outputs. All methods are evaluated on a dedicated
AWS p3.8xlarge instance. Because the model size for SPH-
CONV is 29GB and cannot fit in GPU memory (16GB), it is
run on CPUs. Other methods are run on GPUs.

Fig. 6 shows the results. We can see that the model size
of KTN is very similar to EQUIRECTANGULAR, CUBEMAP
and PROJECTED. In fact, it is only 25% (14MB) larger than
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Figure 6: Model size (top) and speed (bottom) vs. accu-
racy for VGG. KTN is orders of magnitude smaller than
SPHCONV, and it is similarly or more compact as all other
models, while being significantly more accurate.

the source CNN. At the same time, KTN achieves a much
better accuracy compared with all the models that have a
comparable size. Compared with SPHCONV, KTN not only
achieves a higher accuracy but is also orders of magnitude
smaller. Similarly, S2CNN and SPHERICAL CNN increase
model size by 131% and 727% while performing worse in
terms of accuracy. Note that we do not include parame-
ters that can be computed analytically, such as the bases
for S2CNN and the projection matrices for SPHERENET,
though in practice they also add further memory overhead
for those baselines.

On the other hand, the computational cost of KTN is
naturally much higher than EQUIRECTANGULAR. The lat-
ter only needs to run the source CNN on an equirectangular
image, whereas the convolution kernels are generated at run
time for KTN. However, as all the results show, KTN is
much more accurate. Furthermore, KTN is 26 times faster
than SPHCONV, since the smaller model size allows the
model to be evaluated on GPU.

5. Conclusion
We propose the Kernel Transformer Network for trans-

fering CNNs from perspective images to 360◦ images. KTN
learns a function that transforms a kernel to account for the
distortion in the equirectangular projection of 360◦ images.
The same KTN model can transfer to multiple source CNNs
with the same architecture, significantly streamlining the
process of visual recognition for 360◦ images. Our results
show KTN outperforms existing methods while providing
superior scalability and transferability.
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