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Abstract
Today’s programmers, especially data science practitioners,
make heavy use of data-processing libraries (APIs) such as
PyTorch, Tensorflow, NumPy, and the like. Program syn-
thesizers can provide significant coding assistance to this
community of users; however program synthesis also can be
slow due to enormous search spaces.

In this work, we examine ways in which machine learning
can be used to accelerate enumerative program synthesis.
We present a deep-learning-based model to predict the se-
quence of API functions that would be needed to go from a
given input to a desired output, both being numeric vectors.
Our work is based on two insights. First, it is possible to
learn, based on a large number of input-output examples, to
predict the likely API function needed. Second, and impor-
tantly, it is also possible to learn to compose API functions
into a sequence, given an input and the desired final output,
without explicitly knowing the intermediate values.

We show that we can speed up an enumerative synthe-
sizer by using predictions from our model variants. These
speedups significantly outperform previous ways (e.g. Deep-
Coder [2]) in which researchers have used ML models in
enumerative synthesis.

CCS Concepts: • Software and its engineering → Pro-
gramming by example; Automatic programming; API lan-
guages.

Keywords: Program Synthesis, Programming By Example,
PyTorch, Tensor Manipulation
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1 Introduction
One of the cherished dreams of the programming languages
research community is to enable automated synthesis of pro-
grams based on a specification. Synthesis approaches have
been designed around several different forms of specifica-
tion, e.g. a formal specification, [14, 15] or natural language
description [30, 32], or input-output examples (aka demon-
stration) [10, 11, 22, 26, 31], or a combination thereof. Just
as well, several different approaches to synthesis have been
researched [13, 15, 27, 28].
Our focus is on coding assistance for users of numeric

libraries such as PyTorch, Tensorflow, Numpy, Pandas, and
the like, each of which provide powerful data manipulation
routines behind an API, and the API functions are generally
side-effect free. We assume a specification in the form of
a single input-output example, and we are looking for a
straight-line program consisting of calls to API functions.
We choose enumerative synthesis as the underlying synthesis
approach. Our research goal—shared with recent works such
as DeepCoder [2], TF-Coder [23], and others—is to speed up
plain enumerative synthesis using machine learning (ML).

Here is an inputmatrix aswell as the desired outputmatrix,
and the synthesis problem is to come up with a sequence of
function calls that would convert the input to output. We
will use the PyTorch API for this purpose.

in = [[5., 2.], [1., 3.], [0., -1.]]
out = [[[5., 5.], [1., 1.], [0., 0.]],

[[2., 2.], [3., 3.], [-1., -1.]]]

The desired code fragment for this example is:
transpose(stack((in, in), 2), 0, 1)

The goal of program synthesis is to arrive at this expres-
sion, given only the input and output. Keep in mind that it
is unlikely that random guessing of an expression will work:
there are tens if not hundreds of available functions, and
each function might take more than one argument. Thus, a
systematic search is necessary.

https://doi.org/10.1145/3520312.3534866
https://doi.org/10.1145/3520312.3534866
https://doi.org/10.1145/3520312.3534866
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Figure 1. Overview of ML guided enumerative search algorithms. (a) weighted enumerative synthesis without ML model
incorporation [23], (b) weighted enumerative synthesis with one-time ML-based prioritization [2, 23], (c) incorporation of
Full-Seq prediction mode, (d) incorporation of First-Of-Seq prediction mode. Red-highlight indicates the API functions predicted
by ML models. The underscore is a placeholder for argument values. Numbers (in (a),(b)) on the left side are the costs assigned
to the values and API functions.

Basic Enumerative Synthesis. Refer to Figure 1, part
(a), where we illustrate an enumerative synthesis in the style
of Transit [28] and TF-Coder [23]. The idea is to organize
the search in the order of increasingly complex expression
trees, where the complexity is approximated by a cost. We
heuristically assign a cost to each available value and to
each operation, which here are API functions. At each step,
we work with a budget, which grows in successive steps.
Expressions that can be formed from existing values within
the budget are added to a pool of values. For instance, the
expression stack((in,in),2) would cost the two times the
cost of inp plus the costs of the value 2 and the function
stack. In the figure, this cost comes to 48, based on the cost
of stack being 36. The value computed by this expression is
added to the pool of values, along with the expression that
computes them and its cost. The process continues until the
desired output value is found.

Trying Likely Functions First. The enumerative search
presented above is slow, and gets exponentially slower if a
larger expression is needed to get the job done. A reason
for this slowness is that the turn of the actually needed API
function might come in quite late, as enumerative synthesis
makes its way through the smaller cost budget and cheaper
functions. Balog et al [2], in their seminal work DeepCoder,
described a ML based strategy to accelerate enumerative
program synthesis. DeepCoder’s insight is to re-assign costs
to functions—based on a ML model over the given input and
output—such that the function(s) more likely to be needed in
a given situation are prioritized. See part (b) of Figure 1. Here,
given the specification, DeepCoder’s ML model, adapted to

our setting, correctly deems transpose, and stack as likely to
be needed. Operationally, an enumerative synthesis process
(e.g. like TF-Coder’s [23]) can lower costs of these operations
by some factor, so they are likely to be tried in preference to
other API functions. The hope is that if the ML prediction is
accurate, and the discounted costs work out, the process of
enumerative synthesis can be sped up considerably.

This Paper: Predicting Function Sequences.Our thesis
is that ML can be used in the setting of enumerative syn-
thesis of API-centric code in a more powerful way: not for
prioritization, but instead to directly predict the sequence of
API functions that required to go from input(s) to the desired
output. We describe two ways in which such a predictive
model can be used to accelerate enumerative synthesis.

The first way in which we use this prediction model is to
just let it predict the entire sequence of API functions in one
shot, given the input and the output. In our running example,
the model will predict stack, transpose as the sequence.
See Figure 1, part (c). Given this sequence, the enumerative
synthesizer will only look for values to fill into the function
call arguments (shown by "_"). If the model predicts correctly,
the search space that an enumerative synthesizer faces is
vastly reduced, leading to possibly significant speedups.

A second way in which we use this predictive model is to
use it as a “first-of-sequence” (FOS) predictor. See Figure 1,
part (d). Given the input and the desired output, the FOS
predictor only predicts the first function in the sequence
needed. Say it predicts that function is stack. The synthe-
sizer tries out a set of concrete arguments for stack from
the values pool. The result of evaluating stack on each of
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Table 1. Sample of synthesized programs with Full-Seq
model guided enumerative synthesis and the synthesis time
comparison. More examples can be found in the extended
version [17].

Synthesized Program Full-Seq (s) no ML (s)
eq(in1,unsqueeze(in1,1)) 0.18 0.8

tensordot(in1,transpose(in2,0,1),1) 0.32 2.06

these sets of arguments is added to the values pool; these
are intermediate values in the desired computation. Next,
for each intermediate value thus obtained, the synthesizer
invokes the model again, this time giving it the intermediate
value (in place of the input) and the desired output value.
Say the model now predicts that the first function in the
remaining sequence needed is transpose. The synthesizer
then looks for appropriate arguments for transpose. At this
point, one of the argument choices would provide the desired
output. Compared to the full prediction, the point of this FOS
mode is that it gets to predict on the basis on known interme-
diate values, a bit akin to teacher forcing [29] in sequence
prediction, and can be successful more often than the full
prediction mode; but it can be less efficient than one-shot
prediction of the entire sequence.

On the running example, here are the comparative times
to a successful solution: plain enumerative synthesis, 54.79
seconds; DeepCoder-style ML-based prioritization, 34.71 sec-
onds; our API sequence prediction, FOS mode, 0.49 seconds;
and API sequence prediction, Full mode, 1.45 seconds. In this
example, full sequence prediction mode took a tad longer
than the FOS mode: this is because the correct full sequence
was in top-3 but not top-1, whereas in the FOS model the cor-
rect choice were at top-1. In general, we have found the full
sequence mode to be faster than FOS mode. Other examples
of Full-Seq guided synthesis are available in Table 1.

Contributions. We make two contributions in this work.
First, we present a way to incorporate powerful predictive
models in the context of enumerative program synthesis.
On a suite of benchmarks (adapted from Stack Overflow)
for PyTorch, using our ML models reduces the (mean, max)
synthesis time from (10.01, 96.53) to (1.04, 9.58). By con-
trast, an adaptation of the idea of DeepCoder [2] reduces
the (mean,max) synthesis time only to (7.44, 77.00). (See
Section 5.3, Table 4.)

Second, our main technical advancement is in being able
to carry out prediction of a sequence of API functions, given
the input and the final desired output. Specifically, our model
predicts one API function at a time and executes each pre-
dicted API function to convert the (intermediate) input state
into another intermediate state until it becomes the target
output state. Here, the intermediate states are not given to
the model, but the model learns to represent what would be
concrete intermediate values in the latent space during the

training time. The ability to execute the API functions in the
latent space indicates that the model learns the API function
semantics (i.e., the relation between the input and output
states) rather than the sequence distribution of the train-
ing dataset, and allows the model to generalize to unseen
sequences or lengths. See Sec 6.

An extended version of this paper [17] contains additional
details and datasets.

2 Learning to Predict API Sequences
Our technique works based on supervised learning over a
large number of input/output examples, trained over individ-
ual API functions, or on sequences of API functions. Since
the availability of real training data is a pervasive problem
in ML, we use synthetic data generation similar to prior
program synthesis work [25]. We pipe randomly-generated
diverse inputs through sequences of API functions and col-
lect resulting outputs (see Section 3.3). This helps capture
the behavior of a single or a sequence of API functions in
terms of how it transforms its input to the output.
Once trained, the model is able to predict a sequence of

API functions. It can predict for input-output pairs that were
never seen in the training data; thus it generalizes in the
data space as long as the query input-output pairs are in
distribution. More interestingly, it can predict sequences of
API functions that were not seen in the training set either.
This latter point is crucial, because the way we train the
model, it learns to compose new, previously unseen sequences
from the behaviors learned from training sequences.

Before we present operational details (Sec 3 onwards), we
would like to present some intuitions behind our proposed
ideas. We start with a basic classification model designed to
predict one API function, given an input/output pair; and
then build over it a compositional model that is designed
to predict a sequence of API functions. The importance of
examining the classification model on its own was crucial in
our own journey, because it helped overcome several chal-
lenges in synthetic data generation for training. (In actual
synthesis application, we use the model that predicts func-
tion sequences, described after this.)
Predicting a Function from Input-output Data. The

first intuition we use is that for many common API func-
tions, their behavior—the relationship of output to inputs—
has simple patterns. Moreover, the behavior of a function
is discriminable from behaviors of other functions based
on simple clues. Many functions simply move around ele-
ments of a data structure (e.g. transpose) in easy to recognize
patterns. In other cases, the operation is a simple element-
wise computation. This suggests that a feed-forward neural
network can be trained to predict likely functions—as in a
multi-classification problem—from a representation of the
input/output data. Such a network has to be trained on large
amounts of input-output examples and their known (ground
truth) functions.
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We tested our intuition by training a model to classify
among one of 33 PyTorch functions, using a synthetic dataset.
The model achieved a test accuracy of 92.54%; moreover, a
tSNE visualization (see [17], figure 2) corroborated that the
network maps distinct functions to different regions of the
latent space.
Predicting Sequences of Functions. The case of pre-

dicting an API sequence (e.g., [stack,transpose]) is harder.
The intermediate values that flow between API calls are not
known ahead of time, so it is not possible to reconstitute
this sequence simply by invoking the classification model
(for one API method name) over successive pairs of inputs
and outputs. Moreover, learning to recognize the intended
sequence from among all possible sequences, based on an
input/output pair, can be difficult, for reasons for compu-
tational cost, for a classification model that predicts over a
fixed collection of sequences of API function names.

This is where a second intuition comes into play. Given an
input/output pair, we can imagine a model that predicts the
first function in the intended sequence of the API functions
that would process the input and eventually produce the (fi-
nal) output. Crucially, we train this model as a recurrent unit,
such that it not only predicts the first API function needed,
but additionally produces a representation of the output of
that first API function. This representation, along with the
final output, can then be passed to a recurrent invocation of
the model, to make it predict the next API function in the
sequence. In this way, we can train a compositional model
for API sequences.
In our running example, the model first predicts stack

based on inp and out. It also computes an internal repre-
sentation of the intermediate value stack((inp,inp),2). It
then predicts transpose based on this internal representation
and out. This is the principle by which the model is able to
compose even longer previously-unseen sequences.
Here we emphasize that the model is not predicting the

next API token (e.g. transpose) based on the tokens that came
before (e.g. stack), as is done in code completion models [12].
At each step, the prediction is based only on (a representation
of) the program state, as opposed to on program text. This is
a new capability, which could be combined with additional
signals such as previous tokens, if desired.

3 Technical Details
In this section, we explain our models. We will use Figure 2
to show details using an example.

3.1 The Encoding Function
Before passing the input/output tensors to the models, we
encode them into a fixed-length vector (Figure 2-Encoding).
We extract three different pieces of information from the
tensors: (i) tensor values, (ii) tensor shapes, and (iii) tensor
types, and combine them as a sequence separated by a special

separator < 𝑠 >, i.e., 𝑋 = type <s> shape <s> value , such that, the
models can learn from all the three modalities together.
To manage the wide range of tensor values in the model,

we normalize the values as follows: we encoded the values
greater than 100 into 100, values greater than 1000 into 101,
and similarly for the negative values. The intuition is based
on how developers recognize patterns: when a value becomes
large enough, the importance of the least significant digit
decreases in pattern recognition.
Finally, all domain inputs and output encoding are con-

catenated together. We support up to 3 inputs and one output.
Dummy inputs are added when there are less then 3 inputs
to keep the model input size same for all examples.

3.2 Compositional Model
We train a model to predict the sequence of API functions
𝑠𝑓 = [𝑓1, ..., 𝑓𝑛], given a task specification 𝜙 = {𝑖𝑛𝑝, 𝑜𝑢𝑡},
where 𝑖𝑛𝑝 is a list of input tensors that have gone through
𝑠𝑓 , and 𝑜𝑢𝑡 is the final output tensor.

Figure 2 Compositional Model shows three units of the
model. In each unit, the encoding passed to the feed for-
ward network is similar to the one used before to create an
embedding of an input-output pair. When 𝑓𝑖 needs to use
𝑓𝑖−1 (𝑎𝑟𝑔𝑠𝑖−1), we mask the position as empty ("<p>") so that
the model exploits h𝑖−1. Embedded encodings are passed to
RNN units, and each unit further projects the input embed-
ding into the RNN embedding space to generate ℎ𝑖 , using
information flowed from adjacent units, ℎ𝑖−1. Finally, the out-
put of each unit is passed to a softmax layer (not shown here)
to produce a probability distribution over API functions.

3.3 Synthetic Data Generation
To train a neural model so that it can understand the be-
havior of API functions, a large number of corresponding
input-output pairs is necessary. Unlike other problems ex-
ploiting ML models, collecting real-world data from code
repositories (e.g., GitHub) is not applicable here because we
need runtime values, not static information such as static
code. Therefore, we randomly generate input/output values,
and use the synthetic dataset for model training.

Listing 1. Example data generation code for torch.sum

def generate_sum_IO ( ) :
i n _ t en so r , t e n s o r _ s i z e = random_tensor ( )
dim = random_dimension ( 0 , t e n s o r _ s i z e )
i f dim == len ( t e n s o r _ s i z e ) :

o u t _ t e n s o r = t o r ch . sum ( i n _ t e n s o r )
e l se :

o u t _ t e n s o r = t o r ch . sum ( i n_ t en so r , dim )
return ( i n _ t en so r , o u t _ t e n s o r )

For each API function, we randomly generate input ten-
sors, run the API functions with them, and capture the cor-
responding outputs. In other words, we create a set of in-
put/output values in a black-box manner: we do not assume
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Figure 2. Illustration of Compositional Model on an example. The inputs are in the Tensor Values box, and the expected
prediction is shown in the Sequence box.

API functions’ implementation details. As it does not require
understanding internal program structures, it is easy to gen-
erate a large number of input-output pairs without much
manual effort and can be easily parallelized.
However, as even a simple API operation in modern li-

braries (e.g., PyTorch) imposes many constraints, inputting
random values will generate many runtime errors due to the
constraints violations. To reduce such errors and generate
meaningful input/output data points efficiently, we exploit
API specification, and generate a set of inputs with the valid
combinations (see Listing 1 for an example).

4 Incorporating ML in Enumerative Syn.
Here we formally describe how the ML models were incorpo-
rated into the enumerative synthesis. Please refer to Figure 1
and Section 1 for a walk through of these on an example.
Detailed description of our implementation and the pseudo
code for each synthesis approach can be found in the sup-
plementary material (Appendix C, D).

Basic Enumerative Synthesis. As a baseline, we imple-
ment an enumerative synthesizer without any ML models.
Basic enumerative search starts with a set of base values and
enumerates over combinations of operations and the values.

The list of base values includes inp, other basic constants
such as 0, 1, -1, or heuristically-chosen values such as the di-
mensions of the given variables (e.g., 3). Then, starting with
the base values, the search enumerates ways of applying
operations to previously-explored values and expand the set
of known values. There are various ways of iterating the
operations and the values, (e.g. based on syntactic size as
in Transit [28]), but we use weighted enumerative search,
which is the approach of and TF-Coder [23]. It does so in
the order of increasing cost. Operations and values are as-
signed costs based on their complexity: less common and
more complex operations are assigned higher cost. Costs are
additive, so common operations and simpler expressions are
explored earlier. The costs are manually set by the synthe-
sizer developers once, and it will be used for all tasks.

Prioritizing Likely Functions with an ML Model. As
the needed operations for a specific problem are not known
to the synthesizer ahead of time, the costs seeded in it will
not always be ideally suited for all problems. TF-Coder [23]

and DeepCoder [2] address this problem using an ML model
to re-weigh all operations before the enumerative search
starts. Given input/output examples, it invokes a multi-label
classification model to predict the probability of each needed
operation and re-weighs them accordingly with the goal of
encountering the needed operations earlier in the search. We
trained classification model following DeepCoder [2].
Compositional Model - Full-Sequence. In this mode,

compositional model predicts a sequence of API functions
𝑠𝑓 = [𝑓1, 𝑓2, ..., 𝑓𝑛] given the final output𝑜𝑢𝑡 , and the inputs to
each API function [𝑖𝑛1, 𝑖𝑛2, .., 𝑖𝑛𝑛]. The synthesizer invokes
the compositional model with the specification, predicts a se-
quence of operations, and searches only the parameter values
(e.g., dimension) that were not provided in the specification.

The Full-Seqmode completely bypasses enumerative search
over operations. Instead, the compositional model predicts
the API functions needed in a synthesis instance as well as
the order of those APIs in the synthesized code. Thus, the
synthesizer does not need to search the operation space, but
only needs to search the combinations of base values.

CompositionalModel - First-Of-Sequence. In the First-
Of-Seq mode, given an input/output pair, compositional
model predicts the most probable API function needs to
come in the sequence. As enumerative search keeps track
of the intermediate output value, we can iteratively invoke
compositional model, and compute the intermediate values
using the predicted API functions, which can be used to
predict the next API function.

5 Evaluation
In this section, we first describe the dataset (Section 5.1), and
evaluate the trained API function sequence prediction model
(Section 5.2). Then, we investigate the prediction-guided
synthesis (Section 5.3). Finally, we show the generalizability
and the compositional property of our model (Section 5.4).

5.1 Dataset
Program Synthesis Benchmarks. We evaluated the ef-
fectiveness of our approaches with a subset of TF-Coder’s
SO benchmarks [23]. These benchmarks contain 50 tensor
manipulation examples collected from SO, each containing
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Table 2. Statistics of the dataset used in this study. Numbers
in parentheses indicate the length of the sequences.

Synthetic Stack Overflow

Train Valid. Test Test

# of unique seqs (len) 16 (1) + 186 (2) 8 (1) + 7 (2)
# of in/out values 5.5M 10K 10K 18

input/output tensor values and the desired solutions in Ten-
sorflow. To evaluate our approach that supports PyTorch,
we first translated them into PyTorch and excluded tasks
that we could not translate by hand. Among the 33 API func-
tions needed to for remaining 36 benchmarks, we selected 16
functions covering 18 benchmarks (Table 2-Stack Overflow)
from core utility that modify values (e.g., add) or shapes (e.g.,
transpose) of tensors, create them, or manipulate them in
similar ways. These operations were chosen because the
model can clearly observe the behavior of each API func-
tion solely from input/output pairs (i.e., no side effects). The
full benchmarks we support are available in the extended
version [17].

Synthetic Data Generation. To train our sequence pre-
diction model working for the SO benchmarks, we synthe-
sized a dataset as per Section 3.3. We synthesized 202 unique
sequences by using the exhaustive combination of 16 API
functions, with 1 or 2-length sequences. From the 272 (16
+ 162) possible sequences, 70 were removed due to the con-
straints.

For each API function sequence in the training dataset, say
𝑓1, 𝑓2, 𝑓3, we ran 𝑓1 with randomly generated input and other
parameter values (e.g., dimension). Then, 𝑓2 takes 𝑓1’s output
as input and takes other random input tensors, if necessary.
We treat 𝑓3 similarly by propagating 𝑓2’s output.

It took 1-person week to encode the API specifications
to write valid data generation code by reading the PyTorch
documentation. To avoid expansion to large input values
and to let the model learn the patterns sufficiently, we used
a fixed range of values (from 0 to 20) and the size of tensors
(up to 3 dimensions, and up to 5 elements in each dimension),
to prevent the tensors to be dispersed too much.
We created the dataset with 100K input/output pairs for

each unique API sequence (Table 2-Synthetic), and split it
into training, validation, and test sets. Each included all 202
API sequences, but the input/output values were not over-
lapped across the datasets.

5.2 Sequence Prediction Model
We trained both Full-Seq and First-Of-Seq variants using the
training set of the synthetic data, and evaluated it with (1)
the test set of the synthetic data, and (2) SO benchmarks.
Observation. Table 3 shows the result. Model’s top-1 testing
accuracies of the 10K synthetic test set are ∼79%. Among
18 SO benchmarks, the Full-Seq model found 13 sequences

Table 3. Model accuracy for unseen input/output values.

Synthetic-Test Stack Overflow
Model Top-1 Top-1 Top-3

Full-Seq 79.36% 35.29% 76.47%
First-Of-Seq 66.88% 52.38% 76.19%

Table 4. End-to-end program synthesis results; our models
in bold. Time, Max, and Median show the average, max,
median synthesis time of found programs.

Time

Found Not Found Mean Max Median

Enumerative 18 0 10.01 96.53 0.46
Multi-label 18 0 7.44 77.00 0.32
First-Of-Seq 17 1 5.87 59.93 0.39
Full-Seq 14 4 1.04 9.58 0.25

are in top-3 (72.22%), among them 6 are in top-1 (33.33%). In
comparison to the Full-Seq model, the First-Of-Seq model’s
top-1 accuracy is better. This is not surprising as First-Of-Seq
model has more information (actual values of the intermedi-
ate inputs) than the Full-Seq variant. However, surprisingly,
the top-3 accuracies of both are almost similar. These results
indicate that the Full-Seq model perhaps learned a represen-
tation of the intermediate states of the API sequence: even
without passing the true intermediate values, the Full-Seq
model behaves at per with the Full-Seq model at top-3.

5.3 Prediction-guided Enumerative Synthesis
Using the trained Full-Seq and First-Of-Seq variants, we first
evaluate our approach, against vanilla enumerative synthesis
(similar to [23]). We further compared with a DeepCoder [2]-
like multi-label prediction model. Table 4 shows the results.

Existing Synthesizers vs. Compositional Model.
Among the 18 tasks, both vanilla enumerative search and a
synthesizer prioritized with multi-label classification model
could synthesize all tasks. The new variants incorporating
our models synthesized 17 (First-Of-Seq) and 14 (Full-Seq)
correctly, out of 18 and 17 respectively. However, although
they synthesized fewer solutions, they required less time
to synthesize the solutions: 5.87 seconds (First-Of-Seq) and
1.04 seconds (Full-Seq) on average, whereas the existing
synthesizers took 10.01 and 7.44 respectively.

We see this speed up because predicting the sequence re-
duces the search space. As the compositional models return a
sequence of API functions, the enumerative search can focus
on the argument values instead of iterating over the API
function sequences. Note that the multi-label classification
model also suggests potential API functions, it provides us
with a set of functions, not sequences. Thus, in the worst
case, the associated enumerative search has to explore all
the possible combinations increasing the synthesis time.



Predictive Synthesis of API-Centric Code MAPS ’22, June 13, 2022, San Diego, CA, USA

The difference in synthesis time between the composi-
tional models and the baselines is not big in simple tasks
(e.g., any(in,-1)), which is why the difference in median in
Table 4 is not significant enough. However, when it comes to
more complex tasks like in Figure 1, the difference becomes
significant: 54.79 seconds with plain enumerative synthesis
vs. 0.49 with First-Of-Seq mode.

One caveat of compositional models is that the model pre-
diction is not the bottom-up method but a one-shot approach.
Therefore, when the model fails to predict the sequence cor-
rectly, it cannot synthesize the program. However, as the
whole search can be done quickly, the time overhead is not
high even when one tries with the compositional model and
employ other approaches once it fails.
First-Of-Seq vs. Full-Seq. Between the two variants,

First-Of-Seq was able to synthesize more programs. For ex-
ample, First-Of-Seq successfully synthesized the desired pro-
gram where(lt (in,1),in,1) by predicting lt and where cor-
rectly in top-3. However, Full-Seq failed, and predicted [[eq,

where],[eq,mul],[gt,where]] as top-3, which are close, but
not entirely correct. This is expected. First-Of-Seq only has
to get the first element of the sequence right; the next ele-
ment is in fact the first element of the result of the subsequent
prediction, which in turn, is based on the actual intermediate
value computed by the first function predicted. Whereas, the
Full-Seq gets only one chance to get the entire sequence right
without knowing the intermediate values. When a sequence
is correctly predicted, Full-Seq model could synthesize the
solutions faster; it only needs to be invoked once, without
the intermediate values computation.

5.4 Evaluating Generalization
To see whether the model truly learned the functionality
of the API functions and learned their compositions, we
tested whether the model can generate new API sequences
that were not present in the training data. From the original
synthetic dataset 2, we removed the data of 7 API function
sequences with length-2 that were included in SO bench-
marks, and trained the First-Of-Seq and Full-Seq models. Our
hypothesis was that if the models are able to learn the com-
positional property, instead of learning the distributions of
sequences, they should be able to generate unseen sequences
by composing API functions into a sequence.
Observation. Not surprisingly, the accuracy drops from the
Section 5.2 result. Nevertheless, out of 8 benchmarks with
2 sequence, we can still predict 4 sequences at top-5 (50%
accuracy) with Full-Seq, and 6 sequences (75% accuracy) with
First-Of-Seq. In this setting, we sometimes narrowly miss
some function sequences. For example, we miss a benchmark
[lt, where], however it predicts [eq, where], and [gt, where]
instead. Note that gt and eq have very similar functionalities
to the intended API function lt. Both the models can cor-
rectly predict sequences like [unsqueeze, eq], [matmul, add],

Table 5. Model accuracy for unseen input/output values,
trained with a dataset covering all SO benchmarks.

Synthetic-Test Stack Overflow
Model Top-1 Top-1 Top-3

Full-Seq 88.15% 68.57% 91.42%
First-Of-Seq 65.44% 51.61% 79.03%
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Figure 3. Illustration of compositional learning. (a): Two
units of the compositional model predicting a sequence
[𝑓1, 𝑓2]. (b): Single unit model predicting 𝑓2 given 𝑓1 (𝑖𝑛1) in-
stead ofℎ1. We show the compositional property of themodel
by showing ℎ2 ≈ ℎ′

2.

etc. As expected, the First-Of-Seq model works much better
than Full-Seq model.
To further check the model’s ability to generalize to un-

seen 3-length sequence, we randomly picked 71 unique 3-
length sequences made out of 16 API functions and collected
100 instances of them with different input/output values.
This gives a total of 7100 test samples. We used the model
trained with only sequences with length 2. Overall, at top-
5, model’s accuracy is ∼34% when queried with unknown
sequences and unknown values. However, the model can
predict 69 out of 71 sequences correctly at least with one
input/output. The only two sequences the model missed are
[add, mul, any] and [add, unsqueeze, ne]. In contrast, [where,
expand, matmul] was predicted correctly around 97% time.
These results indicate the model’s ability to generalize.

6 Why Composition Works?
We show that a unit of our compositional model has an
interesting property: it learns to convert its incoming hidden
vector to its outgoing hidden vector in a way consistent
with the semantics of the API function it predicts, albeit in
embedding space. This property is crucial for predicting a
sequence compositionally.

In Fig 3(a), we show two units of the compositional model,
where the first one predicts function 𝑓1, on the basis of 𝑖𝑛𝑝1,
𝑜𝑢𝑡 and the previous hidden vector, if any. That unit also
produces a hidden vector ℎ1. The second unit produces hid-
den vector ℎ2. It may also consume further local input (such
as 𝑖𝑛𝑝2). Fig 3(b) shows an alternate situation in which we
give the result of 𝑓1 (𝑖𝑛1) directly as input to the first unit,
which then produces ℎ′

2.
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Figure 4. Proximity of ℎ2 and ℎ′
2 pairs for some inputs

(in white and black respectively), against a backdrop of ℎ2
(crosses) and ℎ′

2 (dots).

The interesting property is that ℎ2 and ℎ′
2 are close to-

gether in the representational space. In Figure 4, as we expect,
black and white markers show that ℎ2 and ℎ2′ for the same
inputs are arranged close to each other in the embedding
space. In producing ℎ2 (or ℎ′

2), the RNN unit did not care
whether it was given ℎ1, the representation produced by the
previous RNN unit, or directly given 𝑓1 (𝑖𝑛1). In this man-
ner, successive hidden states contain information analogous
to the results of concrete computations: 𝑓1 (𝑖𝑛1), 𝑓2 (𝑓1 (𝑖𝑛1)),
and so on. (In the actual model, these functions need not be
unary, as implied here.)

7 Limitations
Our results are promising, yet preliminary in many ways,
and we have not established generality in several dimensions.
First, we support a small set of API functions and have car-
ried out a limited evaluation. As the number increases, the
training data size also increases, and training the model well
becomes harder due to computational needs. The robustness
of training is a challenge in general.
Second, the model’s ability to generalize to unseen se-

quences is crucially dependent on training over a broad di-
versity of API sequences. This is challenging as we go to a
larger number of API functions, because we cannot cover
all permutations exhaustively. However, the model can still
learn the semantics reasonably well if the training data cov-
ers the sequences in the test set. Thus, the future works may
benefit from creating a training dataset containing a distri-
bution of sequences representing the real-world API usage
patterns, through API usage mining [16, 34].
Third, we have explored the model’s training and infer-

ence on relatively short tensors, with small data ranges, and
have generally worked only with integer data. In a real ap-
plication, tensors can be out-of-distribution.
Fourth, we have worked only with PyTorch. We believe

the work can be replicated easily to NumPy and Tensorflow
API functions, because of their similar nature (acting over
arrays of numbers.). Farther out, we may need to invent
additional techniques.

8 Related Work
ML for Program Synthesis. With advances in ML, re-
searchers tried to adopt ML on top of the enumerative search
for more efficient program synthesis [2, 4, 18, 20, 23]. Our
work is closely related to DeepCoder [2], TF-Coder [23] and
BUSTLE [20]. Using prediction-guided enumerative synthe-
sizer, they show the benefits of predicting API functions that
are needed somewhere given a synthesis instance. However,
they all use a explicit featurization over these the input-
output values, which is not easy to generalize to other pro-
gramming languages. Also, they only predict presence or
absence of API functions, the prediction was only used to
prioritize operations in the enumerative search, rather than
directly predicting the API function(s) in sequence. With the
ML model guiding the search, BUSTLE takes an approach
similar to ours, which gives feedback to search iteratively,
whereas the models of DeepCoder or TF-Coder only give
feedback in the beginning of the search. However, BUSTLE
and DeepCoder only support simple DSL tasks, which may
not be generalized for real-world API-based synthesis.
Neural Program Synthesis. Approaches like [1, 3, 5–

9, 19, 21, 21, 24, 33] directly use neural networks for end-
to-end synthesis [3, 5, 8, 21] to generate string transforma-
tion programs from examples. These works generally use
encoder-decoder model. In particular, the encoder embeds
the input/output strings, and the decoder generates the pro-
gram sequences conditioned on the input embedding. How-
ever, these approaches are mostly built and evaluated with
simple DSL tasks, mostly with simple string transformation.
In this work, we worked on the real-world tensor manipula-
tion library PyTorch. Although our evaluation does not cover
the full range of PyTorch, we found several challenges in
expanding these work into more complex programs, such as
the scalability issue in training data generation and diversity
of the API parameters especially in the tensor domain.

9 Conclusion
In this paper, we proposed a newmachine learning technique
to speed up enumerative program synthesis. Our idea is to
use an ML model to predict the sequence of API function
calls required to go from an input to the final desired output,
in our case, both numeric vectors. Our model is trained on
randomly generated data. It is able to predict API sequences
for previously unseen inputs and outputs. Moreover, it can
predict API sequences that were not seen during training
either. The model does so by learning to compose API se-
quences, by learning how to keep track of values in the
hidden states of an RNN. We showed that our model can
predict sequences of lengths 1 to 3 fairly well. In terms of
effectiveness, we showed that our technique accelerates enu-
merative synthesis more effectively than related previous
works DeepCoder [2] and TF-Coder [23].
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