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ABSTRACT

In this paper we introduce a novel, unified, open-source model interpretability
library for PyTorch (Paszke et al., 2019). The library contains generic implemen-
tations of a number of gradient and perturbation-based attribution algorithms, also
known as feature, neuron and layer importance algorithms, as well as a set of
evaluation metrics for these algorithms. It can be used for both classification and
non-classification models including graph-structured models built on Neural Net-
works (NN). In this paper we give a high-level overview of supported attribution
algorithms and show how to perform memory-efficient and scalable computations.
We emphasize that the three main characteristics of the library are multimodality,
extensibility and ease of use. Multimodality supports different modality of inputs
such as image, text, audio or video. Extensibility allows adding new algorithms
and features. The library is also designed for easy understanding and use, and is a
valuable tool for building Responsible AI frameworks.

1 INTRODUCTION

Given the complexity and black-box nature of NN models, there is a strong demand for clear un-
derstanding of how those models reason. Model interpretability aims to describe model internals in
human understandable terms and is an important component of Explainable (Gilpin et al., 2018) and
Responsible (Barredo Arrieta et al., 2020) AI. While building interpretable models is encouraged,
many existing state-of-the-art NNs are not designed to be inherently interpretable, thus the devel-
opment of algorithms that explain black-box models becomes highly desirable. This is particularly
important when AI is used in domains such as healthcare, finance or self-driving vehicles where
establishing trust in AI-driven systems is critical.

Some of the fundamental approaches that interpret black-box models are feature, neuron and layer
importance algorithms, also known as attribution algorithms. Existing frameworks such as Deep-
Explain (Ancona et al., 2018), Alibi (Klaise et al., 2019) and InterpretML (Nori et al., 2019) have
been developed to unify those algorithms in one framework and make them accessible to all machine
learning model developers and practitioners. These frameworks, however, have insufficient support
for PyTorch models with different modalities. In Captum, we provide generic implementations of a
number of gradient and perturbation-based attribution algorithms that can be applied to any PyTorch
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model of any modality. The library is easily extensible and lets users scale computations across mul-
tiple GPUs and handles large-sized input by dividing them into smaller pieces, thereby preventing
out of memory situations.

Another important aspect is that both qualitative and quantitative evaluation of attributions are dif-
ficult. Visual explanations can be misleading (Adebayo et al., 2018) and evaluation metrics are
subjective or domain specific (Yang & Kim, 2019). To address these issues, we provide generic im-
plementations of two evaluation metrics called infidelity and max-sensitivity proposed in (Yeh et al.,
2019). These metrics can be used in combination with any PyTorch model and most attribution
algorithms.

Lastly, model understanding research largely focuses on the Computer Vision (CV) domain whereas
there are many unexplored NN applications that desperately need model understanding tools. Adapt-
ing CV-specific implementations for those applications is not always straightforward, thus the need
for a well-tested and generic library that can be easily applied to multiple domains across research
and production.

2 AN OVERVIEW OF THE ALGORITHMS

The attribution algorithms in Captum can be grouped into three main categories: primary-, neuron-
and layer- attributions, as shown in Figure 1. Primary attribution algorithms are the traditional
feature importance algorithms that allow us to attribute output predictions to model inputs. Neuron
attribution methods allow us to attribute an internal, hidden neuron to the inputs of the model and
layer attribution variants allow us to attribute output predictions to all neurons in a hidden layer.
In most cases, both neuron and layer variants are slight modifications of the primary attribution
algorithms.

Figure 1: An overview of all three types of attribution variants with example code snippets. The first
variant depicted on the far-left side of the diagram represents primary attribution. The middle one
represents neuron and the right-most one layer attribution.

Most attribution algorithms in Captum can be categorized into gradient and perturbation-based ap-
proaches as also depicted in Figure 2. Some of these algorithms such as GradCam (Selvaraju et al.,
2017) and Occlusion (Zeiler & Fergus, 2014) are more popular in the CV community, where they
stem from. However, our implementations of those algorithms are generic and can be applied to any
model that meets certain requirements dictated by those approaches. For example, GradCam and
GuidedGradCam are applicable only to convolutional models.

NoiseTunnel includes generic implementations of SmoothGrad, SmoothGrad Square and VarGrad
smoothing techniques proposed in (Smilkov et al., 2017). These methods help to mitigate noise in
the attributions and can be used in combination with most attribution algorithms depicted in Figure 2.
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The attribution quality of a number of algorithms such as Integrated Gradients (IG) (Sundararajan
et al., 2017), DeepLift (Shrikumar et al., 2017), SHAP variants (Lundberg & Lee, 2017), Feature
Ablation, LIME (Ribeiro et al., 2016) and Occlusion (Zeiler & Fergus, 2014) depend on the choice of
baseline, also known as reference, that needs to be carefully chosen by the user. Baselines express
the absence of some input feature and are an integral part of many feature importance equations.
For example, black and white images or the average of those two are common baselines for image
classification tasks.

From the implementation and usage perspective, all algorithms follow a unified API and signature.
This makes it easy to compare the algorithms and switch from one attribution approach to another.
The code snippets in Figure 1 demonstrate examples of how to use primary, neuron, and layer
attribution algorithms in Captum.

Figure 2: An overview of all the attribution algorithms in Captum. The algorithms grouped on the
left side of the diagram are the primary and neuron attribution algorithms. The ones on the right
side of the diagram are layer attribution variants. Besides that we can also recognize color-coding of
purple for gradient, pink for perturbation and dark blue for algorithms that are neither perturbation
nor gradient-based.

2.1 SCALABILITY

Many state-of-the-art Neural Networks with a large number of model parameters use large-sized in-
puts which, ultimately, lead to computationally expensive forward and backward passes. We want to
make sure that we leverage available memory and CPU/GPU resources efficiently when performing
attribution. In order to avoid out of memory situations for certain algorithms, especially the ones
with internal input expansion, we slice inputs into smaller chunks, perform the computations sequen-
tially on each chunk and aggregate resulting attributions. This is especially useful for algorithms
such as IG (Sundararajan et al., 2017) and Layer Conductance (Dhamdhere et al., 2019) because
they internally expand the inputs based on the number of integral approximation steps. Being able
to chunk the inputs into smaller sizes can theoretically allow us to perform integral approximation
for an infinite number of steps.

In case of feature perturbation, if the inputs are small and we have enough memory resources avail-
able, we can perturb multiple features together in one input batch. This requires that we expand the
inputs by the number of features that we perturb together and helps to improve runtime performance
of all our feature perturbation algorithms.

In addition to this, all algorithms support PyTorch DataParallel, which performs model forward and
backward passes simultaneously on multiple GPUs and improves attribution runtime significantly.
We made this available for all layer and neuron attribution algorithms, including Layer Activation
and NoiseTunnel.

In one of our experiments, we used IG on a pre-trained VGG19 model, for a single 3 x 224 x 224
input image in a GPU environment that has 8 GPUs, each 16GB memory available and gradually
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Table 1: Runtime performance of IG and Feature ablation for image classification with VGG19 and
IG for segmentation with ResNet 101 on a single input image.

Number of GPUs Classification with VGG19 Segmentation with ResNet 101

Int. Grads Feature Abl. Int. Grads

1 41.62 140.4 90.49
4 26.41 38.39 32.14
8 15.06 22.02 21.45

increased the number of GPUs while keeping the number of integral approximation steps constant
(in this case 2990). From the second column of Table 1 we can see how the execution time decreases
substantially as we increase the number of GPUs. In the second experiment we used the same
execution environment, pre-trained model, input image and performed feature ablation by ablating
multiple features in one batch using a single forward pass. Based on the experimental results shown
in the third column of Table 1 we can tell that by increasing the number of GPUs from 1 to 8 the
execution time drops by approximately 85%. In the third experiment we used pre-trained ResNet
101 backbone segmentation model and computed IG on segment prediction for a single 3 x 640 x
958 input image. Similar to classification use case, in segmentation example we observe significant
runtime performance reduction when we gradually increase the number of GPUs.

3 EVALUATION

As mentioned in the sections above, both qualitative and quantitative evaluation of feature, neuron,
and layer importances are challenging research areas. Human annotations based on visual perception
are often subjective, and many quantitative evaluation metrics rely on priors of a dataset domain.
We implemented two metrics, infidelity and maximum sensitivity proposed in Yeh et al. (2019), in
a generic manner for use with any PyTorch model and most Captum algorithms. Similar to other
algorithms, we can perform multiple perturbations simultaneously which helps to improve runtime
performance.

Infidelity is the generalization of sensitivity-n (Ancona et al., 2018) metric that relies on the com-
pleteness axiom, that states that the sum of the attributions is equal to the differences of the NN
function at its input and baseline. The other metric, called maximum sensitivity, measures the extent
of the attribution change when the input is slightly perturbed. Maximum sensitivity is measured us-
ing Monte-Carlo approximation by sampling multiple samples from an Lp ball using a perturbation
radius r ∈ R. The users of Captum can use any perturbation function that computes perturbations
within any Lp ball. We provide a default implementation that samples uniformly from L∞ ball. In
the appendix we demonstrate results of these two metrics in different applications.

4 CONCLUSION

We presented a unified model interpretability library for PyTorch, called Captum, that supports
generic implementations of a number of gradient and perturbation-based attribution algorithms.
Captum can be applied to NN models of any type and used both in research and production environ-
ments. Furthermore, we described how the computations are scaled and how we handle large-sized
inputs. In addition to that, we also added support for two generic quantitative evaluation metrics
called infidelity and maximum-sensitivity.

5 FUTURE WORK

Our future work involves both expanding the list of attribution algorithms and looking beyond at-
tribution methods for model understanding. Beyond feature, neuron and layer attribution we are
also looking into adversarial robustness and the intersection between these two fields of research.
Concept-based model interpretability that aims to explain the models globally using human under-
standable concepts is another interesting direction to explore.
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A APPLICATIONS

The generality of Captum library allows us to apply it to different types of NNs. One of the com-
monly used applications is text classification. We used a pre-trained text classification model on
IMDB dataset (Maas et al., 2011) and IG to identify most salient tokens in the text. Figure 3 visual-
izes color-coded contributions of each token to the output predictions. We also computed infidelity
and max-sensitivity scores. The perturbations for infidelity metric are sampled uniformly from a
normal distribution N(0, 0.03) and for max-sensitivity from a L∞ ball with a radius of 0.03. The
norm ||.|| used in max-sensitivity computations is the L2 norm.

Figure 3: Visualizing salient tokens computed by IG that contribute to the predicted class using a bi-
nary classification model trained on IMDB dataset. Green means that those tokens pull towards and
red that they pull away from the predicted class. The intensity of the color signifies the magnitude
of the signal.
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Figure 4: Visualizing normalized attribution scores and weights for all ten neurons in the last linear
layer of a simple four MLP model trained on Boston house prices dataset.

Figure 5: Captum Insights interactive visualization tool after applying IG to the Visual Question
Answering multi-modal model. The tool also visualizes aggregated attribution magnitudes of each
modality.

Classification models are not the only types of models that Captum supports. As an example, we
built a regression model using Boston house prices dataset (Harrison & Rubinfeld, 1978) and a
simple four layer NN using linear layers and ReLUs. We attributed the output predictions to the last
linear layer using layer conductance algorithm and plotted them together with the learned weights
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Figure 6: Feature importance scores for dense(d0 - d12) and sparse(s0 - s25) features for DLRM
Ads click prediction model.

of that same layer as shown in Figure 4. Here we can see that the weights and the attribution scores
are aligned with each other. Both scores were normalized using L1 norm.

In order to improve model debugging experience, we developed an interactive visualization tool
called Captum Insights. The tool allows to sub-sample input examples and interactively attribute
different output classes to the inputs of the model using different types of attribution algorithms
depicted in Figure 6.

A.1 MULTIMODALITY

The support for multi-modal Neural Networks is one of the core motivations of Captum library. This
allows us to apply Captum to machine-learning models that are built using features stemming from
different sources such as audio, video, image, text, categorical or dense features. Aggregated feature
importance scores for each input modality can reveal which modalities are most impactful. In order
to make those visualizations interactive we built a visualization tool on top of Captum called Captum
Insights. Captum Insights visualizes feature importance metrics for a selected feature importance
algorithm, dataset and a predicted or ground truth label.

In Figure 6 we can see a screenshot of Captum insights tool for multi-modal Visual Question An-
swering model. From those visualizations we can tell whether the stronger predictive signal is
coming from text or image.

Deep Learning Recommendation Models (DLRMs) are another example of multi-model models that
are built on dense and sparse (categorical) features. We used a DLRM model trained on Criteo’s1

traffic dataset and a model architecture described in Naumov et al. (2019). Figure 5 visualizes both
dense and sparse feature importance calculated with IG and aggregated across 1100 Ad examples. In
this example we can see whether stronger prediction signal is coming from dense or sparse features
and how is that signal correlated with the Ads Clicked prediction.

1kaggle.com/c/criteo-display-ad-challenge
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