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In this work, we investigate the hypothesis that adding 3D information of the periocular region to an end-to-end gaze-estimation
network can improve gaze-estimation accuracy in the presence of slippage, which occurs quite commonly for head-mounted AR/VR
devices. To this end, using UnityEyes we generate a simulated dataset with RGB and depth-maps of the eye with varying camera
placement to simulate slippage artifacts. We generate different noise profiles for the depth-maps to simulate depth sensor noise artifacts.
Using this data, we investigate the effects of different fusion techniques for combining image and depth information for gaze estimation.
Our experiments show that under an attention-based fusion scheme, 3D information can significantly improve gaze-estimation
and compensates well for slippage induced variability. Our finding supports augmenting 2D cameras with depth-sensors for the
development of robust end-to-end appearance based gaze-estimation systems.
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1 INTRODUCTION

Accurate human gaze estimation is essential for applications such as general human computer interaction [Lutteroth
et al. 2015; Menges et al. 2017] or more specific applications such as augmented and virtual reality [Chu et al. 2020;
Patney et al. 2016], biometrics [Lohr et al. 2020] and behavior analysis [Huang et al. 2016; Rogers et al. 2018; Slone et al.
2018]. It is especially important to support some of the critical AR/VR technologies such as foveated-rendering [Patney
et al. 2016], telepresence [Chu et al. 2020; Lombardi et al. 2018], action anticipation and recognition [Bulling et al.
2009; Li et al. 2021], visual memory recall [Bulling and Roggen 2011], and visual search [Sattar et al. 2017]. Earlier
gaze-estimation approaches are based on the geometric eye-model and rely on complete view of the eye and known
camera and lighting positions w.r.t. the eye [Guestrin and Eizenman 2006b; Hansen and Ji 2010]. Recently, deep-learning
appearance-based models, which directly regress the gaze-direction from the eye-image in some world-coordinate
system, have received a lot of attention [Cheng et al. 2021; Ghosh et al. 2021] as an alternative direction.

Such deep-learning models are especially well suited for AR/VR gaze-estimation because the camera position is
generally off-axis, below and off to the side of the eye (see Figure 1), resulting in a partial view of the eye, which
renders model-based techniques less accurate [Guestrin and Eizenman 2006b]. Further, the power, form-factor and
heat-dissipation constraints require minimal hardware components. Unfortunately current appearance-based gaze-
estimation systems, including deep learning-based ones, are extremely sensitive to the variation in camera-placement
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(see Tab.1). Such variations are quite common for head-mounted-devices, or HMDs, due to vastly varying head and face
structures, referred to as fitment variability. Fitment variability can be compensated by user-calibration [Guestrin and
Eizenman 2006b], but it leads to poor user-experience. Moreover, the common use of HMDs—playing games, watching
360 scenes—involves head-motion that leads to HMD’s slippage, which may not be fully captured in the data available
to train appearance based eye-tracking models. . Therefore, despite the minimal assumptions, appearance-based gaze-
estimation systems still have unresolved challenges and further research is warranted to make appearance based eye
tracking models to various types of fitment and slippage induced variability.

In this work, we seek motivation from the aforementioned gaps in appearance-based gaze estimation approaches
for HMDs and investigate the improvements offered by depth information. Our investigation focuses on tackling
issues caused by variations in sensor-position, namely fitment and slippage variability. Moreover, we restrict our
focus to deep-learning based methods owing to their great success [Cheng et al. 2021; Ghosh et al. 2021]. For HMD
gaze-estimation, a depth sensor corresponding to the 2D input of a camera may encode valuable signal like the position
of the camera relative to the periocular region, the shape of the eyelid and depending on the sensor type, and potentially
the orientation of the iris plane. These factors are important for estimating gaze and are more easily resolved from
depth information than images alone. As depth sensor technologies become increasingly smaller and more precise as a
result of their continued development [Horaud et al. 2016], it is essential to understand the potential impact of their
application for HMD gaze estimation.

Since such depth sensor technologies are currently unavailable, we leverage synthetic-data generated using a modified
implementation of UnityEyes [Wood et al. 2016] that can yield depth-maps corresponding to the rendered images
and segmentation maps for the skin, cornea, iris and pupil. We use these segmentation-maps are used to introduce
region-specific noise for increased depth realism. We use a modified Residual CNN [He et al. 2016] and conduct extensive
evaluations combining image and depth using early and late fusion, as well as using intermediate cross-modal attention
mechanisms to understand the benefits of depth-maps towards slippage robustness. In summary, our contributions are
as follows:

(1) A large synthetic dataset that simulates both fitment and slippage variability for 85 different synthetic identities
with depth and image information.

(2) The first extensive study spanning multiple architecture and modality fusion approaches demonstrating the
benefit of depth information for head-mounted gaze estimation.

(3) An analysis of the causes of degraded performance for deep networks in the presence of fitment and slippage
variability and the improvements due to depth and their robustness to input noise.

2 BACKGROUND AND RELATEDWORK

An overview of gaze estimation techniques: Gaze-estimation approaches can be broadly categorized into 3D eye
model-based and appearance based-systems [Kar and Corcoran 2017]. 3D model-based systems obtain a person-specific
geometric model of the eye and use that to estimate gaze-direction, we refer the readers to [Hansen and Ji 2010]
for a comprehensive review. Owing to the use of explicit geometric modeling, such systems are insensitive to the
sensor-placement and require a user-calibration step to personalize the eye-model [Guestrin and Eizenman 2006a].
Our work falls in the appearance-based systems where the eye-image is passed through some feature-extractor and
the gaze-direction or point-of-gaze is regressed, see [Jiang et al. 2019] for a review. Among appearance-based gaze-
estimation methods, deep-learning systems have become immensely popular due to their powerful feature-learning
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ability from data, which does away with the requirement of carefully hand-crafted feature for regression, see [Cheng
et al. 2021; Ghosh et al. 2021] for a comprehensive review.
Gaze-direction for appearance-based systems: Eye-model based approaches refer to the optical axis of the eye
as the gaze direction and employ the known or estimated geometric transformation to project the optical axis in the
desirable coordinate systems, often a display screen in the form of point-of-gaze, or intersect the optical axis with a
3D scene. Appearance-based approaches, on the other hand, regress for the gaze-direction directly in some external
coordinate system. This is due to the lack of an intrinsic eye-model followed by a personal calibration step to account
for the difference between visual and optical axis [Guestrin and Eizenman 2006b; Park et al. 2019]. The estimated
gaze direction is then projected to the desired coordinate-system as explained above. It is important to note that the
external coordinate system is defined either explicitly, through geometric transformations, or implicitly “anchored"
to the sensor so that the gaze-direction is regressed w.r.t. the sensor’s coordinate system. Therefore, the estimated
gaze-direction is sensitive to the sensor’s location and orientation w.r.t. the eye. This sensitivity can be especially
problematic for head-mounted gaze-estimation systems that undergo frequent slippage from their original position
due to head motion/orientation, skin/tissue deformation and frequent headset adjustments by the user [Santini et al.
2019]. Specifically for deep learning methods, our experiments show that the fitment and slippage variations can lead
to dramatic reduction in gaze estimation accuracy, see Sec.4.
Slippage Robust Gaze Estimation: The aforementioned slippage problem has been addressed by some prior work.
The method in [Santini et al. 2019] employed the pupil outline to obtain hand-crafted slippage-invariant features
for gaze regression. Although, this achieves impressive improvements, its strong reliance on pupil visibility limits
its applications. Similarly deep-learning approaches try to disentangle head motion and eyeball rotation to obtain
sensor-placement robustness. An unsupervised framework to learn a low dimensional eye representation with gaze
redirection was proposed in [Yu and Odobez 2020]. The Disentangling Transforming Encoder-Decoder, framework
[Park et al. 2019] tries to disentangle identity, head pose and gaze direction and employs few-shot learning to personalize
the identity and head pose sub-networks during calibration for each person. Unfortunately, it is still sensitive to head
motion after calibration. The Self-Transforming Encoder-Decoder architecture [Zheng et al. 2020] approach employs a
generative model to dis-entangle head and eye-ball rotation. Different from all past approaches, we propose to fuse
depth-maps with RGB images to endow slippage robustness to an end-to-end deep-learning system. In order to assess
the improvement offered from depth maps, we also simulate an off-axis gaze-camera dataset, using UnityEyes [Wood
et al. 2016], with slippage for 85 synthetic identities. This dataset can serve as a benchmark to test similar algorithms
for slippage robustness in the future.
Depth-map for Gaze-Estimation:While appearance-based gaze-estimation has seen a lot of work with 2D camera
sensors, relatively less importance has been given to other modalities, such as depth maps. Thanks to the recent
advances in the 3D sensing technologies, there exist 3D sensors that can fit into the form-factor and power budget of
head-mounted VR systems. Therefore, exploration of such hybrid sensing modalities for gaze-estimation is a promising
direction. The work in [Lian et al. 2019] leverages both depth maps and RGB images for remote gaze-estimation. Our
work, on the other hand, focuses on a head-mounted gaze-estimation system and we focus on exploring the benefits of
depth-maps for slippage robustness. Moreover, [Lian et al. 2019] uses a different fusion mechanism for merging the
information from depth and RGB frames. Just like gaze-estimation, there is an abundance of prior research on fusion
methods, which is impossible to cover due to space limitations, hence, we refer the reader to [Gao et al. 2020] for a
comprehensive review of deep-learning based fusion approaches. Some of the most common techniques are feature
concatenation/summation/multiplication at different layers of abstractions giving rise to early, mid and late fusion
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Fitment 
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Fig. 1. Left: The 3D scene configuration used for generating grayscale images and depth maps. Our goal is to predict gaze in the
camera reference frame.Middle: Images from different synthetic identities generated with fitment variability. Note how the eye
position is different in each image. Right Sampling ranges for slippage and fitment distributions.

frameworks. We carry out thorough ablation studies to study the impact of different fusion-methods and also employ a
novel Cross-Modal Attention module [Zhang et al. 2022] that shows much better results than simple fusion techniques.

3 APPROACH

There are two requirements to achieve our goal of investigating the effect of incorporating depth to 2D image data:
Paired Image and Depth Data: Currently there are no head mounted devices on the market which allow for such

data collection. We therefore use a modified UnityEyes [Wood et al. 2016] implementation to generate images, absolute
depth maps and corresponding 3D gaze direction in the camera coordinate system and simulate individual fitment
variability and slippage variability.

Baseline Architecture and Fusion Technique: Directly applying a Residual CNN [He et al. 2016] to regress
in-camera 3D gaze direction results in surprisingly high performance (Table 1). We aim to both understand the effect of
absolute depth and to what extent end-to-end models with increasing realism can directly make use of this additional
source of information. We investigate early fusion, late fusion and attention-based fusion.

3.1 Synthetic Data Generation

We modified an open-source periocular simulator, UnityEyes [Wood et al. 2016], to generate eye-images and depth-
map with 3D gaze direction (eye-in-head spherical coordinate system), see visualization in Please refer to Fig. 1. Our
concurrent submission [anonymous [n. d.]] 1 developed a means of generating different synthetic identities based
on varying face/eye morphology, iris and skin textures. We used it to create 100 synthetic identities with different
appearances, from which we form a 70/15/15 training/validation/test split to evaluate appearance based models’
generalization ability across individuals.

Fitment and Slippage Variability: In addition to individual-specific appearance variability, we also define two
distributions 1) a uniform fitment variability distribution from which we sample a fixed fitment transform (rotation
and translation) for each identity and 2) a uniform slip variability distribution over another predefined nominal range.
1Please see Section 3.1, of the anonymized manuscript provided in the supplement for these details.
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Fig. 2. Left: Early fusion and two late fusion architectures, convolutional late fusion and late fusion with cross modal attention. Right
We generate more realistic depth information by removing the cornea and adding Gaussian noise and dropout to the depth map.

Although facial geometry is vital for fitment-estimation, UnityEye only simulates peri-ocular regions which isn’t
sufficient for fitment-estimation, therefore, we use a uniform distribution. To generate the camera pose for one data
sample from a specific individual, we first apply that individual’s fitment transform to a predetermined initial off-axis
camera position that is constant, and then sample and apply another transform from the slip distribution.

Camera/Headset Reference Frame: AR/VR applications require the knowledge of gaze-direction relative to the
content served by the headset. Naively, one could first estimate the absolute (eye-in-head spherical coordinate) eye pose,
and then convert it to the HMD reference frame. However, it is generally not possible to find the geometric transform
for this conversion, because (1) headsets significantly vary in their fitment across individuals due to facial structure (2)
fitment changes across sessions and potentially slip during use. As the eye tracking camera is mounted on the headset
itself, it therefore is a requirement of the AR/VR-HMD setting for the gaze direction to be predicted in the camera

coordinate frame in a manner that generalizes across individuals and is robust to fitment and slippage.
Depth Map Generation:We generate depth map corresponding to the gray-scale images. However, these depth

maps have no noise and are therefore unrealistic. For example, for time of flight-based depth sensors, the cornea depth
cannot be resolved due to refraction and the pupil would not be visible at all due to light absorption. To improve the
realism of our data, we add Gaussian noise with varying intensity for the skin, sclera, and iris and completely remove
the pupil (we use noise with std. 0.1cm for the skin, std 0.2cm for the sclera and std 0.4cm for the iris). Further, as sensor
measurements can be lossy, we also dropout each pixel with 0.5 probability. In addition, prior to generating the depth
maps we modify the eyeball mesh to remove the cornea. For each individual we generate gaze samples at 0.5 increments
in the [−25◦, 25◦] range (relative to the eye’s center of rotation), resulting in 10,000 samples. For added realism, each
sample is generated with random light intensity and pupil size sampled from a Gaussian distribution.

3.2 Appearance Based Gaze Estimation Baselines

We adopt a CNN-based model as our baseline architecture. We choose a ResNet18 [He et al. 2016], followed by a fully
connected layer that outputs a normalized vector u = [𝑥,𝑦, 𝑧] indicating the gaze direction in the camera coordinate
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Table 1. Early fusion of depth and image information improves gaze estimation angular error in degrees. NC: No Cornea, NC+D No
Cornea + Dropout, NC+D+N: No Cornea + Dropout + Noise. First, and most importantly, we note that the fitment and slippage
variability significantly reduces the performance as compared to the fixed set. Second, We find that the increased variability of the
Fit+Slip improves the performance of the model. Last, increasing the depth-realism significantly reduces the benefits of depth for
simple early fusion.

Approach/Dataset Fixed Fit Fit+Slip Fit
NC

Fit + Slip
NC

Fit
NC+D

Fit + Slip
NC+D

Fit
NC+D+N

Fit + Slip
NC+D+N

Image Only 0.31 1.66 1.19 1.66 1.19 1.66 1.19 1.66 1.19
Image + Depth
(Early Fusion) N/A 1.28 0.77 1.37 0.74 1.43 0.91 1.41 1.12

system. The simplest means of combining depth and grayscale image information we investigate is by concatenating
them along the channel dimension as inputs to the CNN. We now describe the late fusion approaches.

Late fusion of image and depth information: We investigate two techniques for late fusion, using two separate
backbone networks for feature learning, illustrated in Figure 2. Our first approach consists of channel-wise concatenation
of the image and depth feature blocks, followed by a 3x3 convolution and standard average pooling to obtain a final
feature. Our second approach is to apply a state-of-the-art transformer-based cross-modal attention block [Zhang et al.
2022], or CMA for short, to fuse the information between the depth and image features which outputs two feature
blocks. These are then concatenated and passed through a convolution as described in the prior convolution-based
fusion.

4 EXPERIMENTS

This section describes the implementation details of our baseline methods, followed by our empirical findings about
the utility of depth information for gaze estimation in the presence of fitment and slippage variability. Performance is
reported as angular error between the ground truth and predicted gaze vectors in the camera reference frame.

Implementation DetailsWe render grayscale images in UnityEyes with a resolution of 240 × 320. We generate
three distinct datasets: (1) Fixed where the camera location is fixed for all the images across training and testing sets to
serve as the ideal dataset and uses only image as input with the baseline neural-network to yield 0.31 degrees mean
gaze-error. (2) Fit where a single fitment per identity is sampled from twice the nominal range of fitment variability.
(3) Fit+Slip where an additional slippage transformation is added to each sample from twice the nominal slippage
range. For the CNN we use a ResNet18 [He et al. 2016] backbone with half the channel width, which we train with
stochastic gradient descent algorithm using cosine decay and an initial learning rate of 0.05. For the loss we use an 𝐿1
loss between the predicted gaze direction and ground truth gaze.

4.1 Early Fusion of Depth Leads to Improvements but is Brittle

We present results for our investigation of adding depth with early fusion in Table 1. First, and most importantly, we
note that the fitment and slippage variability increases the gaze-error vs. the fixed set by 5.35x and 3.83x, respectively.
This observation supports our claim that deep-learning models for gaze-estimation are extremely sensitive to fitment
and slippage variability. Second, we find that simple early fusion yields 23% (1.66 to 1.28) and 35% (1.19 to 0.77) relative
improvement for Fit and Fit+Slip, respectively. We further study the effect of depth in this setting by removing the
cornea (NC), adding dropout (D) and Gaussian noise (N) and present the results in Table 1. Gaze-error successively
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Table 2. Late fusion of depth and image information improves gaze estimation angular error where NC+D+N indicates No Cornea +
Dropout + Noise. We find that late fusion with cross-modal attention is essential for obtaining significant performance improvements
in the noisy settings as compared with early fusion. Further, removing the cross-modal attention (last row) reduces performance.

Approach / Dataset Fit
NC+D+N

Fit + Slip
NC+D+N

Image Only 1.66 1.19
Image + Depth (Early Fusion) 1.41 1.12

Image + Depth (Late Fusion Conv + CMA) 1.23 0.87
Image + Depth (Late Fusion Conv) 1.53 -

Table 3. A simple calibration fitment using 9 points for testing identities results in significant performance improvement. Interestingly,
this finding holds for data with slippage variability as well but by a smaller margin. This indicates that appearance-based CNNs
overfit to fitments in the training set.

Dataset / Approach Image Only
Uncalibrated

Image Only
Calibrated

Image + Depth
Uncalibrated

Image + Depth
Calibrated

Fit 1.67 0.99 1.23 0.73
Fit + Slip 1.194 0.935 0.86 0.64

increased with added realism and it reflects that the naive early fusion model would likely not yield benefits in real
world scenarios. Interestingly, we find higher performance with Fit+Slip training dataset vs. Fit only training dataset.
It’s expected because the Fit dataset has only 70 camera views for training, one per identity. On the other hand, Fit+Slip
dataset exposes the network with 70 × 10000 = 700𝐾 different camera-views, which allows the network to build
invariance against camera-view changes. This potentially means that future real data collection protocols should include
sessions with multiple headset placements for each individual. We further study this finding in Section 4.3.

4.2 Late Fusion for Depth Information Works with Increased realism

We present results for this setting in Table 2. We find that late fusion with CMA works significantly better in the realistic
setting with removed cornea, dropout and Gaussian noise, resulting in 26% relative improvement compared with 15%
for early fusion for Fit. Similarly, for Fit + Slip we find a 27% relative improvement compared with 6% for early fusion.
Thus, we conclude that CMA is critical for fusing depth with appearance under more realistic sensor conditions. It’s due
CMA’s attention mechanism for fusing multi-modal information, which affords adaptive selection of the depth-region
to tackle sensor noise while fusing it with appearance.

4.3 Deep-Learning Models Can Easily Over-fit to Fitment/Camera Pose

In Sections 4.1 and 4.2 we observed that the both image only and image + depth models perform better in the Fit + Slip
setting, which has significantly higher variability for both training and testing data. We hypothesize that performance
in the Fit setting is worse as a result of over-fitting to the individual fitments in the training set.

We test this hypothesis using the Fit dataset for training and use a simple linear calibration scheme [Guestrin
and Eizenman 2006b] to learn an angular-offset for each individual. We keep the same training procedure, however
prior to testing, we randomly draw 9 samples and their ground truth gaze direction and perform a fitment calibration
procedure for each identity. The procedure is as follows: (1) Generate predictions for these 9 samples and convert the
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+ SlipTrain data ↓

Fit 1.28 1.96 0.74 1.71

Fit + Slip 0.63 0.64 0.45 0.51

Image + Depth

Fig. 3. Evaluation all combinations of training with Fit and testing with Fit + Slip and vice versa for both Image Only and Image +
Depth models. We find that data with the highest variability results in the highest generalization, and despite high variability simple
fitment calibration still leads to improvement.
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Fig. 4. Visualization of gaze error across all possible gaze directions. We observe that adding depth reduces the error across the board.

3D gaze vector into 𝑥𝑝 -yaw and 𝑦𝑝 -pitch angles (2) optimize for linear parameters 𝑎1, 𝑎2, 𝑏1, 𝑏2 using the equations
𝑥𝑔𝑡 = 𝑎1𝑥𝑝 + 𝑏1 and 𝑦𝑔𝑡 = 𝑎2𝑦𝑝 + 𝑏2 and the grount truth gaze directions 𝑥𝑔𝑡 , 𝑦𝑔𝑡 (3) Apply these learned parameters to
all predictions for the identity. If the model does in fact overfit to the fitment in the training set, this simple calibration
should significantly improve performance by compensating for how the novel identity is different from the training
fitments. Our findings (see Table 3) provide evidence confirming our hypothesis.

4.4 Further Analysis

Since practically it is very difficult to collect ground truth data with slippage, a natural question is: To what extent
is depth information useful when training models on data just with fitment variability, but testing in cases where
there is both fitment and slippage? We find that in the most challenging, un-calibrated scenario using image and depth
information results in improved generalization to novel identity testing data with fitment and slippage, while training
is only done with different fitments. These results are provided in Figure 3. In addition, we visualize the distribution of
gaze errors in Figure 4. We observe that adding depth information leads to improvements in error across the board, and
that the most significant impact is obtained in cases where the iris and pupil are not very visible.

5 CONCLUSION

In this work we use synthetic data to investigate the utility of depth information for estimating gaze in AR/VR-HMD
applications in the presence of fitment and slippage variability. We showed that with CNN-based fusion techniques, in
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particular the cross-modal attention-based fusion, adding depth information improves generalization to novel identities
in the presence of fitment and slippage variability.
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