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Abstract
Recent progress in self-training, self-supervised pretraining and
unsupervised learning enabled well performing speech recogni-
tion systems without any labeled data. However, in many cases
there is labeled data available for related languages which is not
utilized by these methods. This paper extends previous work on
zero-shot cross-lingual transfer learning by fine-tuning a mul-
tilingually pretrained wav2vec 2.0 model to transcribe unseen
languages. This is done by mapping phonemes of the train-
ing languages to the target language using articulatory features.
Experiments show that this simple method significantly outper-
forms prior work which introduced task-specific architectures
and used only part of a monolingually pretrained model.
Index Terms zero-shot transfer learning, cross-lingual,
phoneme recognition, multilingual ASR

1. Introduction
There is a large number of languages spoken around the world
of which only a small fraction is served by speech technology.
A large barrier to making speech technology more accessible
is the requirement for large amounts of transcribed speech au-
dio by current models which is simply not available for the vast
majority of languages. Speech recognition accuracy has been
steadily improving by recent advances in supervised multilin-
gual modeling [1, 2], self-supervised learning [3, 4, 5, 6, 7],
and semi-supervised learning [8, 9, 10, 11, 12], particularly
for low-resource languages. This recently led to good speech
recognition performance in settings where no labeled data ex-
ists at all [13, 14, 15]. One downside of these approaches is that
they require training a separate unsupervised model for each
language while ignoring the presence of labeled data in related
languages.

Zero-shot transfer learning addresses this by training a sin-
gle multilingual model on the labeled data of several languages
to enable zero-shot transcription of unseen languages [16, 17,
18, 19, 17, 20, 21]. Models usually have a common encoder that
extracts acoustic information from speech audio and then pre-
dict either a shared phoneme vocabulary [17, 16] or language-
specific phonemes [1, 20, 22]. The former requires either
phonological units that are agnostic to any particular language
such as articulatory features [20] or global phones [23, 17].

In this paper, we study a simple zero-shot transfer learning
approach which builds a global phoneme recognizer by simply
considering all possible phonemes of the training languages and
then decodes the model with a language model to generate the
final phoneme sequence. The lexicon is built from articulatory
features to map the phonemes between the training and target
vocabulary. Our method makes no assumption about the rela-
tion of training and testing languages, including attributes like
phoneme distribution or coverage. We extend prior work by us-
ing unsupervised cross-lingually pretrained representations es-
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timated on 53 languages [24] instead of monolingually trained
representations [16] and our approach also uses the full pre-
trained model instead of only the feature-extractor [16].

We conduct experiments on 42 languages of Common-
Voice [25], 19 languages of BABEL [26] and six languages
of MLS [27]. Results show significant improvements on un-
seen languages over the approach of [16] and cross-lingual
pretrained representations are more effective. Finally, zero-
shot transfer learning performs comparably to unsupervised ap-
proaches with the benefit of being able to transcribe multiple
unseen languages using a single model.

2. Approach
Our approach entails the use of self-supervised representations
trained on data in many languages ([24], §2.1). Next we simul-
taneously fine-tune the model to perform phoneme recognition
on data in multiple training languages. At inference time, we
test the fine-tuned model on all unseen languages using a map-
ping of the phonemes from the training vocabulary to the ones
in the target languages (§2.2).

2.1. Self-supervised Model Training

We use XLSR-53, a wav2vec 2.0 model pretrained on data in 53
languages [24, 6]. This model contains a convolutional feature
encoder f : X 7→ Z to map raw audio X to latent speech
representations z1, . . . , zT which are input to a Transformer g :
Z 7→ C to output context representations c1, . . . , cT [28, 29].
Each zt represents about 25ms of audio strided by 20ms and the
Transformer architecture follows BERT [30, 28].

During training, feature encoder representations are dis-
cretized to q1, . . . ,qT with a quantization module Z 7→ Q to
represent the targets in the objective. The quantization module
uses a Gumbel softmax to choose entries form the codebooks
and the chosen entries are concatenated to obtain q [31, 32, 29].
The model is trained by solving a contrastive task over masked
feature encoder outputs. At training time, spans of ten time
steps with random starting indices are masked. The objective
requires identifying the true quantized latent qt for a masked
time-step within a set of K = 100 distractors Qt sampled from
other masked time steps:

− log
exp(sim(ct,qt))∑

q̃∼Qt
exp(sim(ct, q̃))

where ct is the output of the Transformer, and sim(a,b) de-
notes cosine similarity. The objective is augmented by a code-
book diversity penalty to encourage the model to use all code-
book entries [33].

2.2. Phoneme Mapping

We use phonemes as modeling units and in particular, the sym-
bols of the standard International Phonetic Alphabet (IPA).



However, the vocabulary estimated from the training languages
may not cover the full vocabulary of the target languages which
results in out-of-vocabulary (OOV) phonemes at test time. We
address this by mapping between the training and target vocab-
ularies based on articulatory/phonological features [34]. Artic-
ulatory feature is a set of global attributes to describe any sound
or phone. There are four groups of attributes: major class (syl-
labic, vocalic, approximant, sonorant), manner (continuant, lat-
eral, nasal, strident), place (labial, coronal, dorsal, pharyngeal),
and laryngeal (voiced, aspirated, glottalized). Each attribute can
be either positive or negative.

We compute the distance between each pair of phonemes
using the Hamming edit distance between the articulatory fea-
ture vectors1, and then generate two types of simple many-to-
one mapping lexicons:

• tr2tgt lexicon maps each phoneme in the training vocab-
ulary to its closest one in the target vocabulary. Then for
the remaining uncovered phonemes in the target vocab-
ulary, it maps the closest ones in the training vocabulary
to them.

• tgt2tr lexicon that maps for each phoneme in the target
vocabulary, the phonemes in the training vocabulary that
have 0 distance to it.

We compare both below (§4.3.2) and use tr2tgt unless otherwise
mentioned.

3. Experimental setup
3.1. Datasets

We consider three multilingual corpora and a variety of lan-
guages to evaluate our approach. All the audios are up-/down-
sampled to 16kHz.

Multilingual LibriSpeech (MLS) is a large corpus of read
audiobooks from Librivox and we experiment with the same six
languages as [15]: Dutch (du), French (fr), German (de), Italian
(it), Portuguese (pt), Spanish (es). We use the same split as [15]
for validation and test.

CommonVoice (CV) is a multilingual corpus of read
speech comprising more than two thousand hours of speech data
in 76 languages [25]. We use the December 2020 release (v6.1)
for training and fine-tuning models. We select 42 languages in
total that are supported by our phonemizer (see §3.2) as well
as their official train, dev and test splits. Italian (it) serves as
validation language for development, for training we use a total
of 26 languages and the remaining 13 languages are for testing
(Table 1). For each language in the test set, we also make sure
that there is at least one language that belongs to the same lan-
guage family as in the training set. Compared to other datasets
such as BABEL or MLS, CommonVoice is well suited for zero-
shot transfer learning, since it covers a larger number of lan-
guages.

BABEL is a multilingual corpus of conversational tele-
phone speech from IARPA, which includes Asian and African
language [26]. We include 21 languages from it (Table 1). We
include Cantonese and Lao in the test set to compare with [16]
and the remaining 19 languages in the training set. Italian serves
for validation.

1https://github.com/dmort27/panphon. In this repository, each fea-
ture articulatory vector contains 21 attributes

Table 1: Splits of CommonVoice (CV) and BABEL (BB). The 6
BABEL languages of [16] are bolded.

Split Languages

CommonVoice (CV)

train

Esperanto (eo), Lithuanian (lt), Welsh (cy),
Tamil (ta),Swedish (sv-SE), German (de),
English (en), Oriya (or), Hindi (hi), Persian (fa),
Japanese (ja), Assamese (as), Indonesian (id),
Catalan (ca), Spanish (es), French (fr),
Portuguese (pt), Arabic (ar), Chinese (zh-CN),
Chinese (zh-TW), Turkish (tr), Estonian (et),
Hungarian (hu), Russian (ru), Czech (cs)

dev Italian (it)

test

Basque (eu), Interlingua (ia), Latvian (lv),
Georgian (ka), Irish (ga-IE), Dutch (nl), Greek (el),
Punjabi (pa-IN), Romanian (ro), Maltese (mt),
Chinese (zh-HK), Tatar (tt), Finnish (fi),
Slovenian (sl),Polish (pl), Kirghiz (ky)

BABEL (BB)

train

Amharic (am), Bengali (bn), Cebuano (ceb),
Igbo (ig), Haitian (ht), Javanese (jv), Mongolian (mn),
Swahili (sw), Tamil (ta), Vietnamese (vi),
Assamese (as), Dholuo (luo), Guarani (gn),
Kazakh (kk), Pashto (ps), Georgian (ka), Tagalog (tl),
Telugu (te), Turkish (tr), Zulu (zu)

dev CV-Italian (it)

test Cantonese (yue), Lao (lo)

3.2. Pre-processing and Phonemization

We first normalize all transcriptions for CommonVoice and BA-
BEL by removing punctuation and rare characters. Rare charac-
ters are usually numbers or characters from other languages. We
then obtain the phonemic annotations from the word transcrip-
tions using ESpeak2, as well as [35] based on Phonetisaurus3

to compare with [16]. Specifically, we use Espeak on MLS,
Phonetisaurus on BABEL.

3.3. Model Training

Models are implemented in fairseq [36] and we use the pre-
trained XLSR-53 model [24] which has 24 Transformer blocks,
model dimension 1024, inner dimension 4096 and 16 attention
heads. It is pretrained on the joint training set of MLS, Com-
monVoice and BABEL, which consists of about 56K hours of
speech data.

To fine-tune the model we add a classifier representing
the joint vocabulary of the training languages on top of the
model and train on the labeled data with a Connectionist Tem-
poral Classification (CTC) loss [37]. Weights of the feature en-
coder are not updated at fine-tuning time, while the Transformer
weights are finetuned after 10k updates. We determine the best
transformer final dropout in [0, 0.3], learning rates setting in
[5e-6, 5e-4].

The learning rate schedule has three phases: warm up for
the first 10% of updates, keep constant for 40% and then lin-
early decay for the remainder. The models were finetuned for

2https://github.com/espeak-ng/espeak-ng
3https://github.com/AdolfVonKleist/Phonetisaurus



Table 2: Comparison to prior zero-shot work [16] in terms of phonetic token error rate (PTER) on the test sets of a subset of BABEL
languages. Cantonese and Lao are the unseen languages. Models are trained on 6 or 19 languages of BABEL (BB-6/19), 21 languages
of CommonVoice (CV-21), Globalphone (GP) and the Spoken Dutch Corpus (CGN).

Gao et al. [16] This work

BB Data BB-6[16] BB-6 BB-19 - BB-19
Other Data CGN+GP - - CV-21 CV-21

# hours / lang all all all 10 10
# hours total 1,492 317 935 118 298

Supervised

Bengali 38.2 36.1 35.4 53.2 40.7
Vietnamese 32.0 40.7 42.1 71.0 63.3

Zulu 35.2 34.6 34.8 61.0 44.1
Amharic 38.0 35.5 35.5 63.2 42.8
Javanese 44.2 40.2 40.8 57.4 49.1
Georgian 38.6 27.6 43.8 51.6 43.2

Zero-shot Cantonese 73.1 73.6 72.6 70.9 63.6
Lao 69.3 70.3 70.2 72.1 63.7

Table 3: Unsupervised ASR (w2v-U) vs. zero-shot ASR (This
work). Results are reported in phoneme error rate (PER) on
MLS.

de nl fr es it pt Avg

w2v-U [15] 21.6 25.0 27.7 20.2 31.2 36.0 27.0
+ n-gram LM 16.2 17.8 26.5 18.1 28.6 30.6 23.0

This work 23.8 38.0 31.0 28.7 33.5 45.0 33.3
+ n-gram LM 14.8 26.0 26.4 12.3 21.7 36.5 22.9

25k updates on 4 GPUs. The best checkpoints are selected by
the validation error on the validations set for BABEL and Com-
monVoice; while for MLS, it is selected using the unsupervised
cross validation metric of [15] to enable a direct comparison.

3.4. Decoding

The wav2letter beam-search decoder [38] is used to generate the
final transcriptions with the lexicon and an external 6-gram lan-
guage model trained on the phoneme annotations of the labeled
training data. Beam size is set to 50 in all the inference experi-
ments. The lexicons mentioned above limits the search space to
only the valid phones in the training vocabulary and ensures the
decoder predicts only phones in the target dictionary.

4. Results
4.1. Comparison to other zero-shot work

In our first experiment, we compare performance to the zero-
shot transfer learning approach of [16] which used only the fea-
ture extractor of a wav2vec 2.0 model trained on English. The
training data on CommonVoice and BABEL is prepared in the
same way as [16] and we report the same phonetic token error
rate (PTER) metric, in which each IPA token is treated as sep-
arate suprasegmentals (such as long vowels, and primary stress
symbol), tones, diphthongs and affricates.

Table 2 shows that finetuning on only 6 languages of BA-
BEL (BB-6) with our method can outperform [16] on the su-

pervised languages while using only 317 hours of labeled data
compared to nearly 1.5K hours. This shows that using the full
pretraining model is beneficial. Using more languages (BB-19)
improves performance on the zero-shot Cantonese setting.

The CV-21 setting performs significantly less well on the
supervised languages because of domain-mismatch since the
test languages are BABEL, however, on the zero-shot languages
CV-21 performs similarly to BB-19. This indicates that domain
is less of a challenge in the challenging zero-shot setting where
error rates are relatively higher.

Finally, our approach can outperform [16] on the zero-shot
directions when using both the CommonVoice and BABEL data
while restricting the amount of labeled data to 10 hours for each
language. This results in fewer than 300 hours of labeled data
since some languages do not even have 10 hours of labeled data.

4.2. Comparison to unsupervised learning

Next, we compare zero-shot transfer learning to wav2vec-
U [15], both of which use the same pretrained representations
(XLSR-53). We use 10 hours of labeled data for each MLS lan-
guage as prepared in [24] and measure the performance when
fine-tuning XLSR-53 on five of the six languages and then eval-
uate on the held-out language. Table 3 shows that the per-
formance of zero-shot transfer learning is on par to wav2vec-
U [15] while using a simpler training and inference pipeline.

4.3. Ablations

In this section, we analyze the importance of pretraining, cross-
lingual pretraining, lexicon construction strategies as well as the
impact of different phonemizers. We use the CommonVoice
benchmark for these experiments (Table 1).

4.3.1. Effect of multilingual pretraining

Multilingual pretraining plays an important role for the model
to perform well on unseen languages. To get a better sense of
this, we compare the performance without pretraining to pre-
training using either up to 10h or up to 200h of labeled training
data per language for a subset of the CommonVoice languages.
For pretraining we consider an English-only pretrained model,
wav2vec 2.0 pretrained on the full Libri-light training data, as



Table 4: Comparison of PER on the test sets of a subset of Common Voice languages when using either at most 10h or 200h of labeled
data per language without pretraining (No pretrain), English-only pretraining of wav2vec 2.0 on 60K hours of Libri-Light data [6, 39],
or cross-lingual pretraining using the XLSR-53 model which was trained on 53 different languages [24]. We show the maximum number
of labeled training hours per language and the number of training hours in total for each setting. Results are based on Viterbi decoding
from the acoustic model without a language model but with a lexicon and with a 6-gram language model.

Model No pretrain No pretrain w2v LV-60K XLSR-53
# hours / language 10 200 10 10

# hours in total 149 1156 149 149

viterbi n-gram viterbi n-gram viterbi n-gram viterbi n-gram

it 56.6 47.5 50.1 41.8 31.8 16.9 26.0 13.9
eu 51.2 45.6 39.7 32.1 24.8 16.3 20.8 13.7
ia 38.9 27.8 30.9 23.0 12.7 6.7 10.7 6.1
lv 65.2 59.8 62.7 56.5 41.9 33.5 39.9 32.3
ka 61.8 56.1 54.6 48.9 29.1 24.0 30.5 23.8
nl 66.3 56.8 63.0 56.1 46.8 30.5 37.1 19.8
el 49.5 40.6 42.1 33.7 18.9 10.7 17.3 10.4
ro 45.7 34.7 46.7 36.9 21.3 15.0 20.1 14.8
mt 66.3 60.2 62.0 56.0 47.4 36.1 46.6 35.9
tt 68.2 63.9 65.1 60.8 46.2 34.7 48.4 37.4
fi 58.8 55.6 53.8 48.3 36.8 29.9 36.8 29.0
sl 62.9 56.0 60.5 54.6 43.5 29.0 40.6 26.1
pl 62.3 59.3 60.2 56.0 36.1 27.3 32.8 25.7

Avg 58.0 51.1 53.2 46.5 33.6 23.9 31.4 22.2

Table 5: Effect of lexicon construction strategies (§2.2) and dif-
ferent phonemizers (§3.2) on CommonVoice in terms of PER:
tr2tgt denotes a lexicon constructed by mapping training lan-
guage phonemes to target language phonemes and tgt2tr de-
notes the reverse strategy. Average PER excludes ”eu” and
”ia” since they are not supported by Phonetisaurus.

Phonemizer Espeak Phonetisaurus

Lexicon tr2tgt tgt2tr tr2tgt tgt2tr

Avg 24.5 24.6 31.7 32.4

well as the cross-lingually pretrained XLSR-53 model, trained
on 53 different languages.

Table 4 shows that accuracy without pretraining performs
vastly less well than pretraining-based approaches, even when
the amount of labeled data is increased by up to a factor of 20
(from 10h to 200h per language). This is in line with prior work
on automatic speech recognition [6]. Furthermore, multilin-
gual pre-training (XLSR-53) performs better than monolingual
pretraining on English data (w2v LV-60K) on every single lan-
guage.

4.3.2. Comparison of lexicon and phonemizers

Next, we compare the decoding performance with different lex-
icons. Table 5 shows that tr2tgt is slightly better than tgt2tr
on average for different phonemizers. Different phonemizers
can generate different phoneme sequences given the same word
transcriptions which may impact the final performance of our
models.

To better understand the impact of this, we use both Es-
peak and Phonetisaurus (§3.2) and evaluate them on both types
of lexicon construction techniques. Table 5 indicates that
both phonemizers show the same trend in performance for
tr2tgt/tgt2tr.

5. Conculusion
In this work, we investigate zero-shot transfer learning on cross-
lingual phoneme recognition using a cross-lingually pretrained
self-supervised model. Pretraining vastly improves accuracy
over no pretraining, even when a moderate amount of labeled
data is used, and cross-lingual pretraining performs better than
monolingual pretraining. Our simple approach of fine-tuning a
large pretrained model performs better than prior work which
only used the feature extractor of a monolingually pre-trained
wav2vec 2.0 model and which relied on task-specific architec-
tures such as language embeddings. We also show that our ap-
proach performs on par to the recently introduced unsupervised
speech recognition work of [15] which does not use labeled data
from related languages and requires training separate models for
each target language.
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Appendices

Table 6: Statistics of languages from CommonVoice and the ones that are supported in Espeak and Phonetisaurus phonemizers. The
languages denoted with ∗ are potentially not well supported by Espeak phonemizer, so we manually removed them in either train or
test set.

Dataset Code Lang Family Split Hours Phonemizer
train valid test Espeak Phonetisaurus

CV

eo esperanto Constructed train 34.0 13.3 14.3 eo
lt lithuanian Baltic train 1.2 0.4 0.7 lt lithuanian 4 2 2.fst
cy welsh Celtic train 9.1 6.8 7.0 cy
ta tamil Dravidian train 2.4 2.2 2.3 ta tamil 2 3 3.fst

sv-SE swedish North Germanic train 2.1 1.7 1.8 sv-SE swedish 4 4 4.fst
de german West Germanic train 392.7 25.0 25.5 de german download.fst
en english West Germanic train 893.5 27.2 26.0 en english 4 2 2.fst
as assamese Indic train 0.4 0.2 0.2 as assamese 4 2 3.fst
hi hindi Indic train 0.2 0.2 0.2 hi hindi 4 2 2.fst
or oriya Indic train 0.6 0.2 0.2 or
fa persian Iranian train 7.7 6.5 7.2 fa persian 2 2 2.fst
ja∗ japanese Japonic train 0.9 0.8 0.9 ja japanese 4 4 4.fst
id indonesian Austronesian train 2.1 1.9 2.0 id indonesian 2 4 4.fst
ca catalan Romance train 441.5 24.0 24.9 ca
es spanish Romance train 235.1 25.0 25.7 es spanish 4 3 2.fst
fr french Romance train 424.5 24.0 25.1 fr french 8 4 3.fst
pt portuguese Romance train 7.8 5.6 6.1 pt portuguese download.fst
ar arabic Semitic train 16.0 8.8 9.1 ar arabic download.fst

zh-CN chinese Sino-Tibetan train 26.6 13.3 14.1 cmn mandarin 2 4 4.fst
zh-TW chinese Sino-Tibetan train 3.0 2.4 2.6 cmn mandarin 2 4 4.fst

tr turkish Turkic train 2.0 1.9 2.1 tr turkish download.fst
ky kirghiz Turkic train 2.6 2.1 1.9 ky kirghiz 8 2 2.fst
et estonian Uralic train 5.5 4.7 4.6 et estonian 2 4 4.fst
hu hungarian Uralic train 4.3 1.7 1.9 hu hungarian 2 4 2.fst
ru russian East Slavic train 23.5 12.3 13.2 ru russian download.fst
cs czech West Slavic train 7.3 5.0 5.0 cs czech 4 4 4.fst
it italian Romance dev 86.2 21.0 22.1 it italian 8 2 3.fst
eu basque Language isolate test 10.9 7.8 8.2 eu
ia interlingua Constructed test 2.2 1.5 0.8 ia
lv latvian Baltic test 1.9 1.6 1.6 lv latvian 2 4 4.fst
ka georgian South Caucasian test 1.6 0.9 1.0 ka georgian 4 2 3.fst
nl dutch West Germanic test 11.5 6.4 7.0 nl dutch download.fst
el greek Hellenic test 2.8 1.5 1.8 el greek 2 2 2.fst
ro romanian Romance test 3.6 1.0 2.0 ro romanian 2 3 3.fst
mt maltese Semitic test 2.3 1.8 2.1 mt maltese 2 4 4.fst
tt tatar Turkic test 11.5 2.0 4.4 tt tatar 2 2 2.fst
fi finnish Uralic test 0.5 0.5 0.6 fi finnish 2 4 4.fst
sl slovenian South Slavic test 1.9 0.5 0.7 sl slovenian 2 4 4.fst
pl polish West Slavic test 9.3 6.6 7.0 pl polish 2 2 2.fst

ga-IE∗ irish Celtic test 0.5 0.4 0.5 ga
zh-HK∗ chinese Sino-Tibetan test 3.9 3.1 3.6 yue yue 2 2 4.fst
pa-IN∗ punjabi Indic test 0.2 0.1 0.1 pa panjabi 4 4 4.fst



Table 7: Statistics of languages from Babel and the ones that are supported in Espeak and Phonetisaurus phonemizers.

Dataset Code Lang Family Hours Phonemizer
train valid test Espeak Phonetisaurus

Babel

307 Amharic Semitic 39.4 4.4 11.7 am amharic 8 2 4.fst
103 Bengali Indic 56.4 6.3 10.0 bn bengali 4 3 2.fst
301 Cebuano 37.4 4.2 10.4 cebuano 4 3 2.fst
201 Haitian Creole 61.0 6.7 10.8 ht haitian 8 3 3.fst
402 Javanese Austronesian 41.1 4.6 11.4 javanese 4 2 2.fst
202 Swahili Bantu 40.1 4.5 10.7 sw swahili 4 2 2.fst
204 Tamil Dravidian 62.6 7.0 11.6 ta tamil 2 3 3.fst
107 Vietnamese Austroasiatic 78.8 8.8 11.0 vi vietnamese 2 2 2.fst
102 Assamese Indic 54.8 6.1 10.0 as assamese 4 2 3.fst
403 Dholuo 37.6 4.1 10.1 luo 4 2 2.fst
305 Guarani South American Indian 38.9 4.3 10.6 gn guarani 4 2 2.fst
306 Igbo Niger–Congo 39.7 4.4 10.9 igbo 2 3 4.fst
302 Kazakh Turkic 36.1 4.0 9.8 kk kazakh 2 3 2.fst
104 Pashto Indo-European 70.7 7.8 10.0 pushto 8 3 2.fst
106 Tagalog Austronesian 76.2 8.6 10.7 tagalog 4 2 3.fst
303 Telugu Dravidian 38.1 4.3 9.9 te telugu 4 4 4.fst
105 Turkish Turkic 70.0 7.8 9.9 tr turkish download.fst
206 Zulu Niger–Congo 56.4 6.2 10.5 zulu 4 4 3.fst
404 Georgian South Caucasian 45.5 5.1 12.4 ka georgian 4 2 3.fst
101 Cantonese Sino-Tibetan 120.3 13.5 17.0 yue yue 2 2 4.fst
203 Lao Tai–Kadai 59.2 6.5 10.6 lao 2 2 2.fst

Table 8: Comparison of PER on the test set of a subset of Common Voice languages. tr2tgt lexicon is used in beam-search decoding
by default, while tgt2tr lexicon is used only for the columns denoted with ∗. The numbers in the parenthesis next to each pre-trained
model is the maximum number of hours per language in the training set.

Pretrain No pretrain (10) No pretrain (200) w2v LV-60K (10) XLSR - 53 (10) XLSR - 53 (10)
Phonemizer Espeak Espeak Espeak Espeak Phonetisaurus

viterbi n-gram viterbi n-gram viterbi n-gram viterbi n-gram n-gram* viterbi n-gram n-gram*

it 56.6 47.5 50.1 41.8 31.8 16.9 26.0 13.9 14.3 26.6 18.1 17.8
eu 51.2 45.6 39.7 32.1 24.8 16.3 20.8 13.7 12.2 - - -
ia 38.9 27.8 30.9 23.0 12.7 6.7 10.7 6.1 6.0 - - -
lv 65.2 59.8 62.7 56.5 41.9 33.5 39.9 32.3 34.0 50.0 40.5 62.4
ka 61.8 56.1 54.6 48.9 29.1 24.0 30.5 23.8 24.3 34.7 26.6 25.5
nl 66.3 56.8 63.0 56.1 46.8 30.5 37.1 19.8 22.7 37.3 24.4 27.8
el 49.5 40.6 42.1 33.7 18.9 10.7 17.3 10.4 9.9 36.2 32.2 22.9
ro 45.7 34.7 46.7 36.9 21.3 15.0 20.1 14.8 12.6 28.5 16.2 17.5
mt 66.3 60.2 62.0 56.0 47.4 36.1 46.6 35.9 36.1 43.3 34.7 37.5
tt 68.2 63.9 65.1 60.8 46.2 34.7 48.4 37.4 35.5 49.1 45.6 35.3
fi 58.8 55.6 53.8 48.3 36.8 29.9 36.8 29.0 27.1 43.1 34.0 37.2
sl 62.9 56.0 60.5 54.6 43.5 29.0 40.6 26.1 27.4 33.4 26.1 23.9
pl 62.3 59.3 60.2 56.0 36.1 27.3 32.8 25.7 27.1 51.8 49.9 48.1

Avg 58.0 51.1 53.2 46.5 33.6 23.9 31.4 22.2 22.3 39.5 31.7 32.4
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Figure 1: Correlation between each pair of languages in Com-
monVoice dataset.

A. Dataset Details
In this section, we summarize the details of CommonVoice and
BABEL datsets. Specifically we list the code and name of each
language together with the family they belong to. We also show
the duration in hours of each split of each language. The amount
of training data varies a lot in CommonVoice dataset. We sub-
sample the training data for high resource languages to avoid
bias. Additionally, for each language, we also provide the spe-
cific language identifier we used in Espeak and the specific fi-
nite state transducers4 in Phonetisaurus. We can see that Espeak
covers more languages in CommonVoice, while Phonetisaurus
covers more languages in BABEL.

The languages in Table 6 are ordered first by splits (training,
validation and test) and then they are grouped by families.

B. Language correlation
We simply denote the correlation between each pair of lan-
guages by cor(l1, l2) = |vocab(l1) ∪ vocab(l2)|

|vocab(l1) ∪ vocab(l2)|
, where l1 and

l2 are two languages and vocab(·) denotes the phoneme vocab-
ulary of a given language. Figure 1 shows the correlations be-
tween pairs of CommonVoice languages. Since languages are
ordered purely by family, it is reasonable to see high correla-
tions on the diagonal blocks. However, this high correlation
also scatter around the whole plot, meaning that IPA phoneme
symbols are commonly shared across different languages and it
is good for zero-shot transfer learning. Besides, Vietnamese (vi)
and Chinese faimily (zh-CN, zh-TW, zh-HK) seems isolated to
others, as their phoneme symbols include tones. Specifically,
vowels like ’ou’ can be denoted as one of the following: ’ou1’,
’ou2’, ’ou3’, ’ou4’, ou5’ and ’ou6’. They are intrinsically both

4https://github.com/uiuc-sst/g2ps

Table 9: Comparison to prior zero-shot work [16] in terms
of phonetic token error rate (PTER) on the test sets of a sub-
set of BABEL languages. Cantonese and Lao are the unseen
languages. BB and CV represents BABEL and CommonVoice
dataset and the following numbers are the number of the lan-
guages included in the training set.

BB Data BB-6[16] BB-6 BB-19 - BB-19
Other Data CGN+GP - - CV-21 CV-21

# hours / lang all all all 10 10
# hours total 1,492 317 935 118 298

Bengali 38.2 36.1 35.4 53.2 40.7
Vietnamese 32.0 40.7 42.1 71.0 63.3

Zulu 35.2 34.6 34.8 61.0 44.1
Amharic 38.0 35.5 35.5 63.2 42.8
Javanese 44.2 40.2 40.8 57.4 49.1
Georgian 38.6 27.6 43.8 51.6 43.2

Cantonese 73.1 73.6 72.6 70.9 63.6
Lao 69.3 70.3 70.2 72.1 63.7

hard to learn and hard to predict.

C. Full comparison on CommonVoice
We summarize all the results on CommonVoice in Table 8.
Apart from the analysis in the ablation section, we can also
find that beam-search decoding consistently helps to improve
the model performance for all languages in all the settings. The
results in Table 5 shows that the trend of accuracy on unseen
languages is similar across phonemizers.

D. Full results on BABEL
As shown in Table 9, with finetuning on only the BABEL
subset of [16]’s training data, our method performs better on
the supervised languages already, indicating that the wav2vec
Transformer blocks, that are not included in [16], benefit the
model learning a lot. Additionally, models trained with mixed
CommonVoice and BABEL data generalize better than the ones
trained on either one of them on the unseen languages. It also
surpasses [16] with using an extra learned language encoder.


