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1 INRIA GALEN, Ecole CentraleSupélec Paris 2 Facebook AI Research, Paris

Abstract

In this work we introduce a time- and memory-efficient
method for structured prediction that couples neuron de-
cisions across both space at time. We show that we are
able to perform exact and efficient inference on a densely-
connected spatio-temporal graph by capitalizing on recent
advances on deep Gaussian random fields. We experiment
with multiple connectivity patterns in the temporal domain,
and present empirical improvements over strong baselines
on the tasks of both semantic and instance segmentation
of videos. Our proposed approach is (a) efficient, (b) has
a unique global minimum, and (c) can be trained end-to-
end alongside contemporary deep networks for video un-
derstanding. Our implementation is based on the Caffe2
framework and will be made publicly available.

1. Introduction
Video understanding remains largely unsolved despite

dramatic improvements in image understanding over the
past five years. The accuracy of current image classifica-
tion, or semantic segmentation models is not yet matched
in action recognition and video segmentation, to some ex-
tent due to the lack of large-scale benchmarks, but also due
to the complexity introduced by introducing the time vari-
able. Combined with increase in memory and computation
demands, video understanding poses additional challenges
that call for novel methods.

Our objective in this work is to go beyond the frame-
by-frame processing currently used in most CNN-based ar-
chitectures. We focus on coupling the decisions taken by a
neural network in time, in a manner that allows information
to flow across frames resulting in decisions that are con-
sistent both spatially and temporally. Towards this goal we
pursue a structured prediction approach, where the structure
of the output space is exploited in order to train classifiers
of higher accuracy. For this we introduce into video seg-
mentation the Deep Gaussian Random Field (DGRF) tech-
nique recently proposed for single-frame structured predic-

tion in [5, 6]. Our main technical contribution consists in
adapting this method so that it becomes affordable for video
segmentation, both from a time- and memory- complexity
viewpoint. To this end, we propose a customized conjugate
gradient method that eliminates redundant computations by
exploiting the structure of the temporal neighbourhood.
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Figure 1. Overview of our approach: our deep network takes in
V input video frames and delivers unary terms (U), spatial (S)
and temporal (T) embeddings for each of the frames to a dense G-
CRF module. The G-CRF module uses the unary terms and spatio-
temporal embeddings to express the unary, the intra- and inter-
frame pairwise terms for a densely connected Gaussian-CRF. The
dense G-CRF module does spatio-temporal structured prediction
via efficient G-CRF inference to deliver output which is used to
generate segmentations. Our network can be trained in an end-
to-end manner. Please note that the 3 frames in this example are
colour coded as red, green, and blue: these colours are used to
indicate correspondences between the inputs, network outputs, and
unary, pairwise interactions in the G-CRF.

We show that our algorithm can be used for a variety of
video segmentation tasks: semantic segmentation (CamVid
dataset), instance tracking (DAVIS dataset), and a combina-
tion of instance segmentation with Mask-RCNN-style ob-
ject detection, customized in particular for the person class
(DAVIS Person dataset).

Our work inherits all favorable properties of the DGRF
method: in particular, our method has the advantage of
delivering (a) exact inference results through the solu-
tion of a linear system, rather than relying on approxi-
mate mean-field inference, as [25, 26], (b) allowing for ex-
act computation of the gradient during back-propagation,
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thereby alleviating the need for the memory-demanding
back-propagation-through-time used in [42] (c) making it
possible to use non-parametric terms for the pairwise term,
rather than confining ourselves to pairwise terms of a pre-
determined form, as [25, 26], and facilitating inference on
both densely- and sparsely-connected graphs, as well as fa-
cilitating blends of both graph topologies.

Within the literature on spatio-temporal structured pre-
diction, the work that is closest in spirit to ours is the work
of [26] on Feature Space Optimization. Even though our
works share several conceptual similarities, our method is
entirely different at the technical level in the sense that it is
conceived as a neural network module for structured predic-
tion that is trained jointly with the convnets that process the
individual frames, while the method of [26] is applied at a
post-processing stage to refine a classifier’s results.

1.1. Previous work

Structured prediction is commonly used by semantic
segmentation algorithms [5, 6, 7, 9, 10, 36, 39, 42] to
capture spatial constraints within an image frame. These
approaches may be extended naively to videos, by mak-
ing predictions individually for each frame. However, in
doing so, we ignore the temporal context, thereby ignor-
ing the tendency of consecutive video frames to be simi-
lar to each other. To address this shortcoming, a number
of deep learning methods employ some kind of structured
prediction strategy to ensure temporal coherence in the pre-
dictions. Initial attempts to capturing spatio-temporal con-
text involved designing deep learning architectures [23] that
implicitly learnt interactions between consecutive image
frames. A number of subsequent approaches used Recur-
rent Neural Networks (RNNs) [2, 12] to capture interde-
pendencies between the image frames. Further, several ap-
proaches have exploited optical flow computed from state
of the art approaches, as in [18], as additional input to the
network [15, 19]. Finally, methods that rely on explicit cap-
turing of these temporal constraints via pairwise terms over
probabilistic graphical models also exist [3, 26].

In this work, we focus on three problems, namely (i) se-
mantic and (ii) instance video segmentation, and (iii) se-
mantic instance tracking. Semantic instance tracking refers
to the problem where we are given the ground truth for the
first frame of a video, and the goal is to predict these in-
stance masks on the subsequent frames of the video. Con-
temporary deep learning literature describes two distinct ap-
proaches to this task. The first set of approaches start with
a deep network pretrained for image classification on large
datasets such as Imagenet or COCO, and finetune it on the
first frame of the video with labeled ground truth [4, 38], op-
tionally leveraging a variety of data augmentation regimes
[24] to increase robustness to scale/pose variation and oc-
clusion/truncation in the subsequent frames of the video.

The second set of approaches poses this problem as a warp-
ing problem [30], where the goal is to warp the segmenta-
tion of the first frame using the images and optical flow as
additional inputs [20, 24, 27].

A number of approaches have attempted to exploit tem-
poral information to improve over static image segmenta-
tion approaches for video segmentation. Clockwork con-
vnets [33] were introduced to exploit the persistence of fea-
tures across time and schedule the processing of some layers
at different update rates according to their semantic stabil-
ity. Similar feature flow propagation ideas were employed
in [26, 43]. In [29], the segmentations are warped using
the flow and spatial transformer networks. Rather than
using optical flow, the prediction of future segmentations
[22] may also temporally smooth frame by frame results.
Finally, the state-of-the-art improving over PSPnet[41] is
achieved by warping the feature maps of a static segmenta-
tion CNN to emulate a video segmentation network [15].

2. Spatio-Temporal Gaussian Random Fields
In this work we extend the Deep Gaussian CRF approach

introduced in [5, 6] to operate efficiently for video segmen-
tation. Introducing a CRF allows us to couple the decisions
between sets of variables that should be influencing each
other; spatial connections were already explored in [5, 6]
and can be understood as propagating information from dis-
tinctive image positions (e.g. the face of a person) to more
ambiguous regions (e.g. the person’s clothes). In this work
we also introduce temporal connections, which allow us to
smooth information over time, and for instance to correctly
segment frames where the object is not clearly visible by
propagating information from different time frames.

We consider that the input to our system is a video
V = {I1, I2, . . . , IV } containing V frames. We denote
our network’s prediction as xv, v = 1, . . . , V , where at
any frame the prediction xi ∈ RPL provides a real val-
ued vector giving a distribution of scores over the L classes
for each of the P image patches; for brevity, we denote by
N = P × L the number of prediction variables. The L
scores corresponding to a patch can be understood as inputs
to a softmax function that yields the label posteriors.

Given a video input, our G-CRF model defines a joint
posterior distribution through a Gaussian multivariate den-
sity:

p(x|V) ∝ exp(−1

2
x>AVx +BVx),

where BV , AV denote the ‘unary’ and ‘pairwise’ terms re-
spectively, with BV ∈ RNV and AV ∈ RNV×NV . In the
rest of this work, it is assumed that the parameters A,B de-
pend on the input video, and we omit the conditioning on V
for notational convenience.

What is particular about the G-CRF is that, assuming
the matrix of pairwise terms A is positive-definite, the
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Figure 2. Spatio-Temporal G-CRF schematic for 2 video-frames. Our network takes in two input images, and delivers the per frame
unaries b1,b2, spatial embeddings A1,A2, and temporal embeddings T1, T2 in the feed-forward mode. Our spatio-temporal G-CRF
module collects these and solves the inference problem described in Eq. 2 to recover predictions x1,x2 for the two frames. During
backward pass, the gradients of the predictions are delivered to the spatio-temporal G-CRF model. It uses these to compute the gradients
for the unary terms as well as the spatio-temporal embeddings and back-propagates them through the network.

Maximum-A-Posterior (MAP) inference merely amounts to
solving the system of linear equations Ax = B. In fact, as
in [5], we can drop the probabilistic formulation and treat
the G-CRF as a structured prediction module that is part
of a deep network. In the forward pass, the unary and the
pairwise terms B and A, delivered by a feed-forward CNN
described in Sec. 2.1, are fed to the G-CRF module which
performs inference to recover the prediction x by solving a
system of linear equations given by

(A+ λI)x = B, (1)

where λ is a small positive constant added to the diagonal
entries of A to make it positive definite.

For the single-frame case (V = 1) the iterative conju-
gate gradient [34] algorithm was used to rapidly solve the
resulting system for both sparse [5] and fully connected [6]
graphs; in particular the speed of the resulting inference is
in the order of 30ms on the GPU, almost two orders of mag-
nitude faster than the implementation of DenseCRF, while
at the same time giving more accurate results.

Our first contribution in this work consists in designing
the structure of the matrix AV so that the resulting system
solution remains manageable as the number of frames in-
creases. Once we describe how we structure AV , we then
will turn to learning our network in an end-to-end manner.

2.1. Spatio-temporal connections

In order to capture the spatio-temporal context, we are
interested in capturing two kinds of pairwise interactions:
(a) pairwise terms between patches in the same frame,and
(b) pairwise terms between patches in different frames.

Denoting the spatial pairwise terms at frame v byAv and
the temporal pairwise terms between frames u, v as Tu,v we

can rewrite Eq. 1 as follows:
A1 + λI T1,2 · · · T1,V
T2,1 A2 + λI · · · T2,V

...
TV,1 TV,2 · · · AV + λI




x1
x2
...

xV

=


b1

b2

...
bV

 ,
(2)

where we group the variables by frames. Solving this sys-
tem allows us to couple predictions xv across all video
frames v ∈ {1, . . . , V }, positions, p and labels l. If fur-
thermore Av = AT

v ,∀v and Tu,v = TT
v,u,∀u, v then the

resulting system is positive definite for any positive λ.
We start by describing how the pairwise terms Av, Tu,v

are constructed through our CNN, and then turn to how the
solution of the linear system in Eq. 2 can be accelerated by
exploiting its structure.

Spatial Connections: We define the spatial pairwise
terms in terms of inner products of pixel-wise embeddings,
following [6]. At frame v we couple the scores for a pair
of patches pi, pj taking the labels lm, ln respectively as fol-
lows:

Av,pi,pj
(lm, ln) = 〈Alm

v,pi
,Aln

v,pj
〉, (3)

where i, j ∈ {1, . . . , P} and m,n ∈ {1, . . . , L}, v ∈
{1, . . . , V }, and Aln

v,pj
∈ RD is the embedding associated

to point pj . In Eq. 3 the Aln
v,pj

terms are image-dependent
and delivered by a fully-convolutional “embedding” branch
that feeds from the same CNN backbone architecture, and
is denoted by Av in Fig. 2.

The implication of this form is that we can afford infer-
ence with a fully-connected graph. In particular the rank
of the block matrix Av = A>v Av , equals the embedding
dimension D, which means that both the memory- and
time- complexity of solving the linear system drops from



O(N2) to O(ND), which can be several orders of magni-
tude smaller. Thus, Av ∈ RN×D

Temporal Connections: Turning to the temporal pair-
wise terms, we couple patches pi, pj coming from different
frames u, v taking the labels lm, ln respectively as

Tu,v,pi,pj
(lm, ln) = 〈T lm

u,pi
, T ln

v,pj
〉, (4)

where u, v ∈ {1, . . . , V }. The respective embedding terms
are delivered by a branch of the network that is separate,
temporal embedding network, denoted by Tv in Fig. 2.

In short, both the spatial pairwise and the temporal pair-
wise terms are composed as Gram matrices of spatial and
temporal embeddings as Av = A>v Av , and Tu,v = T >u Tv .
We visualize our spatio-temporal pairwise terms in Fig. 3.

Spatio-Temporal G-CRFs in Deep Learning: Our st-
G-CRFs can be viewed as generic deep learning modules
for spatio-temporal structured prediction, and as such can
be plugged in at any stage of a deep learning pipeline: either
as the last layer, i.e. classifier, as in our semantic segmenta-
tion experiments (Sec. 3.3), or even in the low-level feature
learning stage, as in our instance segmentation experiments
(Sec. 3.1).

2.2. Efficient Conjugate-Gradient Implementation

We now describe an efficient implementation of the con-
jugate gradient method [34], described in Algorithm 1 that
is customized for our spatio-temporal G-CRFs.

Algorithm 1 Conjugate Gradient Algorithm
1: procedure CONJUGATEGRADIENT
2: Input: A, B, x0 Output: x | Ax = B
3: r0 := B−Ax0; p0 := r0; k := 0
4: repeat
5: αk :=

rTkrk
pT

kApk

6: xk+1 := xk + αkpk

7: rk+1 := rk − αkApk

8: if ‖rk+1‖ is sufficiently small, then exit loop

9: βk :=
rTk+1rk+1

rTkrk

10: pk+1 := rk+1 + βkpk

11: k := k + 1
12: end repeat
13: x = xk+1

The computational complexity of the conjugate gradient
algorithm is determined by the computation of the matrix-
vector product q = Ap, corresponding to line :7 of Al-
gorithm 1 (we drop the subscript k for convenience).

We now discuss how to efficiently compute q in a man-
ner that is customized for this work. In our case, the matrix-
vector product q = Ap is expressed in terms of the spatial
(A) and temporal (T ) embeddings as follows:


q1

q2
...

qV

=

AT

1A1 + λI T T
1 T2 · · · T T

1 TV
T T
2 T1 AT

2A2 + λI · · · T T
2 TV

...
T T
V T1 T T

V T2 · · · AT
VAV + λI




p1

p2
...

pV


(5)

From Eq. 5, we can express qi as follows:

qi = AT
i Aipi + λpi +

∑
j 6=i

T T
i Tjpj . (6)

One optimization that we exploit in computing qi effi-
ciently is that we do not ‘explicitly’ compute the matrix-
matrix products AT

i Ai or T T
i Tj . We note that AT

i Aipi

can be decomposed into two matrix-vector products as
AT

i (Aipi), where the expression in the brackets is evalu-
ated first and yields a vector, which can then be multiplied
with the matrix outside the brackets. This simplification al-
leviates the need to keep N × N terms in memory, and is
computationally cheaper.

Further, from Eq. 6, we note that computation of qi re-
quires the matrix-vector product Tjpj ∀j 6= i. A black-box
implementation would therefore involve redundant compu-
tations. We eliminate this redundancy by rewriting Eq. 6
as

qi = AT
i Aipi + λpi + T T

i

(
∑
j

Tjpj)− Tipi

 . (7)

This rephrasing allows us to precompute and cache∑
j Tjpj , thereby eliminating redundant calculations.
While so far we have assumed dense connections be-

tween the image frames, if we have sparse temporal con-
nections (Sec. 3.1), i.e. each frame is connected to a subset
of neighbouring frames in the temporal domain, the linear
system matrix A is sparse, and qi is written as

qi = AT
i Aipi + λpi +

∑
j∈N (i)

T T
i Tjpj , (8)

whereN (i) denotes the temporal neighbourhood of frame i.
For very sparse connections caching may not be necessary
because these involve little or no redundant computations.

2.3. Backward Pass

By virtue of relying on the Gaussian CRF we can get
the back-propagation equation for the gradient of the loss
with respect to the unary terms, bv , and the spatial/temporal
embedding terms Av, Tv in closed form, thereby sparing us
from having to perform back-propagation in time which was
needed e.g. in [42] for DenseCRF inference. Following [6],
the gradients of the unary terms ∂L

∂bv
are obtained from the



solution of the following system:
A1 + λI T1,2 · · · T1,V
T2,1 A2 + λI · · · T2,V

...
TV,1 TV,2 · · · AV + λI




∂L
∂b1
∂L
∂b2

...
∂L
∂bV

=


∂L
∂x1
∂L
∂x2

...
∂L
∂xV

 .

(9)
Once these are computed, the gradients of the spatial em-

beddings can be computed as follows:

∂L
∂Av

= −
(
∂L
∂bv

⊗ xv

)((
I⊗A>v

)
+
(
A>v ⊗ I

)
QD,N

)
(10)

while the gradients of the temporal embeddings are given
by the following form:

∂L
∂Tv

= −
∑
u

(
∂L
∂bu

⊗ xv

)((
I⊗ T >u

)
+
(
T >u ⊗ I

)
QD,N

)
(11)

whereQD,N is a permutation matrix, defined along the lines
of [6]; we provide the derivation in the supplement.

2.4. Implementation and Inference Time

Our implementation is GPU based and exploits fast
CUDA-BLAS routines for linear algebra. It is implemented
as a module in the Caffe2 library. For spatial and temporal
embeddings of size 128, 12 classes (Sec. 3.3), a 321 × 321
input image, and network stride of 8, our 2, 3, 4 frame in-
ferences take 0.032s, 0.045s and 0.061s on average respec-
tively. Without the caching procedure described in Sec. 2.2,
the 4 frame inference takes 0.080s on average. This is or-
ders of magnitude faster than the dense-CRF method [25]
which takes 0.2s on average for spatial CRF. These timing
statistics were estimated on a GTX-1080 GPU.

3. Experiments
Experimental Setup. We describe the basic setup followed
for our experiments. As in [6], we use a 3−phase training
strategy for our methods. We first train the unary network
without the spatio-temporal embeddings. We next train
the subnetwork delivering the spatio-temporal embeddings
with the softmax cross-entropy loss to enforce the follow-
ing objectives: Ap1,p2

(l1, l2) < Ap1,p2
(l′1 6= l1, l

′
2 6= l2),

and Tu,v,p1,p2 (l1, l2) < Tu,v,p1,p2 (l
′
1 6= l1, l

′
2 6= l2), where

l1, l2 are the ground truth labels for pixels p1, p2. Finally,
we combine the unary and pairwise networks, and train
them together in end-to-end fashion. For the embedding
branches, we use sub-networks of 10 layers each on top of
the standard ResNet-101 conv-4 layer. Unless otherwise
stated, we use stochastic gradient descent to train our net-
works with a momentum of 0.9 and a weight decay of 5e−4.
For segmentation experiments, we use a base-learning rate
of 2.5e−3 for training the unaries, 2.5e−4 for training the

embeddings, and 1e−4 for finetuning the unary and em-
beddings together, using a polynomial-decay with power of
0.9. For the instance segmentation network, we use a sin-
gle stage training for the unary and pairwise streams: we
train the network for 16K iterations, with a base learning
rate of 0.01 which is reduced to 0.001 after 12K iterations.
The weight decay is 1e−4. For our instance tracking exper-
iments, we use unaries from [38] and do not refine them,
rather use them as an input to our network. We employ hor-
izontal flipping and scaling by factors between 0.5 and 1.5
during training/testing for all methods, except in the case of
instance segmentation experiments (Sec. 3.1).
Datasets. We now describe the datasets used for our exper-
iments.

DAVIS. The DAVIS dataset [31] consists of 30 training
and 20 validation videos containing 2079 and 1376 frames
respectively. Each video comes with manually annotated
segmentation masks for foreground object instances.

DAVIS-Person. While the DAVIS dataset [32] provides
densely annotated frames for instance segmentation, it lacks
object category labels. For category prediction tasks such
as semantic and instance segmentation, we create a subset
of the DAVIS dataset containing videos from the category
person. By means of visual inspection, we select 35 and
18 video sequences from the training and validation sets re-
spectively containing 2463 training and 1182 validation im-
ages, each containing at least one person. Since the DAVIS
dataset comes with only the foreground instances labeled,
we manually annotate the image regions containing unan-
notated person instances with the do-not-care label. These
image regions do not participate in the training or the eval-
uation. We call this the DAVIS-person dataset.

CamVid. The CamVid dataset [14], is a dataset contain-
ing videos of driving scenarios for urban scene understand-
ing. It comes with 701 images annotated with pixel-level
category labels at 1 fps. Although the original dataset comes
with 32 class-labels, as in [35, 26, 21], we predict 11 se-
mantic classes and use the train-val-test split of 367, 101
and 233 frames respectively.

3.1. Ablation Study on Semantic and Instance Seg-
mentation Tasks

In these experiments, we use the DAVIS Person dataset
described in Sec. 3. The aim here is to explore the various
design choices available to us when designing networks for
spatio-temporal structured prediction for semantic segmen-
tation, and proposal based instance segmentation tasks.
Semantic Segmentation Experiments. Our first set of ex-
periments studies the effect of varying the sizes of the spa-
tial and temporal embeddings, the degree of the temporal
connections, and multi-scale temporal connections for the
spatio-temporal G-CRFs. For these set of experiments, our
baseline network, or base-net is a single resolution ResNet-



(a) Image (b) spatial (c) temporal (d) unary (e) post G-CRF (f) GT 
Figure 3. Spatio-temporal G-CRF visualization: We mark two points on the reference frame of the video with + signs. We plot the
heatmaps of the spatial and temporal pairwise affinities between these 2 points and all other points on the reference frame (row 1) as well
two subsequent frames (rows 2, 3). Further, we show heatmaps of the unary scores, followed by our predictions and the ground truth.
We note that while the spatial embeddings may be confused by the presence of a second camel, as in the case of the unary classifier, the
temporal context helps recover the correct instance mask.

Figure 4. Illustration of the various temporal neighbourhoods we
consider in our ablation study. Each box denotes a video frame
and the arcs connecting them are pairwise connections. We show
a frame in red with all neighbours present in the temporal context.

101 network, with altered network strides as in [8] to pro-
duce a spatial down-sampling factor of 8. The network was
pretrained on the PASCAL VOC 2012 dataset for semantic
segmentation. The evaluation metric used in these experi-
ments is the mean pixel Intersection over Union (IoU).

In Table 1 we study the effect of varying the sizes of
the spatial and temporal embeddings, and compare the per-
formance of our methods that couple 2−frames at a time,
against that of the base-net. Our best results are achieved at
when the sizes of our spatio-temporal embeddings are 128.
The improvement over the base-net is 4.2%. In the rest of
our experiments in this work, we fix the size of our embed-
dings to 128. We next study the effect of varying the size
of the temporal context and temporal neighbourhoods. The
temporal context is defined as the number of video frames
V which are considered simultaneously in one linear sys-

tem (Eq. 2). The temporal context V is limited by the size
of the network and GPU RAM: for a ResNet-101 network,
an input image of size 321 × 321, embeddings of size 128,
we can currently fit V = 7 frames on 12 GB of GPU RAM,
thus the maximum temporal context possible in this setting
is 7 frames. Since V is smaller than the number of frames
in the video, we divide the video into overlapping sets of V
frames, and average the predictions for the common frames.

G-CRF

MasksRoI-Pool

Figure 5. Spatio-temporal structured prediction in Mask-RCNN.
Here we use G-CRFs in the feature learning stage before the ROI-
Pooling (and not as the final classifier). This helps learn mid-level
features which are better aware of the spatio-temporal context.

The temporal neighbourhood for a frame (Fig. 4) is de-
fined as the number of frames it is directly connected to
via pairwise connections. A fully connected neighbourhood
(fc−) is one in which there are pairwise terms between ev-
ery pair of frames available in the temporal context. We
experiment with 2−, 4−, multiscale 6ms− and fc− connec-
tions. The 6ms− neighbourhood connects a frame to neigh-
bours at distances of 20, 21 and 22 (or 1, 2, 4) frames on
either side. Table 2 reports our results for different com-



binations of temporal neighbourhood and context. It can
be seen that dense connections improve performance for
smaller temporal contexts, but for a temporal context of 7
frames, an increase in the complexity of temporal connec-
tions leads to decrease in performance.

base-net 81.16
st-G-CRF spatial dimension→
temporal dimension↓ 64 128 256 512
64 84.89 85.21 85.20 84.98
128 85.18 86.38 86.34 84.91
256 85.92 86.37 85.95 84.92
512 84.85 85.95 84.95 84.21

Table 1. Ablation study: mean IoU on the DAVIS-person dataset
using 2 frame fc− connections. Here we study the effect of vary-
ing the size of the spatial & temporal embeddings. We fix the size
of these embeddings to 128 for subsequent experiments.

base-net 81.16
st-G-CRF temporal neighbourhood→
temporal context↓ 2− 4− 6ms− fc−
2 − − − 86.38
3 86.42 − − 86.51
4 86.70 − − 86.82
7 86.98 86.79 86.82 86.42

Table 2. Ablation study: mean IoU on the DAVIS-person dataset.
Here we study the effect of varying the size of the temporal context
and neighbourhood.

Instance Segmentation Experiments. In this set of exper-
iments, we demonstrate the utility of our spatio-temporal
G-CRF method for the task of proposal based instance seg-
mentation. Our hypothesis here is that coupling of predic-
tions across frames is advantageous for instance segmen-
tation methods, and our goal here is to show that the per-
formance of the instance segmentation methods improves
as we increase the temporal context via spatio-temporal
G-CRFs: we assume fully connected temporal neighbour-
hoods. Our baseline for this task is the Mask-RCNN frame-
work of [17] using the ResNet-50 network as the convo-
lutional body. The Mask-RCNN framework uses precom-
puted bounding box proposals for this task. It computes
convolutional features on the input image using the convo-
lutional body network, crops out the features correspond-
ing to image regions in the proposed bounding boxes via
Region-Of-Interest (RoI) pooling, and then has 3 head net-
works to predict (i) class scores and bounding box regres-
sion parameters, (ii) keypoint locations, and (iii) instance
masks. Structured prediction coupling the predictions of all
the proposals over all the video frames is a computationally
challenging task, since typically we have 100 − 1000s of
proposals per image, and it is not obvious which propos-
als from one frame should influence which proposals in the

other frame. To circumvent this issue, we use our G-CRFs
before the RoI pooling stage as shown in Fig. 5. Thus, rather
than coupling final predictions, we are coupling mid-level
features over the video frames in an attempt to improve the
features which will ultimately be used to make predictions.

For evaluation, we use the standard COCO performance
metrics: AP50, AP75, and AP (averaged over IoU thresh-
olds), evaluated using mask IoU. Table 3 reports our in-
stance segmentation results. We note that the performance
of the Mask-RCNN framework increases consistently as we
increase the temporal context for predictions. These results
are visualized in Fig. 7.

Method AP50 AP75 AP
ResNet50-baseline 0.610 0.305 0.321
spatial G-CRF [6] 0.618 0.310 0.329
2-frame st-G-CRF 0.619 0.310 0.331
3-frame st-G-CRF 0.631 0.321 0.330
4-frame st-G-CRF 0.647 0.336 0.349

Table 3. Instance Segmentation using ResNet-50 Mask R-CNN on
the Davis Person Dataset

Method mean IoU
Mask Track [30] 79.7
OSVOS [4] 79.8
Online Adaptation [38] 85.6
Online Adaptation + Spatial G-CRF [6] 85.9
Online Adaptation + 2-Frame st-G-CRF 86.3
Online Adaptation + 3-Frame st-G-CRF 86.5

Table 4. Instance Tracking on the Davis val Dataset

3.2. Instance Tracking

Here we use the DAVIS dataset described in Sec. 3. In-
stance tracking involves predicting segmentation masks for
foreground object instances for each frame in the video
when presented with the ground truth segmentation for the
first video frame. Our goal here is to demonstrate that in-
corporating temporal context helps improve performance
in instance tracking methods. To this end, we extend the,
state-of-the-art approach on the DAVIS benchmark, online
adaptation approach from [38] with our spatio-temporal G-
CRFs. We use their publicly available software based on
the TensorFlow library to generate the unary terms for each
of the frames in the video, and keep them fixed. We use
a ResNet-50 network to generate spatio-temporal embed-
dings and use these alongside the unaries computed from
[38]. The results are reported in table Table 4. We com-
pare performance of spatio-temporal G-CRFs against that
of just the unaries from [38], and also with spatial G-CRFs
from [6]. The evaluation criterion is the mean pixel-IoU. It
can be seen that temporal context helps improve the perfor-
mance. We believe that re-implementing the software from
[38] in Caffe2 and back-propagating on the unary branch of
the network would yield further performance boosts.
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SegNet [35] 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4
Bayesian SegNet [1] − 63.1

DeconvNet [16] − 48.9
Visin et al. [37] − 58.8

FCN8 [28] 77.8 71.0 88.7 76.1 32.7 91.2 41.7 24.4 19.9 72.7 31.0 57.0
DeepLab-LFOV [7] 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6

Dilation8 [40] 82.6 76.2 89.0 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3
Dilation8 + FSO [26] 84.0 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.1

Tiramisu [21] 83.0 77.3 93.0 77.3 43.9 94.5 59.6 37.1 37.8 82.2 50.5 66.9
Results with our ResNet-101 Implementation

Basenet ResNet-101 (Ours) 81.2 75.1 90.3 85.2 48.3 93.9 57.7 39.9 15.9 80.5 54.8 65.7
Basenet + Spatial G-CRF [6] 81.6 75.7 90.4 86.8 48.1 94.0 59.1 39.2 15.7 80.7 54.7 66.0

Basenet + 2-Frame Video G-CRF 82.0 76.1 91.1 86.2 51.7 93.8 64.2 24.5 25.0 80.1 61.7 66.9
Basenet + 3-Frame Video G-CRF 82.1 76.0 91.1 86.1 52.0 93.7 64.5 24.9 24.4 79.9 61.8 67.0

Results after Cityscapes Pretraining
Basenet ResNet-101 (Ours) 85.5 77.4 90.9 88.4 62.3 95.4 64.8 62.1 33.3 85.5 60.5 73.3

Basenet + Spatial G-CRF [6] 86.0 77.8 91.2 90.8 63.6 95.9 66.5 61.2 35.3 86.9 65.8 74.6
Basenet + 2-Frame Video G-CRF 86.0 78.3 91.2 92.0 63.4 96.3 67.0 62.5 34.4 87.7 66.1 75.0
Basenet + 3-Frame Video G-CRF 86.1 78.3 91.2 92.2 63.7 96.4 67.3 63.0 34.4 87.8 66.4 75.2

Table 5. Results on CamVid dataset. We compare our results with some of the previously published methods, as well as our own imple-
mentation of the ResNet-101 network which serves as our base network.

(a) image (b) base-net (c) spatial G-CRF (d) st-G-CRF (e) GT (a) image (b) base-net (c) spatial G-CRF (d) st-G-CRF (e) GT

Figure 6. Qualitative results on the CamVid dataset. We note that the temporal context from neighbouring frames helps improve the
prediction of the truck on the right in the first video, and helps distinguish between the road and the pavement in the second video, overall
giving us smoother predictions in both cases.

3.3. Semantic Segmentation on CamVid Dataset

In this set of experiments, we employ our st-G-CRFs
for the task of semantic video segmentation. Here we use
the CamVid dataset described in Sec. 3. Our base network
here is our own implementation of ResNet-101 with pyra-
mid spatial pooling as in [41]. Additionally, we pretrain our
networks on the Cityscapes dataset [11], and report results
both with and without cityscapes pretraining. Without pre-
training, we see an improvement of 1.3% over the base-net,
and with pretraining we see an improvement of 1.9%. The
qualitative results are shown in Fig. 6.

4. Conclusion
In this work, we propose efficient, end-to-end trainable

G-CRFs for efficient spatio-temporal structured prediction.

On a number of benchmarks, we experimentally demon-
strate performance boosts when we increase the temporal
context of predictions. This additional complexity comes
at negligible computational overhead compared to spatial
structured prediction owing to our efficient implementation.
Future work would involve incorporating optical flow tech-
niques in this framework as they provide a natural way of
capturing temporal correspondence. Further, we would like
to employ our method for spatio-temporal structured pre-
diction in unsupervised and semi-supervised settings.



        (a) base-net          (b) spatial G-CRF           (c) st-G-CRF                   (d) GT
Figure 7. Qualitative results for instance segmentation on the DAVIS Person Dataset. We notice that the base-net and the spatial G-CRF
in (a),(b) miss instances or parts of instances of dancing persons frequently. Temporal context from spatio-temporal G-CRFs in (c) helps
recover missing parts / instances and yield smoother predictions over the video, as seen in row 2.

Appendix
A. Gradient Expressions for Spatio-Temporal

G-CRF Parameters
As described in the manuscript, to capture the spatio-

temporal context, we propose two kinds of pairwise interac-
tions: (a) pairwise terms between patches in the same frame

(spatial pairwise terms), and (b) pairwise terms between
patches in different frames (temporal pairwise terms).

Denoting the spatial pairwise terms at frame v byAv and
the temporal pairwise terms between frames u, v as Tu,v ,
our inference equation is written as
A1 + λI T1,2 · · · T1,V
T2,1 A2 + λI · · · T2,V

...
TV,1 TV,2 · · · AV + λI




x1
x2
...

xV

=


b1

b2

...
bV

 ,
(A.1)



where we group the variables by frames. Solving this sys-
tem allows us to couple predictions xv across all video
frames v ∈ {1, . . . , V }, positions, p and labels l. If fur-
thermore Av = A′v,∀v and Tu,v = T ′v,u,∀u, v then the
resulting system is positive definite for any positive λ.

As in the manuscript, at frame v we couple the scores for
a pair of patches pi, pj taking the labels lm, ln respectively
as follows:

Av,pi,pj
(lm, ln) = 〈Alm

v,pi
,Aln

v,pj
〉, (A.2)

where i, j ∈ {1, . . . , P} and m,n ∈ {1, . . . , L}, v ∈
{1, . . . , V }, and Aln

v,pj
∈ RD is the embedding associated

to point pj .
Thus, Av ∈ RN×D, where N = P × L. Further, to de-

sign the temporal pairwise terms, we couple patches pi, pj
coming from different frames u, v taking the labels lm, ln
respectively as

Tu,v,pi,pj
(lm, ln) = 〈T lm

u,pi
, T ln

v,pj
〉, (A.3)

where u, v ∈ {1, . . . , V }.
In short, both the spatial pairwise and the temporal pair-

wise terms are composed as Gram matrices of spatial and
temporal embeddings as Av = A>v Av , and Tu,v = T >u Tv .

Using the definitions from Eq. A.2 and Eq. A.3, we can
rewrite the inference equation as
AT

1A1 + λI T T
1 T2 · · · T T

1 TV
T T
2 T1 AT

2A2 + λI · · · T T
2 TV

...
T T
V T1 T T

V T2 · · · AT
VAV + λI




x1
x2
...

xV

=


b1

b2

...
bV


(A.4)

From Eq. A.4, we can express bv as follows:

bv = AT
vAvxv + λxv +

∑
u 6=v

T T
v Tuxu, (A.5)

which can be compactly written as

bv = Avxv + λxv +
∑
u 6=v

Tv,uxu. (A.6)

We will use Eq. A.6 to derive gradient expressions for
∂Av

∂L and ∂Tv
∂L .

A.1. Gradients of the Unary Terms

As in [5, 6], the gradients of the unary terms ∂bv

∂L are
obtained from the solution of the following system of linear
equations:
AT

1A1 + λI T T
1 T2 · · · T T

1 TV
T T
2 T1 AT

2A2 + λI · · · T T
2 TV

...
T T
V T1 T T

V T2 · · · AT
VAV + λI




∂L
∂b1
∂L
∂b2

...
∂L
∂bV

=


∂L
∂x1
∂L
∂x2
...

∂L
∂xV

,

(A.7)
where L is the network loss. Once we have ∂L

∂bv
, we use

it to compute the gradients of the spatio-temporal embed-
dings.

A.2. Gradients of the Spatial Embeddings

We begin with the observation that computing ∂L
∂Av

re-
quires us to first derive the expression for ∂L

∂Av
. To this end,

we ignore terms from Eq. A.6 that do not depend on bv or
Av and write it as bv = Avxv + c. We now use the result
from [5, 6] that when

Avxv = bv,

the gradients of Av are expressed as

∂L
∂Av

= − ∂L
∂bv

⊗ xv, (A.8)

where ⊗ denotes the Kronecker product operator.
To compute ∂L

∂Av
, we use the chain rule of differentiation

as follows:

∂L
∂Av

=

(
∂L
∂Av

)(
∂Av

∂Av

)
=

(
∂L
∂Av

)(
∂

∂Av
AT

vAv

)
,

(A.9)
where Av = AT

vAv , by definition. We know the expres-
sion for ∂L

∂Av
from Eq. A.8, but to obtain the expression for

∂
∂Av
AT

vAv we define a permutation matrix Qm,n of size
mn×mn (as in [13, 6]) as follows:

Qm,nvec(M) = vec(MT ), (A.10)

where vec(M) is the vectorization operator that vectorizes a
matrixM by stacking its columns. Thus, the operatorQm,n

is a permutation matrix, composed of 0s and 1s, and has a
single 1 in each row and column. When premultiplied with
another matrix, Qm,n rearranges the ordering of rows of
that matrix, while when postmultiplied with another matrix,
Qm,n rearranges its columns. Using this matrix, we can
form the following expression [13]:

∂

∂Av
AT

vAv =
(
I⊗AT

v

)
+
(
AT

v ⊗ I
)
QD,N , (A.11)

where I is the N ×N identity matrix. Substituting Eq. A.8
and Eq. A.11 into Eq. A.9, we obtain:

∂L
∂Av

= −
(
∂L
∂bv

⊗ xv

)((
I⊗A>v

)
+
(
A>v ⊗ I

)
QD,N

)
.

(A.12)

A.3. Gradients of Temporal Embeddings

As in the last section, from Eq. A.6, we ignore any terms
that do not depend on bv or Tv,u and write it as bv = c +∑

u6=v Tv,uxu.
Using the strategies in the previous section and the sum

rule of differentiation, the gradients of the temporal embed-
dings are given by the following form:

∂L
∂Tv

= −
∑
u

(
∂L
∂bu

⊗ xv

)((
I⊗ T >u

)
+
(
T >u ⊗ I

)
QD,N

)
(A.13)
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