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ABSTRACT
Popular SSD-based key-value stores consume a large amount of
DRAM in order to provide high-performance database operations.
However, DRAM can be expensive for data center providers, espe-
cially given recent global supply shortages that have resulted in
increasing DRAM costs. In this work, we design a key-value store,
MyNVM, which leverages an NVM block device to reduce DRAM
usage, and to reduce the total cost of ownership, while providing
comparable latency and queries-per-second (QPS) as MyRocks on
a server with a much larger amount of DRAM. Replacing DRAM
with NVM introduces several challenges. In particular, NVM has
limited read bandwidth, and it wears out quickly under a high write
bandwidth.

We design novel solutions to these challenges, including us-
ing small block sizes with a partitioned index, aligning blocks
post-compression to reduce read bandwidth, utilizing dictionary
compression, implementing an admission control policy for which
objects get cached in NVM to control its durability, as well as replac-
ing interrupts with a hybrid polling mechanism. We implemented
MyNVM and measured its performance in Facebook’s production
environment. Our implementation reduces the size of the DRAM
cache from 96 GB to 16 GB, and incurs a negligible impact on la-
tency and queries-per-second compared to MyRocks. Finally, to the
best of our knowledge, this is the first study on the usage of NVM
devices in a commercial data center environment.

1 INTRODUCTION
Modern key-value stores like RocksDB and LevelDB are highly
dependent on DRAM, even when using a persistent storage medium
(e.g. flash) for storing data. Since DRAM is still about 1000× faster
than flash, these systems typically leverage DRAM for caching hot
indices and objects.

MySQL databases are often implemented on top of these key-
value stores. For example,MyRocks, which is built on top of RocksDB,
is the primary MySQL database in Facebook and is used extensively
in data center environments. MyRocks stores petabytes of data
and is used to serve real-time user activities across large-scale web
applications [23]. In order to achieve high throughput and low la-
tency, MyRocks consumes a large amount of DRAM. In our case, we
leverage a MyRocks server that consists of 128 GB DRAM and 3 TB
of flash. Many other key-value stores are also highly dependent on
DRAM, including Tao [9] and Memcached [24].
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DRAM NVM TLC
Flash

Max Read Bandwidth 75 GB/s 2.2 GB/s 1.3 GB/s
Max Write Bandwidth 75 GB/s 2.1 GB/s 0.8 GB/s
Min Read Latency 75 ns 10 µs 100 µs
Min Write Latency 75 ns 10 µs 14 µs
Endurance Very High 30DWPD 5 DWPD
Capacity 128 GB 375 GB 1.6 TB

Table 1: An example of the key characteristics of DDR4
DRAMwith 2400MT/s, NVM block device, and 3D TLCflash
device in a typical data center server. DWPD means Device
Writes Per Day.

As DRAM faces major scaling challenges [19, 22], its bit supply
growth rate has experienced a historical low [17]. Together with the
growing demand for DRAM, these trends have led to problems in
global supply [17], increasing the total cost of ownership (TCO) for
data center providers. Over the last year, for example, the average
DRAM DDR4 price has increased by 2.3× [1].

Our goal in this work is to reduce the DRAM footprint of My-
Rocks, while maintaining comparable mean latency, 99th percentile
latency, and queries-per-second (QPS). The first obvious step would
be to simply reduce the DRAM capacity on a MyRocks server con-
figuration. Unfortunately, reducing the amount of DRAM degrades
the performance of MyRocks. To demonstrate this point, Figure 1
shows that when reducing the DRAM cache in MyRocks from
96 GB to 16 GB, the mean latency increases by 2×, and P99 latency
increases by 2.2×.

NVM offers the potential to reduce the dependence of systems
like MyRocks on DRAM. NVM comes in two forms: a more expen-
sive byte-addressable form, and a less expensive block device. Since
our goal is to reduce total cost of ownership, we use NVM as a
block device. Table 1 provides a breakdown of key DRAM, NVM,
and Triple-Level Cell (TLC) flash characteristcs in a typical data
center server. An NVM block device offers 10× faster reads and
has 5× better durability than flash [3]. Nevertheless, NVM is still
more than 100× slower than DRAM. To make up for that, NVM
can be used to reduce the number of accesses to the slower flash
layer, by significantly increasing the overall cache size. To give a
sense of the price difference between NVM and DRAM, consider
that on October 23, 2017, Amazon.com lists the price for an Intel
Optane NVM device with 16 GB at $39, compared to $170 for 16 GB
of DDR4 DRAM 2400MHz.

However, there are several unique challenges when replacing
DRAM with an NVM device. First, NVM suffers from significantly
lower read bandwidth than DRAM, and its bandwidth heavily de-
pends on the block size. Therefore, simply substituting DRAM with
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Figure 1: Average and P99 latencies for different cache sizes in MyRocks, compared with MyNVM, using real production work-
loads.

NVM will not achieve the desired performance due to read band-
width constraints. In addition, significantly reducing the DRAM
footprint results in a smaller amount of data that can be cached
for fast DRAM access. This requires a redesign of the indices used
to lookup objects in RocksDB. Second, using smaller data blocks
reduces their compression ratio, thus increasing the total database
size on flash. Third, unlike DRAM, NVM has write durability con-
straints. If it is used as a DRAM replacement without modification,
it will wear out too quickly. Fourth, because NVM has a very low
latency relative to other block devices, the operating system inter-
rupt overhead becomes significant, adding a 20% average latency
overhead.

We present MyNVM, a system built on top of MyRocks, that
significantly reduces the DRAM cache using a second-layer NVM
cache. Our contributions include several novel design choices that
address the problems arising from adopting NVM in a data center
setting:

(1) NVM bandwidth and index footprint: Partititioning the data-
base index enables the caching of fine grained index blocks.
Thus, the amount of cache consumed by the index blocks
is reduced, and more DRAM space is left for caching data
blocks. Consequently, the read bandwidth of the NVM is
also reduced. When writing to NVM, compressed blocks are
grouped together in the same NVM page (when possible)
and aligned with the device pages, to further reduce NVM
read bandwidth.

(2) Database size: When using smaller block sizes, compression
becomes less efficient. To improve the compression ratio we
utilize a dictionary compression.

(3) Write durability: Admission control to NVM only permits
writing objects to NVM that will have a high hit rate, thus
reducing the total number of writes to NVM.

(4) Interrupt latency: Hybrid polling (where the kernel sleeps for
most of the polling cycle) can reduce the I/O latency overhead
by 20% in certain server configurations, while minimizing
CPU consumption.

We implemented MyNVM and deployed it in a MyRocks produc-
tion environment in Facebook, and were able to reduce the DRAM

Figure 2: The format of a Sorted String Table (SST).

cache by 6×. Our implementation achieves a mean latency and P99
latency of 443 µs and 3439 µs, respectively. As shown in Figure 1,
both its mean and P99 latencies are 45% lower than the MyRocks
server with a low amount of DRAM. Compared to the MyRocks
with the high amount of DRAM, MyNVM’s average latency is only
10% higher, and its P99 latency is 20% higher. Its QPS is 50% higher
than the MyRocks server with a small amount of DRAM, and only
8% lower than MyRocks with the large DRAM cache.

2 BACKGROUND
To give context for our system, we provide a primer on RocksDB and
MyRocks, and discuss the performance and durability challenges
of NVM technology.

2.1 RocksDB and MyRocks
RocksDB is a popular log-structured merge tree (LSM) key-value
store for SSD. Since many applications still rely on SQL backends,
MyRocks is a system that adapts RocksDB to support MySQL
queries, and is used as the primary database backend at Face-
book [23].

In RocksDB [5], data is always written to DRAM, where it is
stored in Memtables, which are in-memory data structures based
on Skiplists. Once a Memtable becomes full, its data is written into
a Sorted String Table (SST), which is depicted in Figure 2. An SST
is a file on disk that contains sorted variable-sized key-value pairs
that are partitioned into a sequence of data blocks. In addition
to data blocks, the SST stores meta blocks, which contain Bloom
filters and metadata of the file (e.g. properties such as data size,
index size, number of entries etc). Bloom filters are space-efficient
probabilistic bit arrays that are used to determine whether the SST
file may contain an arbitrary key. At the end of the file, the SST
stores one index block. The key of an index entry is the last key
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Figure 3: The distribution of requests in the LinkBench
benchmark.

in the corresponding data block, and the value is the offset of that
block in the file.

When executing a read query, RocksDB first checks whether
its key exists in the Bloom filters. If it does, it will try to read
the result of the query. It will always first check the in-memory
data structures before reading from disk. In addition to storing
memtables in DRAM, RocksDB also caches hot data blocks, as well
as index and filter blocks.

SST files are stored in flash in multiple levels, called L0, L1,
and so forth. L0 contains files that were recently flushed from the
Memtable. Each level after L0 is sorted by key. To find a key, a binary
search is first done over the start key of all SST files to identify
which file contains the key. Only then, an additional binary search
is done inside the file (using its index block) to locate the exact
position of the key. Each level has a target size (e.g., 300 MB, 3 GB,
30 GB), and once it reaches its target size, a compaction is triggered.
During compaction, at least one file is picked and merged with its
overlapping range in the next level.

2.2 LinkBench
LinkBench is an open-source database benchmark that is based
on traces from production databases that store the “social graph”
data at Facebook [6]. The social graph is composed of nodes and
links (the edges in the graph). The operations used to access the
database include point reads, range queries (e.g. list of edges leading
to a node), count queries, and simple create, delete, and update
operations. Figure 3 depicts the operation distribution we used
when running LinkBench, which reflect the same distribution as
data center production workloads.

The LinkBench benchmark operates in two phases. The first
phase populates the database by generating and loading a synthetic
social graph. The graph is designed to have similar properties to the
social graph, so that the number of edges from each node follows
a power-law distribution. In the second phase, LinkBench runs
the benchmark with a generated workload of database queries. It
spawns many request threads (we use 20), which make concurrent

requests to the database. Each thread generates a series of database
operations that mimics the production workload. For example, the
access patterns create a similar pattern of hot (frequently accessed)
and cold nodes in the graph. The nodes and edges have a log-normal
payload size distribution with a median of 128 bytes for the nodes
and 8 bytes for the edges.

We utilize LinkBench to drive our design section, then evaluate
MyNVM using real production traffic in the evaluation section.

2.3 NVM
NVM is a new persistent storage technology with the potential
of replacing DRAM both in data center and consumer use cases.
NVM can be used in two form factors: the DIMM form factor,
which is byte-addressable, or alternatively as a block device. Unlike
much of the previous work on NVM that focused on the DIMM use
case [25, 27, 28], in this work, we use NVM solely as a block device.
For our use case, we preferred the block-device form factor, given
its lower cost.

To better understand the performance characteristics of NVM,
we ran Fio 2.19 [2], a widely used I/O workload generator, on an
NVM device. We ran the Fio workloads with 4 concurrent jobs with
different queue depths (the queue depths represent the number of
outstanding I/O requests to the device), using the Libaio I/O engine.
We compared the latency and bandwidth of an NVM device with
a capacity of 375 GB, to a 3D Triple-Level Cell (TLC) flash device
with a capacity of 1.5 TB. TLC devices are currently the prevailing
flash technology used in datacenters, because they can store 3 bits
per cell, and are more efficient than devices of lower density such
as Multi-level Cell (MLC) flash device (storing only 2 bits per cell).

2.3.1 Latency. Figure 4 presents the mean and P99 read laten-
cies under 100% reads, and 70% reads and 30%writes workloads with
random accesses, while Figure 5 presents the results for write la-
tencies. For a workload that solely consists of 4 KB read operations,
NVM is up to 10× faster than flash for low queue depths.

In the more realistic workload of mixed reads and writes, flash
suffers from read/write interference that induces a high perfor-
mance penalty. This penalty is negligible for NVM, which makes
NVM’s speedup over flash even more significant.

Figure 7(a) and Figure 7(b) show the mean and P99 latencies, re-
spectively, of reading 4 KB blocks compared to reading larger blocks.
Using read block sizes that are larger than 4 KB is not beneficial, as
the mean and P99 latencies increase almost proportionally.

2.3.2 Bandwidth. Figure 6(a) shows the bandwidths of NVM
and flash for a workload of 100% reads. Since the capacity of NVM
devices is usually lower than flash, the bandwidth per capacity is
much higher than flash. For a workload of mixed reads and writes,
the total bandwidth of both flash and NVM is affected, yet flash
deteriorates more significantly, as shown in Figure 6(b).

To measure the maximum NVM bandwidth for different read
and write ratios, we ran Fio with a constant queue depth of 32
under different ratios. Figure 6(c) depicts the read bandwidth, write
bandwidth and the combined bandwidth for various ratios.

The results show that when the relative number of writes in-
creases, the combined bandwidth decreases from 2.2 GB/s (reads
only) to 1.8 GB/s for the case of 50% reads and 50% writes. This
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Figure 4: Mean and P99 read latencies for a 100% reads workload, and for a workload with 70% reads and 30% writes under
variable queue depths. All figures use 4 K blocks.
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Figure 5: Mean and P99 write latencies for a 100% writes workload, and for a workload with 70% reads and 30% writes under
variable queue depths. All figures use 4 K blocks.

0
0.5
1

1.5
2

2.5

1 2 4 8 16 32

Ba
nd

w
id
th
	(G

B/
s)

(R
ea
ds
	O
nl
y)

Queue	Depth

NVM Flash

(a)

0
0.5
1

1.5
2

2.5

1 2 4 8 16 32Ba
nd

w
id
th
	(G

B/
s)

(M
ixe

d	
Re
ad
s/
W
rit
es
)

Queue	Depth

NVM Flash

(b)

0
0.5
1

1.5
2

2.5

100% 90% 80% 70% 60% 50% 

Ba
nd

w
id
th
	(G

B/
s)

Read	Percentage
Reads Writes Combined

(c)

0
0.5
1

1.5
2

2.5

50% 60% 70% 80% 90% 100% 

Ba
nd

w
id
th
	(G

B/
s)

Read	percentage

128KB	Write	Blocks 4KB	Write	Blocks

(d)

Figure 6: (a) Bandwidth for a 100% read workload under different queue depths, (b) Total bandwidth for a workload with 70%
reads and 30% writes under different queue depths, (c) read, write, and total bandwidth for different ratios of read and write
operations, (d) total bandwidth for 4 KB read blocks with different write block sizes under variable ratios of read and write
operations.

1

10

100

1000

10000

1 2 4 8

M
ea
n	
Re
ad
	L
at
en

cy
	(μ

s)
(R
ea
ds
	O
nl
y)

Queue	Depth
4KB 8KB	 32KB 128KB

(a)

1

10

100

1000

10000

1 2 4 8

P9
9	
Re
ad
	L
at
en

cy
	(μ

s)
(R
ea
ds
	O
nl
y)

Queue	Depth

4KB 8KB	 32KB 128KB

(b)

Figure 7: Mean and P99 read latency for different block sizes under variable queue depths.

decrease can be mitigated by using larger write blocks, as shown
in Figure 6(d).

2.3.3 Durability. Similar to flash, NVM endurance deterio-
rates as a function of the number of writes to the device. In general,
it can tolerate about 6× more writes than a typical TLC flash de-
vice [3, 4]. Flash suffers from write amplification because it must be

erased before it can be rewritten, and its erase operation has much
coarser granularity than writes. Unlike flash, NVM does not suffer
from write amplification, and therefore it does not deteriorate faster
if it is written to randomly or in small chunks. However, since it
is faster than flash, and in the case of our system it is used as a
replacement for DRAM, it is likely to get written to more than flash.
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3 INTUITION: THE CHALLENGE OF
REPLACING DRAMWITH NVM

NVM is less expensive than DRAM on a per-byte basis, and is an
order-of-magnitude faster than flash, which makes it attractive as
a second level storage tier. However, there are several attributes
of NVM that make it challenging when used as a drop-in replace-
ment for DRAM, namely its higher latency, lower bandwidth, and
endurance.

As we will show below, even though NVM has higher latency
than DRAM, it can compensate for the lower latency if it is provi-
sioned at a higher capacity (e.g., in our case, we use 140 GB of NVM
as a replacement for 80 GB of DRAM). By that, it offers a higher
cache hit rate, which results in a similar overall end-to-end latency
for the entire system.

However, NVM’s bandwidth is a bottleneck on the system’s
end-to-end performance. As we showed in §2.3, NVM’s peak read
bandwidth is about 2.2 GB/s. That is about 35× lower than the
DRAM read bandwidth of modern servers. In addition, we use
NVM as a block device. Hence, when it is used as a substitute for
DRAM, the system needs to account for the fact that data can only
be read from NVM at a granularity of 4 KB pages. As a result, even
a small read request from the NVM causes 4 KB page to be read,
and if the system naïve writes data to the device, a small amount of
data might be stored on two different pages. Both of these factors
further amplify the read bandwidth consumption of the system.
Consequently, due to all of these factors, we found the NVM’s
limited read bandwidth to be the most important inhibiting factor
in the adoption of NVM for key-value stores.

In addition, unlike DRAM, NVM suffers from an endurance lim-
itation. If its cells are written to more than a certain number of
times, they wear out, and the device may start to experience a
higher probability of uncorrectable bit errors, which shortens its
lifetime. This problem is exacerbated when using NVM as a cache.
In cache environments, cold objects are frequently evicted, and
replaced by newly written objects. As we will demonstrate, this
results in the cache workload far exceeding the allowed number
of writes, and rapidly wearing the device. Therefore, NVM cannot
simply be used as a drop-in replacement for a DRAM cache, and
the number of writes to it needs to be limited by the system.

Finally, since NVM has a very low latency relative to other block
devices, the operating system interrupt overhead becomes signif-
icant when used with NVM as a block device. As shown in §2.3,
the average end-to-end read latency of NVM is on the order of
10µs when used in low queue depths. Included in this number is
an overhead of two context switches due to the operating system’s
interrupt handling, which are on the order of 2µs. These result in a
roughly 20% extra overhead under low queue depths.

We present MyNVM, a system that addresses these challenges,
by adapting the architecture of the key-value store and its cache to
the unique constraints of NVM. The same principles we used in the
design of MyNVM can be utilized when building other data center
storage systems that today rely solely on DRAM as a cache.

4 DESIGN
The architecture of MyNVM is depicted in Figure 8. MyNVM is
built on top of MyRocks. Similar to MyRocks, MyNVM utilizes

Figure 8: MyNVM’s architecture. NVM is used as a second
level block cache.

DRAM as a write-through cache for frequently accessed blocks,
and flash as the medium that persists the entire database. MyNVM
uses NVM as a second level write-through cache, which has an
order of magnitude greater capacity than DRAM. Both DRAM and
NVM by default use least recently used (LRU) as their eviction
policy.

The design goal forMyNVM is to significantly reduce the amount
of DRAM compared to a typical MyRocks server, while maintaining
latency (mean and P99), as well as QPS, by leveraging NVM. In
this section, we describe the challenges in replacing DRAM with
NVM, including bandwidth consumption, increased database size,
NVM endurance, and interrupt latency, as well as our implemented
solutions in MyNVM.

A MyRocks (or MySQL) setup consists of instances. Backing up
and migrating data between hosts is done in the granularity of
an instance. When the instances are too large, tasks such as load
balancing, and backup creation and restoration become less efficient.
Thus, MyRocks servers are often configured to run multiple smaller
MyRocks instances, rather than using a single large instance.

Unfortunately, LinkBench currently supports loading only a sin-
gle MyRocks instance. To realize the bottlenecks and requirements
of incorporating NVM with a typical MyRocks server, we run our
Linkbench experiments with a single instance and extrapolate the
results for 8 instances.

4.1 Satisfying NVM’s Read Bandwidth
The first obstacle to replacing DRAM with NVM is NVM’s lim-
ited read bandwidth. Figure 9 depicts the bandwidth consumed by
MyNVM using 16 KB blocks, which is the default setting, running
the LinkBench [6] workload. As the figure shows, the NVM device
only provides 2.2 GB/s of maximum read bandwidth, and MyNVM
requires more than double that bandwidth.

The main reason that MyNVM consumes so much read band-
width is that in order to read an object, it has to fetch the entire
data block that contains that object. Read sizes in the LinkBench
workload are on the order of tens to hundreds of bytes. Hence,
every time MyNVM needs to read an object of 100 B, it would need
to read about 160× more data from the NVM, because data blocks
are 16 KB.
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4.1.1 Reducing Block Size. Therefore, a straightforward so-
lution might be to simply reduce the data block size, so that each
read consumes less bandwidth. However, instead of decreasing
the bandwidth consumption, when we reduce the block size from
16 KB to 4 KB, the bandwidth consumption more than doubles (see
Figure 9).

The reason the bandwidth consumption increases is because as
the block size decreases, the DRAM footprint of the index blocks
becomes significant. Figure 10 depicts the size of the index with
different block sizes in MyNVM. Moving from 16 KB blocks to 4 KB
quadruples the size of the index. As shown by Figure 11, this results
in a lower DRAM hit rate, since the index takes up more space.

The index blocks contain one entry per data block and service
an entire SST file, which accommodates tens of thousands of data
blocks, some of whichmight be relatively cold. Therefore, to address
this problem, we partition the index into smaller blocks, and add an
additional top-level index where each entry points to a partitioned
index block. Thus, instead of having a single index block per SST,
the index is stored in multiple smaller blocks. Figure 12 illustrates
the partitioned index.

When reading an index block from disk, only the top-level index
is loaded to memory. Based on the lookup, only the relevant index
partitions are read and cached in DRAM. Hence, even with 4 KB
blocks, partitioning increases the hit rate to a similar level as 16 KB
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Figure 12: Non-partitioned and paritioned index structures.
The partitioned scheme uses a top-level index, which points
to lower-level indices.

(see Figure 11), and reduces overall read bandwidth consumption
to less than 2 GB, which is at the limit of the NVM device.

However, even 2 GB bandwidth consumption is almost at the full
capacity of the device. Consequently, we need to find another way
to reduce bandwidth consumption without affecting performance.

4.1.2 Aligning Blocks with Physical Pages. In RocksDB,
data blocks stored in levels L1 and higher are compressed by default.
Since we reduced the block size in MyNVM, a 4 KB block on average
would consume less than 4 KB when it is compressed and written
to a physical page on NVM. The remainder of the page would be
used for other blocks. Consequently, some compressed blocks are
spread over two pages, and require double the read bandwidth to
be read.

Thus, instead of using 4 KB blocks, MyNVM uses 6 KB blocks,
which are compressed on average to about 4 KB pages when stored
on flash or NVM in layers L1 and above. Since the block size is
higher, this also reduces the bandwidth further because the index
size is reduced (Figure 10).

However, evenwith 6 KB blocks, some blocksmay be compressed
to less than 4 KB (e.g., as low as 1 KB), and some may not be
compressed at all, and would be spread over two physical 4 KB
pages. Figure 13 shows the percentage of logical 6 KB that are
spread over two pages.

To address this problem, when trying to pack multiple com-
pressed blocks into a single page, we zero-pad the end of the page if
the next compressed block cannot fully fit into the same page. Fig-
ure 14 depicts MyNVM’s block alignment. Figure 13 shows that zero
padding the blocks reduces the number of blocks that are spread
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Figure 13: The percentage of blocks that are spread over two
physical 4 KB pages or more. “Unaligned blocks” is the case
when we do not use zero-padding at the end of the physical
page, while “aligned blocks” is with zero-padding.

Figure 14: An illustration of blocks that are unaligned with
the NVMpages, and of blocks that are alignedwith the NVM
pages.
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Figure 15: Read and write bandwidth for unaligned and
aligned blocks.

over two pages by about 5×. Note that even with zero-padding,
some logical blocks are spread over two pages, because they cannot
be compressed down to 4 KB.

Figure 15 demonstrates the effect of aligning the blocks on read
and write bandwidth. It shows that aligning the blocks reduces
the read bandwidth by about 30% to 1.25 GB/s, because on average
it requires reading fewer pages. Aligning blocks very slightly in-
creases write bandwidth consumption, because it requires writing
more pages for some blocks (due to zero-padding). In addition, the
effective capacity of the NVM cache is a little smaller, because zeros
occupy some of the space. This reduces the NVM cache hitrate by
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Figure 16: P99 latencies with unaligned and aligned blocks.
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Figure 17: Database increase when using 4 KB and 6 KB log-
ical blocks, compared with database size of 16KB blocks

1%-2%, which is compensated by reading less pages in the case of
aligned blocks.

For the same reason, block alignment also reduces the P99 latency.
Figure 16 shows that the P99 latency with the LinkBench workload
is improved with block alignment.

4.2 Database Size
A negative side-effect of using smaller block sizes is that compres-
sion becomes less efficient, because compression is applied on each
data block individually. For each compressed block, RocksDB starts
from an empty dictionary, and constructs the dictionary during a
single pass over the data. Therefore, the space consumed by the
database on the flash increases.

Figure 17 depicts the increase in database size. Logical blocks of
4 KB increase the database size by almost 20%. Using logical blocks
of 6 KB still has an overhead of more than 11%.

To address this overhead, MyNVM preloads the dictionary from
data that is uniformly sampled from multiple blocks. This increases
the compression ratio when the same patterns are repeated across
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Figure 18: Write bandwidth to NVM for different simulated
cache sizes, per instance. Disabled means the NVM is used
without an admission policy. The endurance limit is derived
from the Device Writes Per Day specification.

multiple blocks. Figure 17 shows that with dictionary compression,
the size overhead decreases to only 1.5%.

4.3 NVM’s Durability Constraint
While NVM improves flash durability, it is still constrained by the
number of writes it can tolerate before it experiences uncorrectable
bit errors.

Figure 18 depicts thewrite bandwidth toNVMunder the LinkBench
workload. It shows that if NVM is simply used as a second level
cache, its write bandwidthwould significantly exceed the endurance
limit of the device (i.e., its DWPD limit), which would cause it to
rapidly wear out.

Therefore, instead of naïvely using NVM as a second level cache,
we design an admission control policy that only stores blocks in
NVM that are not likely to get quickly evicted. To do so, wemaintain
an LRU list in DRAM that represents the size of the NVM and only
stores the keys of the blocks that are being accessed. This simulates
a cache without actually caching the values of the blocks.

When a block is loaded from flash, we only cache it in NVM if it
has been recently accessed, and therefore already appears in the
simulated cache LRU. Figure 19 demonstrates the hit rate increases
as a function of the size of the simulated cache. As the simulated
cache grows, MyNVM can more accurately predict which objects
are worth caching in the NVM layer. Beyond a size of 30-40 GB,
increasing the size of the simulated cache offers diminishing returns.

Figure 18 shows the write bandwidth after we apply admission
control to NVM, as a function of the size of the simulated cache. A
large simulated cache will admit more objects to NVM, which will
increase the hit rate, but also suffer from a higher write bandwidth.
In the case of MyNVM, a simulated cache that represents 40 GB of
NVM data per instance achieves a sufficiently low write bandwidth
to accommodate the endurance limitation of the NVM device.
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Figure 19: Hit rates for different simulated cache sizes per
instance. Disabled means the NVM is used without an ad-
mission policy.

4.4 Interrupt Latency
Due to NVM’s low latency as a block device, the overhead of in-
terrupt handling becomes significant. In order to serve a block I/O
request, the operating system needs to submit the request asyn-
chronously. When that is done, the application sleeps until the
request has been completed on the hardware side. This will either
trigger a context switch, if the CPU scheduler has other tasks to
run on that CPU, or a switch to a lower power state if the CPU
goes idle. Both of those outcomes have a cost associated with them.
Particularly, the enter and exit latencies for lower power states
have a non trivial cost. Once the device completes the request, it
raises an interrupt which wakes up the task that submitted the I/O.
Figure 20(a) illustrates this process.

Replacing interrupts with polling is a way to reduce this over-
head. With polling, the operating system continuously checks
whether the device has completed the request. As soon as the device
is ready, the operating system is able to access the device, either
avoiding a context switch or the expensive power state enter/exit
latencies. This process is described in Figure 20(b). By reducing
the overall latency, the effective bandwidth of the NVM device
increases, and thus also its overall QPS.

To explore the potential of polling, we ran Fio with the pvsync2
I/O engine, which provide polling support. Figure 21(a) shows the
increase in available NVM bandwidth when using polling compared
with interrupts. However, continuously polling brings the CPU
consumption of an entire core to 100%, as shown in Figure 21(b).

To overcome this, we utilize a hybrid polling policy, where the
process sleeps for a fixed time threshold after the I/O was issued
until it starts polling, as illustrated in Figure 20(c). Figure 21(a) and
Figure 21(b) present the bandwidth and CPU consumption of the
hybrid polling policy with a threshold of 5 µs.

While this policy significantly reduces CPU consumption, the
CPU consumption still increases with the number of threads be-
cause the polling threshold is static. To overcome this, we propose
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(a) The I/O latency when using interrupts

(b) The I/O latency when using polling

(c) The I/O latency when using hybrid polling

Figure 20: Diagrams of the I/O latencies as perceived by the
application, using interrupts, polling, and hybrid polling.

a dynamic hybrid polling technique. Instead of using a preconfig-
ured time threshold, the kernel collects the mean latencies of past
I/O and triggers polling based on that. Hence, the polling begins
only after a certain portion threshold of the past mean I/O latency
is reached. By default, the kernel will sleep for 50% of the mean
completion time for an I/O of the given size. This means that the
kernel will start polling only after a duration that is half the mean
latency of past requests. We added a patch that makes this param-
eter configurable, allowing us to experiment with settings other
than 50% of the mean completion time. Figure 21(c) and Figure 21(d)
depict the bandwidth and CPU consumption for different latency
percentage thresholds.

While polling can provide a significant boost to the NVM band-
width as long as the number of threads is small, in the case of 8
threads (or more) the benefits diminish. Further experimentation
is needed, but we hypothesize that this is largely due to several
primary effects. One is that as more threads are accessing the device,
the individual I/O latencies start to increase, thus diminishing the
benefits of polling. Secondly, as more threads are running in the
system, there’s a higher chance that a CPU will have pending work
outside of the thread submitting I/O. This aborts the polling done
by the kernel, as it prefers to schedule other work instead of polling,
if other work is available. Thirdly, as more threads are polling for
IO completion, the polling overhead becomes larger. One way to
fix this in the kernel would be to offload polling to dedicated kernel
threads, instead of letting the application itself poll the NVMe com-
pletion queue. The application directed poll yields lower latencies
for synchronous (or low queue depth) IO, where offloading work
to another thread would add latency. However, for higher queue
depth and pipelined IO, benefits could be seen by having dedicated
kernel threads handle the polling. Lastly, the Linux kernel utilizes
all NVMe submissions/completion queue pairs for polling. As the

number of polling threads increase, so does the number of queues
that need to be polled. A related optimization would be to cre-
ate dedicated pollable submission queues, reducing the number of
queues that need to be checked for completions. This in turn could
reduce the required threads needed to reap completions by polling.
An improved polling mechanism in the kernel could remove many
of these limitations. Until that is available, we decided to currently
not integrate polling in our production implementation of MyNVM,
but plan to incorporate it in future work.

4.5 Applicability to Fast Flash Devices
Similar to NVM devices, fast flash devices promise lower latencies
and better endurance comparedwith typical flash devices, while still
suffering from challenging throughput and endurance limitiations.
Some of the solutions presented in MyNVM may be applied also to
fast flash devices. However, since these devices suffer from flash
side-effects that do not exist in NVM, such as write amplification
and read/write interference, they would require additional design
considerations.

5 IMPLEMENTATION
MyNVM is implemented on top of the open-source MyRocks and
RocksDB. The initial implementation has been committed to the
open source repository, and we plan to add the rest of it.

MyNVM uses DRAM as a first level write-through block cache.
Since the vast majority of queries hit in DRAM, blocks are always
cached to DRAM uncompressed. Otherwise, compressing and de-
compressing the requests on each access would add a significant
CPU overhead. To enable this function, reads from and writes to
the NVM and flash devices are done using direct I/O, bypassing
the operating system page cache. Avoiding the operating system
page cache also prevents redundant copy operations between the
devices and DRAM (where the page cache acts as a proxy).

NVM serves as a second level write-through block cache. Due
to its read bandwidth and endurance limit, blocks in the NVM are
compressed, similar to the blocks stored in the flash.

During lookup, MyNVM first accesses the DRAM, and only in
case of a miss it will look for the object in NVM. In case of a miss
in the NVM, MyNVM will not always load the missed key to NVM,
due to the NVM endurance limit. MyNVM’s admission control
policy decides which key will be loaded to NVM, by simulating a
larger cache. The simulated cache is based in LRU and is updated
at each query, regardless of whether the requested block resides in
the block caches.

To avoid frequent writes and updates to NVM, the NVM lookup
table is maintained in DRAM. In order to keep the table lightweight,
it does not store the entire keys, but instead uses a hashed signa-
ture of up to 4 bytes per block. Due to the rare cases of aliasing
(where two keys hash to the same signature), a block will always
be validated after it is read from the NVM. If its key differs from
the desired key, it is considered a miss and the block will be read
from flash.

Writes to NVM are done in batches of at least 128KB, because we
found that smaller write sizes degrade the achieved read bandwidth
(see §2.3). Cached blocks are appended into larger NVM files with
a configurable size. The eviction policy from NVM is maintained

9



0% 
5% 

10% 
15% 
20% 
25% 

0 4 8 12 16In
cr
ea
se
	in
	A
va
ila
bl
e	

N
VM

	B
an
dw

id
th

Threads

Polling Hybrid	Polling

(a)

0% 
20% 
40% 
60% 
80% 

100% 

0 4 8 12 16

CP
U
	C
on

su
m
pt
io
n

Threads
No	Polling Polling Hybrid	Polling

(b)

0% 
5% 

10% 
15% 
20% 
25% 

0 4 8 12 16

In
cr
ea
se
	in
	A
va
ila
bl
e	

N
VM

	B
an
dw

id
th

Threads
Dynamic	Hybrid	(th=50%) Dynamic	Hybrid	(th=60%)
Dynamic	Hybrid	(th=70%) Dynamic	Hybrid	(th=80%)

(c)

0% 
20% 
40% 
60% 
80% 

100% 

0 4 8 12 16CP
U
	C
on

su
m
pt
io
n

Threads
Dynamic	Hybrid	(th=50%) Dynamic	Hybrid	(th=60%)
Dynamic	Hybrid	(th=70%) Dynamic	Hybrid	(th=80%)

(d)

Figure 21: Left to right: (a) the increase in NVM read bandwidth when using polling compared to interrupts, (b) the increase
in CPU when using polling and hybrid polling compared to interrupts, (c) the increase in NVM read bandwidth with dynamic
hybrid polling, and (d) CPU consumption of dynamic hybrid polling with different thresholds.

in granularity of these files, which significantly reduces the in-
memory overhead. The files are kept in an eviction queue, and once
the NVM capacity limit is reached, the least recently used file is
evicted to make room for a new file.

As we showed in §4.1, MyNVM uses a partitioned index and 6 KB
blocks to reduce read bandwidth. Thus, instead of having a single
block index for each SST file, the index is partitioned to multiple
smaller blocks with a configurable size. We partitioned the index
to 4 KB blocks, so they align with the memory page size as well as
NVM page size (index blocks are never compressed). In addition,
the partitioned index includes a new top-level index block, which
serves as an index for the partitioned index blocks. Each one of
the index blocks (including the top-level index block) is sorted. To
find if a key exists in the SST file, MyNVM first performs a binary
search in the top-level index block. Once the relevant partition is
found, it will perform a binary search within the partition to find
the key, and its corresponding data block.

In addition, we implemented block alignment, so that single
blocks will be stored over the minimal number of physical NVM
pages possible (see §4.1.2). This number is calculated by the follow-
ing formula:

⌊
Compressed Block Size − 1

NVM Paдe Size
⌋ + 1

Before a block is written to the NVM, its expected starting address
and end address in NVM are compared, to predict the number of
NVM pages that will be occupied. If this number is larger than the
minimal number of required NVM pages (e.g. 1 page for 4KB block),
the previous block will be padded with zeroes until the end of the
page. Thus, the new block will be written at the beginning of the
next page.

MyNVM uses the Zstandard compression algorithm [12] with
dictionary compression. When a new SST file is written to flash
(during LSM compactions), it samples the SST file with a uniform
distribution (each sample is 64 bytes) to create a joint dictionary of
up to 16KB (we found that larger dictionaries did not improve the
compression ratios). Due to the fact that keys are sorted inside the
blocks, only the delta between consecutive keys is kept in the block.
Thus, rather than sampling from the keys and values of the block,
the sampling is done across the raw blocks. The dictionary is stored
in a dedicated block in the SST, and is used for the compression
and decompression of all the SST data blocks.

In order to incorporate dynamic hybrid polling in MyNVM (see
§4.4), we used the synchronous pwritev2 and preadv2 system calls
for reading and writing to and from the NVM. These two system
calls are a recent addition to the Linux kernel. The interface is
similar to pwritev and preadv, but they take an additional flags
argument. One of the supported flags is RWF_HIPRI, allowing an
application to inform the kernel that the IO being submitted is
of high priority. If this flag is used in conjunction with the file
descriptor being opened for O_DIRECT (unbuffered) IO, the kernel
will initiate polling after submitting the request, instead of putting
the task to sleep. Device level settings define what kind of polling
will be used, from 100% CPU busy polling, fixed delay hybrid polling,
or dynamic hybrid polling. However, because of the inefficiencies
experienced with more than 8 threads, we did not include it in the
final system.

6 EVALUATION
This section presents a performance analysis of MyNVM under
production environments. We evaluate MyNVM’s mean latency,
P99 latency, QPS, and CPU consumption, and compare it with
MyRocks. We use dual-socket Xeon E5 processor servers with 3
different configurations: MyRocks with a large amount of DRAM
cache (96 GB), small amount of DRAM cache (16 GB), and MyNVM
with 16 GB of DRAM cache and 140 GB NVM. For most of this
section (except for the QPS evaluation), we ran a shadow workload
by capturing production MyRocks workloads of the user database
(UDB) tier, and replaying them in real-time on these machines.

6.1 Mean and P99 Latency
Figure 1 shows that with MyRocks, reducing the DRAM cache from
96 GB to 16 GB, more than doubles both the mean latency and the
P99 latency.

With a mean latency of 443 µs and a P99 latency of 3439 µs,
MyNVM’s mean and P99 latencies are both 45% lower than the
MyRocks server with a small amount of DRAM. The average latency
of MyNVM is 10% higher, and its P99 latency is 20% higher, than
the MyRocks configuration with a 96 GB DRAM cache.

Figure 22 and Figure 23 provide the mean latency and P99 latency
over time, with intervals of 5M queries, for a time period of 24 hours.
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Figure 22: Mean latencies of MyRocks with 96 GB of DRAM
cache, compared to MyRocks with 16 GB of DRAM cache,
andMyNVMwith 16 GB of DRAM cache and 140GB of NVM,
over a time period of 24 hours.
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Figure 23: P99 latencies of MyRocks with 96 GB of DRAM
cache, compared to MyRocks with 16 GB of DRAM cache,
andMyNVMwith 16 GB of DRAM cache and 140GB of NVM,
over a time period of 24 hours.

6.2 QPS
To evaluate MyNVM’s QPS, we could not use the shadow workload,
because it does not drive the maximum amount of traffic MyNVM
can handle. Therefore, we use the LinkBench workload.

Figure 24 presents the NVM hit rate and MyNVM’s QPS as a
function of the size of the NVM cache. The graph shows that be-
yond 140 GB NVM, the NVM hit rate has diminishing returns, and
consequently MyNVM’s QPS also offers diminishing returns. This
led us to to choose 140 GB NVM as the default configuration for
MyNVM.

Figure 25 compares the QPS of MyRocks with different cache
sizes and MyNVM. The QPS of MyNVM is 50% higher than the
MyRocks server with a small amount of DRAM, and only 8% lower
than the server with the large amount of DRAM cache.
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Figure 24: NVM hit rate and QPS in MyNVM as a function of
NVM size.
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Figure 25: Queries per second (QPS) for different cache sizes
in MyRocks, compared with MyNVM.

6.3 CPU Consumption
Figure 26 depicts the CPU consumption of MyRocks with a large
amount of DRAM cache, small amount of DRAM cache (16 GB) and
MyNVM, over a time period of 24 hours (with 15 minute intervals),
running the shadow production traffic. The differences in CPU
consumption trends over time are due to traffic fluctuations during
the day.

On average, reducing the DRAM cache in MyRocks from 96 GB
to 16 GB increases the CPU consumption from 18.4% to 28.6%. The
first reason for this difference is that with smaller DRAM, fewer
requests hit in the uncompressed DRAM cache, and instead are
loaded from flash. Thus, more blocks have to be decompressed.
In addition, for the smaller DRAM configuration, the CPU spends
more time waiting for outstanding requests to the flash. Figure 27
depicts the I/O-Wait percentage over 24 hours (using 15 minute
intervals), which represents the portion of the time in which the
CPU is waiting for storage I/O to complete. On average, it increases
from 3.7% to 7.8% when switching to MyRocks with smaller amount
of DRAM.

MyNVM, on the other hand, has an average I/O-Wait of only 2.7%.
Because its overall cache size is larger, it triggers fewer accessess
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Figure 26: CPU consumption over 24 hours, of MyRocks
with 96 GB of DRAM cache, compared to MyRocks with
16 GB of DRAM cache, and MyNVM with 16 GB of DRAM
cache and 140 GB of NVM, over a time period of 24 hours.
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Figure 27: I/O-Wait percentage over 24 hours, of MyRocks
with 96 GB of DRAM cache, compared to MyRocks with
16 GB of DRAM cache, and MyNVM with 16 GB of DRAM
cache and 140 GB of NVM, over a time period of 24 hours.

to the flash compared with MyRocks (in both low and high DRAM
configurations), and NVM accesses are faster. In addition, MyNVM
uses smaller blocks of 6 KB, which take less time to compress or
decompress compared with 16 KB blocks. Consequently, MyNVM’s
CPU consumption is lower than the low DRAM MyRocks, with an
average of 20%. It still has higher CPU consumption than the high-
DRAM MyRocks because fewer requests hit in the uncompressed
DRAM, and instead are loaded from the NVM cache, which is
compressed.

7 RELATEDWORK
The related work belongs to two main categories: prior work on
NVM in the context of key-value stores, and systems that influenced
the design of MyNVM.

7.1 NVM for Key-value Stores
There are several previous projects that adapt persistent key-value
stores to NVM. However, all prior work has relied on NVM emula-
tion and was not implemented on real NVM hardware. Therefore,
prior work does not address practical concerns of using NVM as
a replacement for DRAM, such as dealing with NVM bandwidth
limitations. In addition, prior work assumes byte-addressable NVM,
and our work is focused on block-level NVM due to its cost. To
the best of our knowledge, this is the first implementation of a
key-value store on NVM that deals with its practical performance
implications.

CDDS [27], FPTree [25] and HiKV [28] introduce B-Tree across
DRAM and NVM, which minimizes writes to NVM. Echo [7] im-
plements key-value functionality using hash-tables. All of these
systems rely on emulations or simulations of NVM. In addition,
unlike MyNVM, these systems do not rely on flash as an underlying
storage layer, and are therefore much more expensive per bit.

Unlike these systems, NVStore [31] does not rely on emula-
tions, but on a real evaluation. However, its evaluation is based
on NVDIMM, which is not NVM, but rather a hybrid DRAM and
flash system, which persists data from DRAM to flash upon power
failure.

There has been additional work on indices that reduce writes
to byte-addressable NVM, to reduce its wear [11, 14, 18, 32]. Prior
research has also explored using using differential logging [10, 20,
21], to only log modified bytes to avoid excessive writes in NVM.
Other systems utilize atomic writes for metadata, and write-ahead
logging and copy-on-write for data [13, 15, 29].

7.2 Related Systems
Several aspects of our design were inspired by prior work on non-
NVM key-value stores and polling.

Prior systems use admission control to control access to a slower
second tier cache layer. Similar to how MyNVM controls accesses
to NVM, Flashield [16] applies an admission control to reduce
the number of writes to flash, and protect it from wearing out. In
Flashield, objects that have not been read multiple times are only
cached in DRAM, and do not get cached in flash. AdaptSize [8]
applies admission control to decide which objects get written to a
CDN based on their size and prior access patterns. In future work
we plan to explore more sophisticated admission control policies to
NVM, which incorporate features like the number of prior access
and object size.

Polling has been used in prior work [26, 30] as a potential way
to deliver higher performance for fast storage devices. However,
there is no prior research on using polling in conjunction with
NVM, and there is no work in addressing the resulting high CPU
consumption, which makes its adoption impractical for many use
cases. We introduced a dynamic hybrid polling mechanism, which
reduces the CPU consumption significantly, and evaluated it on top
of an NVM device.

8 CONCLUSIONS
To the best of our knowledge, this is the first study exploring the
usage of NVM in a production data center environment. We pre-
sented MyNVM, a system built on top of MyRocks, which utilizes
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NVM to significantly reduce the consumption of DRAM, while
maintaining comparable latencies and QPS. We introduced several
novel solutions to the challenges of incorporating NVM, including
using small block sizes with partitioned index, aligning blocks with
physical NVM pages, utilizing dictionary compression, leveraging
admission control to the NVM, and reducing the interrupt latency
overhead. Our results indicate that while it faces some unique chal-
lenges, such as bandwidth and endurance, NVM is a potentially
lower-cost alternative to DRAM.

NVM can be utilized in many other data center use cases be-
yond the one described in this paper. For example, since key-value
caches, such as memcached and Redis, are typically accessed over
the network, their data can be stored on NVM rather than DRAM
without incurring a large performance cost. Furthermore, since
NVM is persistent, a node does not need to be warmed up in case
it reboots. In addition, NVM can be deployed to augment DRAM in
a variety of other databases.
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