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Abstract

Non-convex optimization with local search heuristics has been widely used in ma-
chine learning, achieving many state-of-art results. It becomes increasingly important
to understand why they can work for these NP-hard problems on typical data. The
landscape of many objective functions in learning has been conjectured to have the
geometric property that “all local optima are (approximately) global optima”, and thus
they can be solved efficiently by local search algorithms. However, establishing such
property can be very difficult.

In this paper, we analyze the optimization landscape of the random over-complete
tensor decomposition problem, which has many applications in unsupervised learning,
especially in learning latent variable models. In practice, it can be efficiently solved by
gradient ascent on a non-convex objective. We show that for any small constant ε > 0,
among the set of points with function values (1 + ε)-factor larger than the expectation
of the function, all the local maxima are approximate global maxima. Previously, the
best-known result only characterizes the geometry in small neighborhoods around the
true components. Our result implies that even with an initialization that is barely
better than the random guess, the gradient ascent algorithm is guaranteed to solve this
problem.

Our main technique uses Kac-Rice formula and random matrix theory. To our
best knowledge, this is the first time when Kac-Rice formula is successfully applied to
counting the number of local optima of a highly-structured random polynomial with
dependent coefficients.
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1 Introduction

Non-convex optimization is the dominating algorithmic technique behind many state-of-art results
in machine learning, computer vision, natural language processing and reinforcement learning.
Local search algorithms through stochastic gradient methods are simple, scalable and easy to
implement. Surprisingly, they also return high-quality solutions for practical problems like training
deep neural networks, which are NP-hard in the worst case. It has been conjectured [DPG+14,
CHM+15] that on typical data, the landscape of the training objectives has the nice geometric
property that all local minima are (approximate) global minima. Such property assures the local
search algorithms to converge to global optima [GHJY15, LSJR16, NP06, SQW15]. However,
establishing it for concrete problems can be challenging.

Despite recent progress on understanding the optimization landscape of various machine learning
problems (see [GHJY15, BBV16, BNS16, Kaw16, GLM16, HM16, HMR16] and references therein),
a comprehensive answer remains elusive. Moreover, all previous techniques fundamentally rely on
the spectral structure of the problems. For example, in [GLM16] allows us to pin down the set of
the critical points (points with vanishing gradients) as approximate eigenvectors of some matrix.
Among these eigenvectors we can further identify all the local minima. The heavy dependency
on linear algebraic structure limits the generalization to problems with non-linearity (like neural
networks).

Towards developing techniques beyond linear algebra, in this work, we investigate the optimiza-
tion landscape of tensor decomposition problems. This is a clean non-convex optimization problem
whose optimization landscape cannot be analyzed by the previous approach. It also connects to the
training of neural networks with many shared properties [NPOV15] . For example, in comparison
with the matrix case where all the global optima reside on a (connected) Grassmannian manifold,
for both tensors and neural networks all the global optima are isolated from each other.

Besides the technical motivations above, tensor decomposition itself is also the key algorith-
mic tool for learning many latent variable models, mixture of Gaussians, hidden Markov models,
dictionary learning [Cha96, MR06, HKZ12a, AHK12, AFH+12, HK13], just to name a few. In
practice, local search heuristics such as alternating least squares [CLA09], gradient descent and
power method [KM11] are popular and successful.

Tensor decomposition also connects to the learning of neural networks [GLM17, JSA15, CS16].
For example, The work [GLM17] shows that the objective of learning one-hidden-layer network
is implicitly decomposing a sequence of tensors with shared components, and uses this insight to
design better objective functions that provably recovers the parameters under Gaussian inputs.

Concretely, we consider decomposing a random 4-th order tensor T of the rank n of the following
form,

T =

n∑
i=1

ai ⊗ ai ⊗ ai ⊗ ai .

We are mainly interested in the over-complete regime where n� d. This setting is particularly
challenging, but it is crucial for unsupervised learning applications where the hidden representations
have higher dimension than the data [AGMM15, DLCC07]. Previous algorithmic results either
require access to high order tensors [BCMV14, GVX13], or use complicated techniques such as
FOOBI [DLCC07] or sum-of-squares relaxation [BKS15, GM15, HSSS16, MSS16].

In the worst case, most tensor problems are NP-hard [H̊as90, HL13]. Therefore we work in
the average case where vectors ai ∈ Rd are assumed to be drawn i.i.d from Gaussian distribution
N (0, I). We call ai’s the components of the tensor. We are given the entries of tensor T and our
goal is to recover the components a1, . . . , an.
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We will analyze the following popular non-convex objective,

max f(x) =
∑

i,j,k,l∈[d]4

Ti,j,k,lxixjxkxl =
n∑
i=1

〈ai, x〉4 (1.1)

s.t. ‖x‖ = 1.

It is known that for n� d2, the global maxima of f is close to one of ± 1√
d
a1, . . . ,± 1√

d
an. Previ-

ously, Ge et al. [GHJY15] show that for the orthogonal case where n ≤ d and all the ai’s are orthog-
onal, objective function f(·) have only 2n local maxima that are approximately ± 1√

d
a1, . . . ,± 1√

d
an.

However, the technique heavily uses the orthogonality of the components and is not generalizable
to over-complete case.

Empirically, projected gradient ascent and power methods find one of the components ai’s
even if n is significantly larger than d. The local geometry for the over-complete case around
the true components is known: in a small neighborhood of each of ± 1√

d
ai’s, there is a unique

local maximum [AGJ15]. Algebraic geometry techniques [CS13, ASS15] can show that f(·) has an
exponential number of other critical points, while these techniques seem difficult to extend to the
characterization of local maxima. It remains a major open question whether there are any other
spurious local maxima that gradient ascent can potentially converge to.

Main results. We show that there are no spurious local maxima in a large superlevel set that
contains all the points with function values slightly larger than that of the random initialization.

Theorem 1.1. Let ε, ζ ∈ (0, 1/3) be two arbitrary constants and d be sufficiently large. Suppose
d1+ε < n < d2−ε. Then, with high probability over the randomness of ai’s, we have that in the
superlevel set

L =
{
x ∈ Sd−1 : f(x) ≥ 3(1 + ζ)n

}
, (1.2)

there are exactly 2n local maxima with function values (1±o(1))d2, each of which is Õ(
√
n/d3)-close

to one of ± 1√
d
a1, . . . ,± 1√

d
an.

Previously, the best known result [AGJ15] only characterizes the geometry in small neighbor-
hoods around the true components, that is, there exists one local maxima in each of the small
constant neighborhoods around each of the true components ai’s. (It turns out in such neigh-
borhoods, the objective function is actually convex.) We significantly enlarge this region to the
superlevel set L, on which the function f is not convex and has an exponential number of saddle
points, but still doesn’t have any spurious local maximum.

Note that a random initialization z on the unit sphere has expected function value E[f(z)] = 3n.
Therefore the superlevel set L contains all points that have function values barely larger than that
of the random guess. Hence, Theorem 1.1 implies that with a slightly better initialization than the
random guess, gradient ascent and power method1 are guaranteed to find one of the components
in polynomial time. (It is known that after finding one component, it can be peeled off from the
tensor and the same algorithm can be repeated to find all other components.)

1Power method is exactly equivalent to gradient ascent with a properly chosen finite learning rate
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Corollary 1.2. In the setting of Theorem 1.1, with high probability over the choice of ai’s, we
have that given any starting point x0 that satisfies f(x0) ≥ 3(1 + ζ)n, stochastic projected gradient
descent2 will find one of the ± 1√

d
ai’s up to Õ(

√
n/d3) Euclidean error in polynomial time.

We also strengthen Theorem 1.1 and Corollary 1.2 (see Theorem 3.1) slightly – the same con-
clusion still holds with ζ = O(

√
d/n) that is smaller than a constant. Note that the expected value

of a random initialization is 3n and we only require an initialization that is slightly better than
random guess in function value. We remark that a uniformly random point x on the unit sphere
are not in the set L with high probability. It’s an intriguing open question to characterize the
landscape in the complement of the set L.

We also conjecture that from random initialization, it suffices to use constant number of
projected gradient descent (with optimal step size) to achieve the function value 3(1+ζ)n with ζ =
O(
√
d/n). This conjecture — an interesting question for future work — is based on the hypothesis

that the first constant number of steps of gradient descent can make similar improvements as the
first step does (which is equal to c

√
dn for a universal constant c).

As a comparison, previous works such as [AGJ15] require an initialization with function value
Θ(d2) � n. Anandkumar et al. [AGJ16] analyze the dynamics of tensor power method with
a delicate initialization that is independent with the randomness of the tensor. Thus it is not
suitable for the situation where the initialization comes from the result of another algorithm, and
it does not have a direct implication on the landscape of f(·).

We note that the local maximum of f(·) corresponds to the robust eigenvector of the tensor.
Using this language, our theorem says that a robust eigenvector of an over-complete tensor with
random components is either one of those true components or has a small correlation with the
tensor in the sense that 〈T, x⊗4〉 is small. This improves significantly upon the understanding of
robust eigenvectors [ASS15] under an interesting random model.

The condition n > d1+ε should be artificial. The under-complete case (n < d) can be proved
by re-using the proof of [GHJY15] with the observation that local optima are preserved by linear
transformation. The intermediate regime when d < n < d1+ε should be analyzable by Kac-Rice
formula using similar techniques, but our current proof cannot capture it directly. Since the proof
in this paper is already involved, we leave this case to future work. The condition n < d2−ε matches
the best over-completeness level that existing polynomial algorithm can handle [DLCC07, MSS16].

Our techniques The proof of Theorem 1.1 uses Kac-Rice formula (see, e.g., [AT09]), which is
based on a counting argument. To build up the intuition, we tentatively view the unit sphere as a
collection of discrete points, then for each point x one can compute the probability (with respect
to the randomness of the function) that x is a local maximum. Adding up all these probabilities
will give us the expected number of local maxima. In continuous space, such counting argument
has to be more delicate since the local geometry needs to be taken into account. This is formalized
by Kac-Rice formula (see Lemma 2.2).

However, Kac-Rice formula only gives a closed form expression that involves the integration of
the expectation of some complicated random variable. It’s often very challenging to simplify the
expression to obtain interpretable results. Before our work, Auffinger et al. [AAČ13, AA+13] have
successfully applied Kac-Rice formula to characterize the landscape of polynomials with random
Gaussian coefficients. The exact expectation of the number of local minima can be computed there,

2We note that by stochastic gradient descent we meant the algorithm that is analyzed in [GHJY15]. To get a
global maximum in polynomial time (polynomial in log(1/ε) to get ε precision), one also needs to slightly modify
stochastic gradient descent in the following way: one can run SGD until 1/d accuracy and then switch to gradient
descent. Since the problem is locally strongly convex, the local convergence is linear.
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because the Hessian of a random polynomial is a Gaussian orthogonal ensemble, whose eigenvalue
distribution is well-understood with closed form expression.

Our technical contribution here is successfully applying Kac-Rice formula to structured random
non-convex functions where the formula cannot be exactly evaluated. The Hessian and gradients
of f(·) have much more complicated distributions compared to the Gaussian orthogonal ensemble.
As a result, the Kac-Rice formula is impossible to be evaluated exactly. We instead cut the space
Rd into regions and use different techniques to estimate the number of local maxima. See a proof
overview in Section 3. We believe our techniques can be extended to 3rd order tensors and can
shed light on the analysis of other non-convex problems with structured randomness.

Organization In Section 2 we introduce preliminaries regarding manifold optimization and Kac-
Rice formula. We give a detailed explanation of our proof strategy in Section 3. We fill in the
technical details in the later sections: in Section 4 we show that there is no local maximum that is
uncorrelated with any of the true components. We compliment that by a local analysis in Section 5
that shows there are exactly 2n local optima around the true components.

2 Notations and Preliminaries

We use Idd to denote the identity matrix of dimension d × d, and for a subspace K, let IdK
denote the projection matrix to the subspace K. For unit vector x, let Px = Id − xx> denote
the projection matrix to the subspace orthogonal to x. Let Sd−1 be the d − 1-dimensional sphere
Sd−1 := {x ∈ Rd : ‖x‖2 = 1}.

Let u� v denote the Hadamard product between vectors u and v. Let u�s denote u� · · · � u
where u appears k times. Let A ⊗ B denote the Kronecker product of A and B. Let ‖ · ‖ denote
the spectral norm of a matrix or the Euclidean norm of a vector. Let ‖·‖F denote the Frobenius
norm of a matrix or a tensor.

We write A . B if there exists a universal constant C such that A ≤ CB. We define &
similarly. Unless explicitly stated otherwise, O(·)-notation hides absolute multiplicative constants.
Concretely, every occurrence of the notation O(x) is a placeholder for some function f(x) that
satisfies ∀x ∈ R, |f(x)| ≤ C|x| for some absolute constant C > 0.

2.1 Gradient, Hessian, and local maxima on manifold

We have a constrained optimization problem over the unit sphere Sd−1, which is a smooth manifold.
Thus we define the local maxima with respect to the manifold. It’s known that projected gradient
descent for Sd−1 behaves pretty much the same on the manifold as in the usual unconstrained
setting [BAC16]. In Section A we give a brief introduction to manifold optimization, and the
definition of gradient and Hessian. We refer the readers to the book [AMS07] for more backgrounds.
Here we use grad f and Hess f to denote the gradient and the Hessian of f on the manifold Sd−1.
We compute them in the following claim.

Claim 2.1. Let f : Sd−1 → R be f(x) := 1
4

∑n
i=1〈ai, x〉4. Then the gradient and Hessian of f on

the sphere can be written as,

grad f(x) = Px

n∑
i=1

〈ai, x〉3ai ,

Hess f(x) = 3

n∑
i=1

〈ai, x〉2Pxaia>i Px −

(
n∑
i=1

〈ai, x〉4
)
Px ,
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where Px = Idd − xx>.

A local maximum of a function f on the manifold Sd−1 satisfies grad f(x) = 0, and Hess f(x) �
0. Let Mf be the set of all local maxima,

Mf =
{
x ∈ Sd−1 : grad f(x) = 0,Hess f(x) � 0

}
. (2.1)

2.2 Kac-Rice formula

Kac-Rice formula is a general tool for computing the expected number of special points on a
manifold. Suppose there are two random functions P (·) : Rd → Rd and Q(·) : Rd → Rk, and an
open set B in Rk. The formula counts the expected number of point x ∈ Rd that satisfies both
P (x) = 0 and Q(x) ∈ B.

Suppose we take P = ∇f and Q = ∇2f , and let B be the set of negative semidefinite matrices,
then the set of points that satisfies P (x) = 0 and Q ∈ B is the set of all local maximaMf . Moreover,
for any set Z ⊂ Sd−1, we can also augment Q by Q = [∇2f, x] and choose B = {A : A � 0} ⊗ Z.
With this choice of P,Q, Kac-Rice formula can count the number of local maxima inside the region
Z. For simplicity, we will only introduce Kac-Rice formula for this setting. We refer the readers
to [AT09, Chapter 11&12] for more backgrounds.

Lemma 2.2 (Informally stated). Let f be a random function defined on the unit sphere Sd−1 and
let Z ⊂ Sd−1. Under certain regularity conditions3 on f and Z, we have

E [|Mf ∩ Z|] =

∫
x
E [|det(Hess f)| · 1(Hess f � 0)1(x ∈ Z) | grad f(x) = 0] pgrad f(x)(0)dx . (2.2)

where dx is the usual surface measure on Sd−1 and pgrad f(x)(0) is the density of grad f(x) at 0.

2.3 Formula for the number of local maxima

In this subsection, we give a concrete formula for the number of local maxima of our objective
function (1.1) inside the superlevel set L (defined in equation (1.2)). Taking Z = L in Lemma 2.2,
it boils down to estimating the quantity on the right hand side of (2.2). We remark that for the
particular function f as defined in (1.1) and Z = L, the integrand in (2.2) doesn’t depend on
the choice of x. This is because for any x ∈ Sd−1, (Hess f, grad f,1(x ∈ L)) has the same joint
distribution, as characterized below:

Lemma 2.3. Let f be the random function defined in (1.1). Let α1, . . . , αn ∈ N (0, 1), and
b1, . . . , bn ∼ N (0, Idd−1) be independent Gaussian random variables. Let

M = ‖α‖44 · Idd−1 − 3

n∑
i=1

α2
i bib

>
i and g =

n∑
i=1

α3
i bi (2.3)

Then, we have that for any x ∈ Sd−1, (Hess f, grad f, f) has the same joint distribution as
(−M, g, ‖α‖44).

Proof. We use Claim 2.1. We fix x ∈ Sd−1 and let αi = 〈ai, x〉 and bi = Pxai. We have αi and bi
are independent, and bi is spherical Gaussian random vector in the tangent space at x (which is
isomorphic to Rd−1). We can verify that grad f(x) =

∑
i∈[n] α

3
i bi = g and Hess f(x) = −M , and

this complete the proof.

3We omit the long list of regularity conditions here for simplicity. See more details at [AT09, Theorem 12.1.1]
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Using Lemma 2.2 (with Z = L) and Lemma 2.3, we derive the following formula for the expec-
tation of our random variable E [|Mf ∩ L|]. Later we will later use Lemma 2.2 slightly differently
with another choice of Z.

Lemma 2.4. Using the notation of Lemma 2.3, let pg(·) denote the density of g. Then,

E [|Mf ∩ L|] = Vol(Sd−1) · E
[
|det(M)|1(M � 0)1(‖α‖44 ≥ 3(1 + ζ)n) | g = 0

]
pg(0) . (2.4)

3 Proof Overview

In this section, we give a high-level overview of the proof of the main Theorem. We will prove a
slightly stronger version of Theorem 1.1.

Let γ be a universal constant that is to be determined later. Define the set L1 ⊂ Sd−1 as,

L1 :=

{
x ∈ Sd−1 :

n∑
i=1

〈ai, x〉4 ≥ 3n+ γ
√
nd

}
. (3.1)

Indeed we see that L (defined in (1.2)) is a subset of L1 when n � d. We prove that in L1 there
are exactly 2n local maxima.

Theorem 3.1 (main). There exists universal constants γ, β such that the following holds: suppose
d2/ logO(1) ≥ n ≥ βd log2 d and L1 be defined as in (3.1), then with high probability over the choice
of a1, . . . , an, we have that the number of local maxima in L1 is exactly 2n:

|Mf ∩ L1| = 2n . (3.2)

Moreover, each of the local maximum in L1 is Õ(
√
n/d3)-close to one of ± 1√

d
a1, . . . ,± 1√

d
an.

In order to count the number of local maxima in L1, we use the Kac-Rice formula (Lemma 2.4).
Recall that what Kac-Rice formula gives an expression that involves the complicated expectation

E
[
|det(M)|1(M � 0)1(‖α‖44 ≥ 3(1 + ζ)n) | g = 0

]
. Here the difficulty is to deal with the determi-

nant of a random matrix M (defined in Lemma 2.3), whose eigenvalue distribution does not admit
an analytical form. Moreover, due to the existence of the conditioning and the indicator functions,
it’s almost impossible to compute the RHS of the Kac-Rice formula (equation (2.4)) exactly.

Local vs. global analysis The key idea to proceed is to divide the superlevel set L1 into two
subsets

L1 = (L1 ∩ L2) ∪ Lc2,
where L2 := {x ∈ Sd−1 : ∀i, ‖Pxai‖2 ≥ (1− δ)d, and |〈ai, x〉|2 ≤ δd} . (3.3)

Here δ is a sufficiently small universal constant that is to be chosen later. We also note that Lc2 ⊂ L1

and hence L1 = (L1 ∩ L2) ∪ Lc2.
Intuitively, the set L1 ∩L2 contains those points that do not have large correlation with any of

the ai’s; the compliment Lc2 is the union of the neighborhoods around each of the desired vector
1√
d
a1, . . . ,

1√
d
an. We will refer to the first subset L1 ∩ L2 as the global region, and refer to the Lc2

as the local region.
We will compute the number of local maxima in sets L1 ∩ L2 and Lc2 separately using different

techniques. We will show that with high probability L1 ∩ L2 contains zero local maxima using
Kac-Rice formula (see Theorem 3.2). Then, we show that Lc2 contains exactly 2n local maxima
(see Theorem 3.3) using a different and more direct approach.
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Global analysis. The key benefit of have such division to local and global regions is that for
the global region, we can avoid evaluating the value of the RHS of the Kac-Rice formula. Instead,
we only need to have an estimate: Note that the number of local optima in L1 ∩ L2, namely
|Mf ∩ L1 ∩ L2|, is an integer nonnegative random variable. Thus, if we can show its expectation

E [|Mf ∩ L1 ∩ L2|] is much smaller than 1, then Markov’s inequality implies that with high prob-
ability, the number of local maxima will be exactly zero. Concretely, we will use Lemma 2.2 with
Z = L1 ∩ L2, and then estimate the resulting integral using various techniques in random matrix
theory. It remains quite challenging even if we are only shooting for an estimate. see Theorem 3.2
for the exact statement and Section 3.1 for an overview of the analysis.

Local analysis. In the local region Lc2, that is, the neighborhoods of a1, . . . , an, we will show
there are exactly 2n local maxima. As argued above, it’s almost impossible to get exact numbers
out of the Kac-Rice formula since it’s often hard to compute the complicated integral. Moreover,
Kac-Rice formula only gives the expected number but not high probability bounds. However,
here the observation is that the local maxima (and critical points) in the local region are well-
structured. Thus, instead, we show that in these local regions, the gradient and Hessian of a point
x are dominated by the terms corresponding to components {ai}’s that are highly correlated with x.
The number of such terms cannot be very large (by restricted isometry property, see Section B.5).
As a result, we can characterize the possible local maxima explicitly, and eventually show there is
exactly one local maximum in each of the local neighborhoods around {± 1√

d
ai}’s.

Concentration properties of ai’s. Before stating the formal results regarding the local and
global analysis, we have the following technical preparation. Since ai’s are chosen at random,
with small probability the tensor T will behave very differently from the average instances. The
optimization problem for such irregular tensors may have much more local maxima. To avoid these
we will restrict our attention to the following event G0, which occurs with high probability (over
the randomness of ai’s) :

G0 :=
{
∀x ∈ Sd−1 the followings hold:

∀U ⊂ [n] with |U | < δn/ log d,
∑
i∈U
〈ai, x〉2 ≤ (1 + δ)d , (3.4)∑

i∈[n]

〈ai, x〉6 ≥ 15(1− δ)n , (3.5)

n− 3
√
nd ≤

∑
i∈[n]

〈ai, x〉2 ≤ n+ 3
√
nd
}
. (3.6)

Here δ is a small enough universal constant. Event G0 summarizes common properties of the
vectors ai’s that we frequently use in the technical sections. Equation (3.4) is the restricted isometry
property (see Section B.5) that ensures the ai’s are not adversarially correlated with each other.
Equation (3.5) lowerbounds the high order moments of ai’s. Equation (3.6) bounds the singular
values of the matrix

∑n
i=1 aia

>
i . These conditions will be useful in the later technical sections.

Next, we formalize the intuition above as the two theorems below. Theorem 3.2 states there
is no local maximum in L1 ∩ L2, whereas Theorem 3.3 concludes that there are exactly 2n local
maxima in L1 ∩ Lc2.

Theorem 3.2. There exists universal small constant δ ∈ (0, 1) and universal constants γ, β such
that for sets L1, L2 defined in equation (3.3) and n ≥ βd log2 d, we have that the expected number
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of local maxima in L1 ∩ L2 is exponentially small:

E [|Mf ∩ L1 ∩ L2| · 1(G0)] ≤ 2−d/2 .

Theorem 3.3. Suppose 1/δ2 · d log d ≤ n ≤ d2/ logO(1) d. Then, with high probability over the
choice a1, . . . , an, we have,

|Mf ∩ L1 ∩ Lc2| = 2n . (3.7)

Moreover, each of the point in L ∩ Lc2 is Õ(
√
n/d3)-close to one of ± 1√

d
a1, . . . ,± 1√

d
an.

Proof of the main theorem The following Lemma shows that event G0 that we conditioned
on is indeed a high probability event. The proof follows from simple concentration inequalities and
is deferred to Section C.

Lemma 3.4. Suppose 1/δ2 · d log2 d ≤ n ≤ d2/ logO(1) d. Then,

Pr [G0] ≥ 1− d−10 .

Combining Theorem 3.2, Theorem 3.3 and Lemma 3.4, we obtain Theorem 3.1 straightforwardly.

Proof of Theorem 3.1. By Theorem 3.2 and Markov inequality, we obtain that
Pr [|L ∩ L1 ∩ L2|1(G0) < 1/2] ≤ 2−d/2+1. Since |L ∩ L1 ∩ L2|1(G0) is an integer value ran-
dom variable, therefore, we get Pr [|L ∩ L1 ∩ L2|1(G0) = 0] ≤ 2−d/2+1. Thus, using Lemma 3.4,
Theorem 3.3 and union bound, with high probability, we have that G0, |L ∩ L1 ∩ L2|1(G0) = 0
and equation (3.7) happen. Then, using Theorem 3.3 and union bound, we concluded that
|L ∩ L1| = |L ∩ L1 ∩ Lc2|+ |L ∩ L1 ∩ L2| = 2n.

In the next subsections we sketch the basic ideas behind the proof of of Theorem 3.2 and
Theorem 3.3. Theorem 3.2 is the crux of this technical part of the paper.

3.1 Estimating the Kac-Rice formula for the global region

The general plan to prove Theorem 3.2 is to use random matrix theory to estimate the RHS of the
Kac-Rice formula. We begin by applying Kac-Rice formula to our situation.

We first note that by definition of G0,

|Mf ∩ L1 ∩ L2| · 1(G0) ≤ |Mf ∩ L1 ∩ L2 ∩ LG| , (3.8)

where LG = {x ∈ Sd−1 : x satisfies equation (3.4), (3.5) and (3.6)}. Indeed, when G0 happens,
then LG = Sd−1, and therefore equation (3.8) holds.

Thus it suffice to control E [|Mf ∩ L1 ∩ L2 ∩ LG|]. We will use the Kac-Rice formula
(Lemma 2.2) with the set Z =Mf ∩ L1 ∩ L2 ∩ LG.

Applying Kac-Rice formula. The first step to apply Kac-Rice formula is to characterize
the joint distribution of the gradient and the Hessian. We use the notation of Lemma 2.3 for
expressing the joint distribution of (Hess f, grad f,1(x ∈ Z)). For any fix x ∈ Sd−1, let αi = 〈ai, x〉
and bi = Pxai (where Px = Id− xx>) and M = ‖α‖44 · Idd−1 − 3

∑n
i=1 α

2
i bib

>
i and g =

∑n
i=1 α

3
i bi

as defined in (2.3). In order to apply Kac-Rice formula, we’d like to compute the joint distribution
of the gradient and the Hessian. We have that

(Hess f, grad f,1(x ∈ Z)) has the same distribution as (M, g,1(E0)1(E1)1(E2)1(E′2)) ,

8



where E0, E1, E2, E
′
2 are defined as follows (though these details here will only be important later).

E0 =
{
∀U ⊂ [n] with |U | < δn/ log d, ‖αU‖2 ≤ (1 + δ)d , (3.9)

‖α‖44 ≥ 15(1− δ)n ,

n− 3
√
nd ≤ ‖α‖2 ≤ n+ 3

√
nd
}
.

We see that the equations above correspond to equation (3.4), (3.5) and (3.6) and event 1(E0)
corresponds to the event x ∈ LG. Similarly, the following event E1 corresponds to x ∈ L1.

E1 =
{
‖α‖44 ≥ 3n+ γ

√
nd
}
.

Events E2 and E′2 correspond to the events that x ∈ L2. We separate them out to reflect that E2

and E′2 depends the randomness of αi’s and bi’s respectively.

E2 =
{
‖α‖2∞ ≤ δd

}
E′2 =

{
∀i ∈ [n], ‖bi‖2 ≥ (1− δ)d

}
.

Using Kac-Rice formula (Lemma 2.2 with Z = L1 ∩ L2 ∩ LG), we conclude that

E [|Mf ∩ L1 ∩ L2 ∩ LG|] = Vol(Sd−1) · E
[
|det(M)|1(M � 0)1(E0)1(E1)1(E2)1(E′2) | g = 0

]
pg(0) .
(3.10)

Next, towards proving Theorem 3.2 we will estimate the RHS of the equation (3.10) using various
techniques.

Conditioning on α. We observe that the distributions of the gradient g and Hessian M are
fairly complicated. In particular, we need to deal with the interactions of αi’s (the components
along x) and bi’s (the components in the orthogonal subspace of x). Therefore, we use the law of
total expectation to first condition on α and take expectation over the randomness of bi’s, and then
take expectation over αi’s. Here below the inner expectation of RHS of (3.11) is with respect to
the randomness of bi’s and the outer one is with respect to αi’s.

Lemma 3.5. Using the notation of Lemma 2.3, let E denotes an event and let pg|α denotes the
density of g | α. Then,

E [|det(M)|1(M � 0)1(E) | g = 0] pg(0) = E
[
E [|det(M)|1(M � 0)1(E) | g = 0, α] pg|α(0)

]
.

(3.11)

For notional convenience we define h(·) : Rn → R as

h(α) := Vol(Sd−1)E
[
det(M)1(M � 0)1(E′2) | g = 0, α

]
1(E0)1(E1)1(E2)pg|α(0) .

Using equation (3.8), the Kac-Rice formula (equation (3.10)), and law of total expectation
(Lemma 3.5), we obtain straightforwardly the following Lemma which gives an explicit formula
for the number of local maxima in L1 ∩ L2. We provide a rigorous proof in Section C that verifies
the regularity condition of Kac-Rice formula.

Lemma 3.6. Let h(·) be defined as above. In the setting of this section, we have

E [|Mf ∩ L1 ∩ L2| · 1(G0)] ≤ E [|Mf ∩ L1 ∩ L2 ∩ LG|] = E [h(α)] .
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We note that pg|α(0) has an explicit expression since g | α is Gaussian. For the ease of exposition,
we separate out the hard-to-estimate part from h(α), which we call W (α):

W (α) := E
[
det(M)1(M � 0)1(E′2) | g = 0, α

]
1(E0)1(E1)1(E2) . (3.12)

Therefore by definition, we have that

h(α) = Vol(Sd−1)W (α)pg|α(0) . (3.13)

Now, since we have conditioned on α, the distributions of the Hessian, namelyM | α, is a generalized
Wishart matrix which is slightly easier than before. However there are still several challenges that
we need to address in order to estimate W (α).

Question I: how to control det(M)1(M � 0)? Recall that M = ‖α‖44 − 3
∑
α2
i bib

>
i , which is

a generalized Wishart matrix whose eigenvalue distribution has no (known) analytical expression.
The determinant itself by definition is a high-degree polynomial over the entries, and in our case, a
complicated polynomial over the random variables αi’s and vectors bi’s. We also need to properly
exploit the presence of the indicator function 1(M � 0), since otherwise, the desired statement will
not be true – the function f has an exponential number of critical points.

Fortunately, in most of the cases, we can use the following simple claim that bounds the deter-
minant from above by the trace. The inequality is close to being tight when all the eigenvalues of
M are similar to each other. More importantly, it uses naturally the indicator function 1(M � 0)!
Later we will see how to strengthen it when it’s far from tight.

Claim 3.7. For any p× p symmetric matrix V , we have,

det(V )1(V � 0) ≤
(
|tr(V )|
p

)p
1(V � 0)

The claim is a direct consequence of AM-GM inequality.

Proof. We can assume V is positive semidefinite since otherwise both sides of the inequality vanish.
Then, suppose λ1, . . . , λp ≥ 0 are the eigenvalues of V . We have det(V ) = λ1 . . . λp and |tr(V )| =
tr(V ) = λ1 + · · ·+ λp. Then by AM-GM inequality we complete the proof.

Applying the Lemma above with V = M , we have

W (α) ≤ E
[
|tr(M)|d−1

(d− 1)d−1
| g = 0, α

]
1(E0)1(E1) . (3.14)

Here we dropped the indicators for events E2 and E′2 since they are not important for the discussion
below. It turns out that |tr(M)| is a random variable that concentrates very well, and thus we
have E

[
|tr(M)|d−1

]
≈ |E [tr(M)] |d−1. It can be shown that (see Proposition 4.3 for the detailed

calculation),

E [tr(M) | g = 0, α] = (d− 1)
(
‖α‖44 − 3‖α‖2 + 3‖α‖88/‖α‖66

)
.

Therefore using equation (3.14) and equation above, ignoring 1(E′2), we have that

W (α) ≤
(
‖α‖44 − 3‖α‖2 + 3‖α‖88/‖α‖66

)d−1
1(E0)1(E1) .
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Note that since g | α has Gaussian distribution, we have,

pg|α(0) = (2π)−d/2(‖α‖66)−d/2 . (3.15)

Thus using two equations above, we can bound E [h(α)] by

E [h(α)] ≤ Vol(Sd−1)E
[(
‖α‖44 − 3‖α‖2 + 3‖α‖88/‖α‖66

)d−1 · (2π)−d/2(‖α‖66)−d/21(E0)1(E1)
]
.

(3.16)

Therefore, it suffices to control the RHS of (3.16), which is much easier than the original Kac-Rice
formula. However, we still need to be careful here, as it turns out that RHS of (3.16) is roughly cd

for some constant c > 1! Roughly speaking, this is because the high powers of a random variables
is very sensitive to its tail.

Easy case when all αi’s are small. To find a tight bound for the RHS of (3.16), intuitively we
can consider two events: the event F0 when all of the αi’s are close to constant (defined rigorously
later in equation (3.19)) and the complementary event F c0 .

We claim that E [h(α)1(F0)] can be bounded by 2−d/2. Then we will argue that it’s difficult to
get an upperbound for E [h(α)1(F c0 )] that is smaller than 1 using the RHS of equation (3.16).

It turns out in most of the calculations below, we can safely ignore the contribution of the term
3‖α‖88/‖α‖66. For notation convenience, let Q(·) : Rd → R be defined as:

Q(z) = ‖z‖44 − 3 ‖z‖2 . (3.17)

When conditioned on the event F0, roughly speaking, random variable Q(α) = ‖α‖44 − 3‖α‖2
behaves like a Gaussian distribution with variance Θ(n), since Q(α) is a sum of independent random
variables with constant variances. Note that 1(E1) and 1(E0) imply that Q(α) = ‖α‖44 − 3‖α‖22 ≥
(γ − 3)

√
nd. Therefore, Q(α)1(E0)1(E1) behaves roughly like a truncated Gaussian distribution,

that is, X · 1(X ≥ (γ − 3)
√
nd) where X ∼ N (0,Θ(

√
n)). Then for sufficiently large constant γ,

E
[
Q(α)d−11(E0)1(E1)1(F0)

]
≤ (0.1nd)d/2 . (3.18)

Moreover, recall that when the event E0 happens, we have that ‖α‖66 ≥ 15(1 − δ)n. Therefore
putting all these bounds together into equation (3.16) with the indicator 1(F0), and using the fact

that Vol(Sd−1) = πd/2

Γ(d/2+1) , we can obtain the target bound,

E [h(α)1(F0)] ≤ πd/2

Γ(d/2 + 1)
· (0.1nd)d/2 · (2π)−d/2(15(1− δ)n)−d/2 ≤ 2−d/2 .

The heavy tail problem: Next we explain why it’s difficult to achieve a good bound from
using RHS (3.16). The critical issue is that the random variable Q(α) has very heavy tail, and
exponentially small probability cannot be ignored. To see this, we first claim that Q(α) has a tail
distribution that roughly behaves like

Pr [Q(α) ≥ t] ≥ exp(−
√
t/2) .

Taking t = d2, then the contribution of the tail to the expectation of Q(α)d is at least Pr [Q(α) ≥ t]·
td ≈ d2d, which is much larger than what we obtained (equation (3.18)) in the case when all αi’s
are small.

The obvious fix is to consider Q(α)d(‖α‖66)−d/2 together (instead of separately). For example,
we will use Cauchy-Schwarz inequality to obtain that Q(α)d(‖α‖66)−d/2 ≤ ‖α‖d. However, this
alone is still not enough to get an upper bound of RHS of (3.16) that is smaller than 1. In the next
paragraph, we will tighten the analysis by strengthening the estimates of det(M)1(M � 0).
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Question II: how to tighten the estimate of det(M)1(M � 0)? It turns out that the AM-
GM inequality is not always tight for controlling the quantity det(M)1(M � 0). In particular, it
gives pessimistic bound when M � 0 is not true. As a matter of fact, whenever F c0 happens, M is
unlikely to be positive semidefinite! (The contribution of det(M)1(M � 0) will not be negligible
since there is still tiny chance that M is PSD. As we argued before, even exponential probability
event cannot be safely ignored.) We will show that formally the event 1(M � 0)1(F c0 ) have
small enough probability that can kill the contribution of Q(α)d when it happens (see Lemma 4.6
formally).

Summary with formal statements. Below, we formally setup the notation and state two
Propositions that summarize the intuitions above. Let τ = Kn/d where K is a universal constant
that will be determined later. Let Fk be the event that

F0 =
{
‖α‖4∞ ≤ τ

}
(3.19)

Fk =
{
k = argmaxi∈[n]α

4
i and α4

k ≥ τ
}

for 1 ≤ k ≤ n (3.20)

We note that 1 ≤ 1(F0) + 1(F1) + · · ·+ 1(Fk), and therefore we have

h(α) ≤
n∑
k=0

h(α)1(Fk) (3.21)

Therefore towards controlling E [h(α)], it suffices to have good upper bounds on E [h(α)1(Fk)] for
each k, which are summarized in the following two propositions.

Proposition 3.8. Let K ≥ 2 ·103 be a universal constant. Let τ = Kn/d and let γ, β be sufficiently
large constants (depending on K). Then for any n ≥ βd log2 d, we have that for any k ∈ {1, . . . , n}

E [h(α)1(Fk)] ≤ (0.3)d/2 .

Proposition 3.9. In the setting of Proposition 3.8, we have,

E [h(α)1(F0)] ≤ (0.3)d/2 .

We see that Theorem 3.2 can be obtained as a direct consequence of Proposition 3.9, Proposition 3.8
and Lemma 3.6.

Proof of Theorem 3.2. Using equation (3.21) and Lemma 3.6, we have that

E [|L ∩ L1 ∩ L2|1(G0)] ≤ E [h(α)] ≤ E [h(α)1(F0)] +
n∑
k=1

E [h(α)1(Fk)]

≤ (n+ 1) · (0.3)d/2 ≤ 2−d/2 . (by Propostion 3.9 and 3.8)

3.2 Local analysis

For a point x in the local region Lc2, the gradient and the Hessian are dominated by the contributions
from the components that have a large correlation with x. Therefore it is easier to analyze the first
and second order optimality condition directly.
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Note that although this region is small, there are still exponentially many critical points (as
an example, there is a critical point near a1+a2

‖a1+a2‖). Therefore our proof still needs to consider the

second order conditions and is more complicated than Anandkumar et al. [AGJ15].
We first show that all local maxima in this region must have very high correlation with one of

the components:

Lemma 3.10. In the setting of Theorem 3.3, for any local maximum x ∈ L2, there exists a
component a ∈ {±ai/‖ai‖} such that 〈x, a〉 ≥ 0.99.

Intuitively, if there is a unique component ai that is highly correlated with x, then the gradient
grad f(x) =

∑n
j=1〈aj , x〉3aj will be even more correlated with ai. On the other hand, if x has

similar correlation with two components (e.g., x = a1+a2
‖a1+a2‖), then x is close to a saddle point,

and the Hessian will have a positive direction that makes x more correlated with one of the two
components.

Once x has really high correlation with one component (|〈x, ai〉| ≥ 0.99‖ai‖), we can prove that
the gradient of x is also in the same local region. Therefore by fixed point theorem, there must be a
point where grad f(x) = x, and it is a critical point. We also show the function is strongly concave
in the whole region where |〈x, ai〉| ≥ 0.99‖ai‖. Therefore we know the critical point is actually a
local maximum.

4 Bounding the number of local minima using Kac-Rice Formula

In this section we give the proof of Proposition 3.9 and Proposition 3.8, using the intuition described
in Section 3.

4.1 Proof of Proposition 3.9

Following the plan in Section 3, we start with using AM-GM inequality for the determinant.

Lemma 4.1. Under the setting of Proposition 3.9, we have,

W (α)1(F0)1(E0)1(E2)1(E2) ≤ E
[
|tr(M)|d−1

(d− 1)d−1
| g = 0, α

]
1(F0)1(E0)1(E1)1(E2) .

The next thing that we need to bound is E
[
|tr(M)|d−1 | g, α

]
. Here the basic intuition is

that since tr(M) | g, α is quite concentrated around its mean and therefore we can switch the
(d−1)-th power with the expectation without losing much. Proving such a result would require the
understanding of the distribution of M | g, α. We have the following generic Claim that computes
this distribution in a more general setting.

Claim 4.2. Let w, y ∈ Rn be two fixed vectors, and let q̄ = y�3/‖y�3‖. Let B = [b1, . . . , bn] ∈
R(d−1)×n be a matrix with independent standard Gaussians as entries. Let Mw = ‖w‖44 · Idd−1 −
3
∑n

i=1w
2
i bib

>
i and gy =

∑n
i=1 y

3
i bi. Let Z ∈ R(d−1)×n be a random matrix with rows independent

drawn from N (0, Idn − q̄q̄>).
Then, we have that B | (gy = 0) has the same distribution as Z, and consequently Mw | gy = 0

has the same distribution as

‖w‖44 Idd−1 − 3Z diag(w�2)Z> .

One can see that the setting that we are mostly interested in corresponds to w = y = α in
Claim 4.2.
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Proof. Let c>1 , . . . , c
>
d−1 be the rows of B. We write ci = βiq̄ + zi where βi = 〈ci, q̄〉 and zi =

(Idn − q̄q̄>)ci. Let Z denote the matrix with z>i as rows. Therefore we have B = Z + βq̄>.
Recall that bi are independent Gaussians with covariance N (0, Idd−1). Thus we have that ci’s
are independent Gaussians with covariance N (0, Idn), and consequently βi and zi are independent
random variables with N (0, 1) and N (0, Idn − q̄q̄>) respectively. Moreover, note that g = 0 is
equivalent to that ∀i ∈ [d − 1], 〈ci, q〉 = 0, which in turn is equivalent to that ∀i ∈ [d − 1], βi = 0.
Hence, B | (gy = 0) has the same distribution as Z, and consequently Mw | (gy = 0) has the same
distribution as ‖w‖44Idd−1 − 3Z diag(w�2)Z>.

Using Claim 4.2, we can compute the the expectation of the trace and its p-th moments. Again
we state the following proposition in a more general setting for future re-usability.

Proposition 4.3. In the setting of Claim 4.2, we have

E [tr(Mw) | gy] = (d− 1)
(
‖w‖44 − 3‖w‖2 + 3〈y�6, w�2〉/‖y‖66

)
.

Moreover, for any ε ∈ (0, 1),

E [|tr(Mw)|p | gy = 0] ≤ max

{
(1 + ε)p |E [tr(Mw) | gy]|p , (

1

ε
+ 1)p max{4p‖w‖2∞, 2

√
pd‖w‖24}p

}
(4.1)

Proof of Proposition 4.3. We use the same notations as in the proof of Claim 4.2. By Claim 4.2,
we have B = [b1, . . . , bn] | (gy = 0) has the same distribution as Z, and consequently Mw | (gy = 0)
has the same distribution as ‖w‖44Idd−1− 3Z diag(w�2)Z>. Furthermore, this implies that tr(Mw |
(gy = 0)) has the same distribution as the random variable (denoted by Γ below)

Γ := tr
(
‖w‖4Idd−1 − 3Z diag(w�2)Z>

)
= (d− 1)‖w‖44 − 3

∑
k∈[d−1]

‖zk � w‖2 . (4.2)

Since zk �w is Gaussian random variable, we have that ‖zk �w‖2 is a sub-exponential random
variable with parameter (ν, ρ) satisfying ν . ‖w‖24 and ρ . ‖w‖2∞ (see Definition B.1 for the
definition of sub-exponential random variable and see Lemma B.15 for the exact calculation of
the parameters for this case) . It is well known that when one takes sum of independent sub-
exponential random variable, the ρ parameter will be preserved and ν2 (which should be thought
of as variance) will added up (see Lemma B.4 for details). Therefore, we have that Γ is a sub-
exponential random variable with parameter (ν∗, ρ∗) satisfying ν∗ .

√
d− 1‖w‖24 and ρ∗ . ‖w‖2∞.

Moreover, by Lemma B.15 again and the linearity of expectation, we can compute the expectation
of Γ,

E [Γ] = (d− 1)
(
‖w‖44 − 3‖w‖2 + 3〈q̄�2, w�2〉

)
. (4.3)

Next the basic intuition is if ν∗ and ρ∗ are small enough compared to the mean of Γ, then Γ is
extremely concentrated around its mean, and thus E [|Γ|p] is close to E [Γ]p. Otherwise, the mean
is more or less negligible compared to max{p‖w‖∞, 2

√
pd‖w‖24}, then the moment of Γ behaves like

the moments of an sub-exponential random variable with mean 0. Indeed, using basic integration,
we can show (see Lemma B.10) that a sub-exponential random variable with mean µ and parameter
(ν, b) satisfies that for any ε ∈ (0, 1),

E |X|p .
1

εp−1
|µ|p +

1

(1− ε)p−1
(νpp!! + (2b)pp!) .

Applying the equation above to Γ completes the proof.
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Using Proposition 4.3 with w = y = α. we obtain the following bounds for the moments of the
trace of M .

Corollary 4.4. For any fixed α, we have

E
[(
|tr(M)|
d− 1

)p
| g = 0, α

]
1(E0)1(E2) . (1 +O(δ))p max

{
Q(α)p, (0.1d)p,

(
0.1pd−1/2n1/2

)p}
.

Proof. We fix the choice of α and assume it satisfies event F0. We will apply Proposition 4.3 with
w = α and y = α. We can verify that when E0 and E2 both happen, we have

max{4p‖w‖2∞, 2
√
pd‖w‖24} . max{p‖α‖2∞, p‖α‖24} ≤ p‖α‖∞ ‖α‖2

. δpd1/2n1/2 . (since α satisfies event E0, E2)

Therefore, taking ε = O(δ) in Proposition 4.3, we have that

E [|tr(M)|p | g = 0, α] 1(E0)1(E2) . (1 +O(δ))p max
{
µp,
(

0.1pd1/2n1/2
)p}

,

where µ = |E [tr(M)]| = (d − 1)(‖α‖4 − 3‖α‖2 +
3‖α‖88
‖α‖66

). When E0 happens, we have µ ≤ (d −
1)(‖α‖44 − 3 ‖α‖2 + 3 ‖α‖2∞) ≤ (d− 1)(‖α‖44 − 3 ‖α‖2 +O(δd)). It follows that

E
[(
|tr(M)|
d− 1

)p
| g = 0, α

]
1(E0)1(E2) . (1 +O(δ))p max

{
(Q(α) +O(δd))p,

(
0.1pd−1/2n1/2

)p}
.

. (1 +O(δ))p max
{
Q(α)p, (0.1d)p,

(
0.1pd−1/2n1/2

)p}
.

(4.4)

Putting Corollary 4.4 and Lemma 4.1 together, we can prove Proposition 3.9.

Proof of Proposition 3.9. Moreover, when E0 happens, we have,

pg|α(0) = (2π)−d/2(‖α‖66)−d/2 (4.5)

≤ (1 +O(δ))d(2π)−d/2(15n)−d/2 . (4.6)

It follows that

E
[
W (α)pg|α(0)

]
≤ (1 +O(δ))d(30πn)−d/2 E

[
E

[∣∣∣∣tr(M)

d− 1

∣∣∣∣(d−1)

| g = 0, α

]
1(E1)1(E2)1(F0)

]
(by Corollary 4.1)

≤ (1 +O(δ))d(30πn)−d/2 E
[
max

{
Q(α)d−1, (0.1d)d−1,

(
0.1d1/2n1/2

)p}
1(E1)1(F0)

]
(by Corollary 4.4 with p = d− 1)

≤ (1 +O(δ))d(30πn)−d/2 E
[
max

{
Q(αS)d−1,

(
0.1d1/2n1/2

)p}
1(E1)

]
(4.7)

For simplicity, Let Zi = (α4
i − 3α2

i )1(|αi| ≤ τ1/4), and Z =
∑

i Zi. We observe that E1 and E0

implies that Z ≥ (γ− 3)
√
nd. Let γ′ = γ− 3. Thus, Zd1(Z ≥ γ′

√
nd) ≤ (

∑
i∈[n](α

4
i − 3α2

i )1(|αi| ≤
τ1/4))d1(E1). Then,

E
[
Q(αS)d−11(E1)

]
= E

[
|Z|d−11(Z ≥ γ′

√
nd)
]

(4.8)

15



We have that Zi is a sub-exponential variable with parameter (
√

41, (4+oτ (1))τ1/2) (by Lemma B.5).
Then by Lemma B.4, we have that

∑
i Zi is sub-exponential with parameters (

√
41n, (4+oτ (1))τ1/2).

Moreover, we have Z has mean od(n) since n ≥ d log d.
Then, we use Lemma B.13 to control the moments the sub-exponential random variable Z ·

1(|Z| ≥ γ′
√
nd). Taking s = γ′

√
nd and ν =

√
41n and b = (4 + oτ (1))τ1/2 in Lemma B.13, we

obtain that when when γ′ ≥ max{
√

41, (1+η)(8+oτ (1))
√
τd/n} = max{

√
41, (1+η)(8+oτ (1))

√
K}

E
[
|Z|d−11(Z ≥ γ′

√
nd)
]
≤ od(n)/εd +

1

(1− ε)d
(

(1 + o(1))dd2e−γ
′2d/82 + 1/η · e−(1/8−oτ (1))γ′/

√
K
)
.

Take ε = 1/ log d and η = 1/ log d, we obtain that

E
[
|Z|d−11(Z ≥ γ′

√
nd)
]
≤ (1 + o(1))d(γ′

√
nd)d/2

(
e−γ

′2d/82 + ·e−(1/8−oτ (1))γ′/
√
K
)
. (4.9)

Hence, combing equation (4.7), (4.8) and (4.9), we have,

E [h(α)1(F0)] . Vol(Sd−1)E
[
W (α)pg|α(0)

]
(by equation (3.13))

.
πd/2

(d/(2e))d/2
· (1 + o(1))d(30πn)−d/2(γ′

2
nd)d/2

(
e−γ

′2d/82 + ·e−(1/8−oτ (1))γ′/
√
K
)

. (1 + o(1))d

(
eγ′2

15

)d/2 (
e−γ

′2d/82 + ·e−(1/8−oτ (1))γ′/
√
K
)
≤ 2−d/2 .

(Since γ′ is a sufficiently large constant that depends on the choice of K)

4.2 Proof of Proposition 3.8

In the proof of Proposition 3.8, we will have another division of the the coordinates of α into
two subsets S and L according to the magnitude of αi’s. Throughout this subsection, let C be
a sufficiently large constant that depends on δ. Let S = {i : |αi| ≤

√
C log d} and L = [n]\S.

Thus by definition, since n ≥ d log2 d, we have that event Fk implies that k ∈ L. But we note the
threshold

√
C log d here is smaller than the threshold τ = Kn/d for defining event Fk’s. The key

property that we use here is that the set L have cardinality at most d as long as E0 happens. This
will allows us to bound the contribution of the coordinates in L in a more informative way.

Claim 4.5. Let S,L are defined as above with C ≥ 2/δ. Suppose E0 happens, then we have
|L| ≤ δn/ log d.

Proof. Assume for the sake of contradiction that |L| > δn/ log d, then we can pick a subset L′ ⊂ L
of size δn/ log d and obtain that ‖αL′‖2 ≥ |L′|C log d = δdC ≥ 2d which violates (3.9).

For notational convenience, let P = (2 − O(δ))τ1/2d = (2 − O(δ))
√
Knd. Recall αS is the

restriction of vector α to the coordinate set S, and Q(·) : Rd → R is defined as:

Q(z) = ‖z‖44 − 3 ‖z‖2 .

Define T1(α), T2(α) as

T1(α) = exp

(
−(P −Q(αS))2

36‖αS‖44

)
T2(α) = 1(P ≤ Q(αS)) . (4.10)
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Therefore, since Q(αS) = ‖αS‖44−3‖αS‖2 is roughly a random variable with standard deviation
Θ(
√
n), for large enough constant K, we should think of T1(α) and T2(α) as exponentially small

random variable. The following Lemma is the key of this section, which says that when F0 happens,
the chance of M being PSD is very small.

Lemma 4.6. In the setting of Proposition 3.8, let T1(α), T2(α) be defined as in (4.10). Then,

E
[
1(M � 0)1(E′2) | g, α

]
1(Fk)1(E0) ≤ T1(α) + T2(α) .

Proof. We assume throughout this proof that α is a fixed vector and that α satisfies Fk and E0.
For simplicity, define τ̂ =

√
C log d.

Let q = (α3
1, . . . , α

3
n)> ∈ Rn, and q̄ = q/‖q‖. Let z1, . . . zd−1 be i.i.d Gaussian random variables

in Rd with covriance N (0, Idn− q̄q̄>). Let Z denote the matrix with z>i as rows and let vj (j ∈ [n])
denotes the j-th column of Z. Then, by Claim 4.2, random variable (M,1(E′2)) | g = 0, α) has the
same joint distribution as (M ′,1(E′′2 )) defined below ,

M ′ = ‖α‖44 · Idd−1 − 3
∑
i∈[n]

α2
i viv

>
i , E

′′
2 =

{
∀i, ‖vi‖2 ≥ (1− δ)d

}
.

Then, it suffices to bound from above the quantity Pr [M ′ � 0 ∧ E′′2 ] .
A technical complication here is that v1, . . . , vn are not independent random variables. We get

around this issue by the following “coupling” technique which introduces some additional random-
ness. Let β ∈ N (0, Idd−1) be a random variable that is independent with all the vi’s and define
B̃ = βq̄> + Z. We can verify that B̃ contains independent entries with distribution N (0, 1). Let
b̃1, . . . , b̃n be the columns of B̃. Let v̄k = vk/‖vk‖. We have that M ′ � 0 implies that

v̄>kM
′v̄k = ‖α‖44 − 3

∑
i∈[n]

α2
i 〈vi, v̄i〉2 ≥ 0 . (4.11)

We bound from above v̄>kM
′v̄k by decomposing it according to the subset S,L.

v̄>kM
′v̄k = ‖αS‖44 − 3

∑
i∈S

α2
i 〈vi, v̄i〉2 + ‖αL‖44 − 3

∑
i∈L

α2
i 〈vi, v̄i〉2

≤ ‖αS‖44 − 3
∑
i∈S

α2
i 〈vi, v̄i〉2︸ ︷︷ ︸

AS

+ ‖αL‖44 − 3α2
k〈vk, v̄k〉2︸ ︷︷ ︸

AL

(4.12)

Here AS , AL are defined above in equation (4.12). By Claim 4.5, we have |L| ≤ δn/ log d. By (3.9)
again, we have that E0 implies that ‖αL‖2 ≤ (1 + δ)d. Then, we have ‖αL‖44 ≤ maxi α

2
i · ‖αL‖2 ≤

(1 + δ)dmaxi α
2
i = (1 + δ)dα2

k. Moreover, when E′′2 happens, we have that α2
k〈vk, v̄k〉2 = α2

k‖v̄k‖2 ≥
α2
k(1− δ)d. Thus,

AL · 1(E′′2 ) = (‖αL‖44 − 3α2
k〈vk, v̄k〉2)1(E′′2 ) ≤ (1 + δ)dα2

k − 3α2
k(1− δ)d

≤ −(2−O(δ))α2
kd ≤ −(2−O(δ))

√
τd (4.13)

Then combining equation (4.11), (4.12) and (4.13), we have that when M ′ � 0 and E′′2 both
happen, it holds that AS ≥ (2−O(d))τ1/2d.
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Next we consider in more detail the random variable AS . Define random variable Y =
v̄>k B̃−k diag((αS)−k), where B̃−k is the (d−1)× (n−1) sub-matrix of B̃ that excludes the k-th col-
umn of B̃, and (αS)−k is the n−1-dimensional vector that is obtained from removing the k-th entry
of αS . Note that since k 6∈ S, we have that ‖Y ‖2 =

∑
i∈S α

2
i 〈vi, v̄i〉2, and AS = ‖αS‖44 − 3‖Y ‖2.

Thus our goal next is to understand the distribution of Y .
We observe that Y | vk is a Gaussian random variable since B̃k | vk is a Gaussian random

variable. Let `i ∈ Rn−1 denote the i-th row of the matrix B̃. Then `1, . . . , `d−1 are i.i.d Gaussian
random variable with distribution N (0, Idn). Now we consider `i | vk,i, where vk,i is the i-th
coordinates of vector vk. Note that vk,i = zi,k = ((Id − q̄q̄>)`i)k = 〈ek − q̄kq̄, `i〉 (here zi,k denotes
the k-th coordinate of zi and ek is the k-th natural basis vector in Rn). Thus, conditioning on vk,i
imposes linear constraints on `i. Let sk = ek − q̄kq̄ ∈ Rn and s̄k = sk/‖sk‖. Then `i | vk,i has
covariance Idn − s̄ks̄>k . Computing the mean of `i | vk,i will be tedious but fortunately our bound
will not be sensitive to it. Now we consider random variable `′i = (`i)−k diag((αS)−k) | vk,i in Rn−1

where (`i)−k denotes the restriction of `i to the subset [n]\{k}. Note that `′i is precisely a row
of B̃−k diag((αS)−k). We have `′i is again a Gaussian random variable and its covariance matrix
is Σ = diag((αS)−k)

(
Idn − s̄ks̄>k

)
−k,−k diag((αS)−k), where

(
Idn − s̄ks̄>k

)
−k,−k is the restriction of

Idn− s̄ks̄>k to the subsets ([n]\{k})× ([n]\{k}). Since `i’s are independent with each other, we have
Y > | v̄k = [`′1, . . . , `

′
d−1] · v̄k is Gaussian random variable with covariance ‖v̄k‖2Σ = Σ.

Next we apply Lemma B.7 on random variable Y > and obtain that Y > has concentrated norm
in the sense that for any choice of vk,

Pr
[
‖Y ‖2 ≥ tr(Σ)− ‖Σ‖ − 2

√
tr(Σ2)t | vk

]
≥ 1− e−t . (4.14)

Recall that Σ = diag((αS)−k)
(
Idn − s̄ks̄>k

)
−k,−k diag((αS)−k). Therefore, we have tr(Σ) =∑

i∈S α
2
i − ‖s̄k � (αS)−k‖2 ≥

∑
i∈S α

2
i − ‖αS‖2∞ ≥

∑
i∈S α

2
i − τ̂1/2. Moreover, we have that ‖Σ‖ ≤

‖αS‖2 ≤ τ̂1/2 and tr(Σ2) ≤ ‖αS‖44. Plugging these into equation (4.14), and using the fact that
AS = ‖αS‖44 − 3‖Y ‖2, we have that for any t ≥ 0,

Pr

[
AS ≥ ‖αS‖44 − 3‖αS‖2 + 6τ̂1/2 + 6

√
‖αS‖44t | vk

]
≤ e−t . (4.15)

For simplicity, let P = (2− O(δ))τ1/2d− 6τ̂1/2 = (2− O(δ)− o(1))τ1/2d and Q(α) = ‖αS‖44 −
3‖αS‖2. Then we have that suppose P > Q(α), by taking t = (P−Q(α))2

36‖αS‖2 in equation (4.15),

Pr [AS ≥ P | vk] ≤ exp

(
−(P −Q(α))2

36‖αS‖44

)
(4.16)

Hence, we have

Pr
[
M ′ � 0 ∧ E′′2

]
≤ E [Pr [AS ≥ P | vk]] ≤

{
exp

(
− (P−Q(α))2

36‖αS‖44

)
if P > Q(α)

1 otherwise

For notational convenience, again we define T3(α) and T4(α) as,

T3(α) =

(
Q(αS)2

‖αS‖66

)d/2

T4(α) =

(
Q(αL)2

‖αL‖66

)d/2
. (4.17)
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Intuitively, T3 and T4 are the contribution of the small coordinates and large coordinates to the
quantity E[tr(M)]dpg|α(0) ∝ Q(α)(‖α‖66)−d/2, which is the central object that we are controlling.

Using Lemma 4.6, we show that bounding E [h(α)1(Fk)] reduces to bounding the second mo-
ments of T1(α), . . . , T4(α).

Lemma 4.7. Let T1(α), T2(α), T3(α), T4(α) be defined as above. In the setting of Proposition 3.8,
we have,

E [h(α)1(Fk)] . πd/2(d/(2e))−d/2 max{E[T1(α)2]1/2,E
[
T2(α)2

]1/2}
·max

{
E
[
T3(α)2

]1/2
,E
[
T4(α)2

]1/2
, (d/1500)d/2

}
.

Proof of Lemma 4.7. By AM-GM inequality (Claim 3.7) we obtain that

det(M)1(M � 0) ≤ (d− 1)−(d−1)|tr(M)|d−11(M � 0) . (4.18)

It follows that,

W (α)1(Fk) ≤ E
[
|tr(M)|d−1

(d− 1)d−1
1(M � 0)1(Fk) | g = 0, α

]
1(E0) (by equation (4.18))

≤ E

[(
|tr(M)|
d− 1

)2(d−1)

| g = 0, α

]1/2

︸ ︷︷ ︸
:=T5(α)

E [1(M � 0)1(Fk) | g = 0, α]1/2 1(E0)︸ ︷︷ ︸
:=T6(α)

(4.19)

Here in the last step we used Cauchy-Schwarz inequality. Let T5(α) be defined as in equation (4.19),
by Corollary 4.4

T5(α)21(E0)1(E2) ≤ (1 +O(δ))2d max

{
Q(α)2d, (0.1d)2d,

(
0.1pd−1/2n1/2

)2d
}
. (4.20)

Then, combining equation (4.20) and (4.5), we obtain that

T5(α)pg|α(0)1(E0)1(E2) ≤ (1 +O(δ))d(2π)−d/2(‖α‖66)−d/2 max

{
Q(α)d,

(
0.1d1/2n1/2

)d}
1(E0)

≤ (1 +O(δ))d(π)−d/2 max


(
Q(αS)2

‖αS‖66

)d/2
,

(
Q(αL)2

‖αL‖66

)d/2
, (d/1500)d/2

1(E0)

(4.21)

Here the last inequality uses Cauchy-Schwarz inequality and Holder inequality (technically,
Lemma B.19 with η = 1/2). Using Lemma 4.6, we obtain that

T6(α) ≤ exp

(
−(P −Q(αS))2

36‖αS‖44

)
+ 1(P ≤ Q(αS)) . (4.22)
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Now we have that our final target can be bounded by

E [h(α)1(Fk)] = E
[
Vol(Sd−1)W (α)pg|α(0)1(Fk)

]
. πd/2(d/(2e))d/2 E

[
T6(α)1(Fk)(T5(α)pg|α(0)1(E0)1(E2))

]
(by equation (4.19))

≤ πd/2(d/(2e))−d/2 E
[
max{T1(α), T2(α)} ·max

{
T3(α), T4(α), (d/1500)d/2

}
1(E0)

]
(by equation (4.22) and 4.21)

. πd/2(d/(2e))−d/2 max{E[T1(α)21(E0)]1/2,E
[
T2(α)2

]1/2}
·max

{
E
[
T3(α)2

]1/2
,E [T4(α)]1/2 , (d/1500)d/2

}
.

(by Cauchy-Schwarz inequality)

The next few Lemmas are devoted to controlling the second moments of T1(α), . . . , T4(α). We
start off with T3(α).

Lemma 4.8. In the setting of Lemma 4.7, we have,

E
[
T3(α)21(E0)

]1/2 ≤ (1 +O(δ))d
(

82d

15e

)d/2
.

Proof. Let Z = ‖αS‖44 − ‖αS‖
2 =

∑n
i=1(α4

i − 3α2
i )1(|αi| ≤

√
C log d). Then Z is a sub-exponential

random variable with parameters (
√

41n, 4C log d) (by Lemma B.5). Moreover, for sufficiently
large C (depending on the choice of δ) we have |E [Z] | ≤ δ. Therefore, by Lemma B.10, choosing
ε = O(δ), we have

E
[
Q(αS)2d

]
= E

[
|Z|2d

]
≤ (1 +O(δ))2d · ((

√
41n)2d(2d)!! + (2C log d)2d(2d)!)

≤ (1 +O(δ))d(
√

41n)2d(2d)!! (Since δn ≥ 2d log d)

≤ (1 +O(δ))d (82nd/e)d .

Moreover, when E0 happens, we have ‖αS‖66 ≥ 15(1− δ)n. Hence,

E
[
T3(α)21(E0)

]
= E

[
Q(αS)2d(‖αS‖66)−d1(E0)

]
≤ (1 +O(δ))d (82nd/e)d · (15(1− δ)n)−d

≤ (1 +O(δ))d
(

82d

15e

)d
.

Next we control the second moments of T4(α).

Lemma 4.9. In the setting of Lemma 4.7, we have

Q(αL)2

‖αL‖66
1(E0) ≤ (1 + δ)d .

As a direct consequence, we have

E
[
T4(α)21(E0)

]1/2 ≤ (1 + δ)ddd/2 .
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Proof. We have

(
‖αL‖4 − 3‖αL‖2

)2
1(E0) ≤

(∑
i∈L

α6
i

)(∑
i∈L

(αi − 3/αi)
2

)
(By Cauchy-Schwarz Inequality)

≤ ‖αL‖66 ‖αL‖
2 1(E0) (since for i ∈ L, (αi − 3/αi)

2 ≤ α2
i )

≤ ‖αL‖66 (1 + δ)d1(E0) . (since when E0 happens, ‖α‖ ≤ (1 + δ)d)

The next two Lemmas control the second moments of T1(α) and T2(α).

Lemma 4.10. In the setting of Lemma 4.7, we have

E
[
T2(α)2

]
≤ (0.1)d . (4.23)

Proof. Since Q(αS) is a sub-exponential random variable with parameters (
√

41n, 4C log d) (by
Lemma B.5), we have that (by Lemma B.3)

Pr [Q(α) ≥ P ] ≤ exp((2−O(δ))Kd/82) + exp(−
√
Knd/(8C log d))

. exp((2−O(δ))Kd/82) ≤ (0.01)d .
(since K ≥ 2000 and n ≥ βd log2 d for sufficiently large β (that depends on δ))

Lemma 4.11. In the setting of Lemma 4.7, we have

E
[
T1(α)21(E1)

]
≤ (0.1)d (4.24)

Proof. Similarly to the proof of Lemma 4.10, we have that for K ≥ 400, it holds that
Pr [Q(α) ≥ P/2] ≤ (0.1)d. Then it follows that

E
[
T1(α)21(E0)

]
≤ E [1 | Q(α) ≥ P/2] Pr [Q(α) ≥ P/2]

+ E

[
exp(− P 2

144 ‖αS‖44
)1(E0) | Q(α) < P/2

]
Pr [Q(α) < P/2]

≤ (0.1)d + exp(−Kd/432) . (0.01)d . (for K ≥ 2 · 103.)

Finally using the four Lemmas above and Lemma 4.7, we can prove Proposition 3.8.

Proof of Proposition 3.8. Using Lemma 4.7, Lemma 4.8, 4.9, 4.10,4.11, we have that

E [h(α)1(Fk)] . πd/2(d/(2e))d/2 max{E[T1(α)2]1/2,E
[
T2(α)2

]1/2}
·max

{
E
[
T3(α)2

]1/2
,E [T4(α)]1/2 , (d/1500)d/2

}
. πd/2(d/(2e))−d/2 ·

(
82d

15e

)d/2
(0.01)d/2 ≤ (0.3)d .
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5 Local Maxima Near True Components

In this section we show that in the neighborhoods of the 2n true components, there are exactly
2n local maxima. Recall the set L2 was defined to be the set of points x that do not have large
correlation with any of the components:

L2 := {x ∈ Sd−1 : ∀i, ‖Pxai‖2 ≥ (1− δ)d, and |〈ai, x〉|2 ≤ δd} .

We will show that the objective function (1.1) has exactly 2n local maxima in the set Lc2, and they
are close to the normalized version of ±ai’s.

Let āi = ai
‖ai‖ be the normalized version of ai on the unit sphere. We prove the following slightly

stronger version of Theorem 3.3. (Note that Theorem 3.3 is a straightforward corollary of the
Theorem below, since w.h.p, for every i, ‖ai‖ =

√
d± Õ(1). )

Theorem 5.1. Suppose (d log d)/δ2 ≤ n ≤ d2/ logO(1) d. Then, with high probability over the choice
a1, . . . , an,

|Mf ∩ L1 ∩ Lc2| = 2n

Moreover, each of the point in Mf ∩ L ∩ Lc2 is Õ(
√
n/d3)-close to one of ±ā1, · · · ± ān.

Towards proving the Theorem, we first show that all the local minima in the set Lc2 must
have at least 0.99 correlation with one of ±āi (see Lemma 5.2). Next we show in each of the
regions 〈x, āi〉 ≥ 0.99, the objective function is strongly convex with a unique local maximum (see
Lemma 5.5).

Lemma 5.2. In the setting of Theorem 3.3, for any local maximum x ∈ L2, there exists a compo-
nent a ∈ {±āi} such that 〈x, a〉 ≥ 0.99.

We can partition points in L2 according to their correlations with the components. We say its
largest correlation is the maximum of |〈āi, x〉|, and second largest correlation is the second largest
among |〈āi, x〉|. For any point x in L2, it is in one of the three types 1) the largest correlation is at
least 0.99; 2) the largest correlation is at least

√
2 larger than the second largest correlation; 3) the

largest and second largest correlations are within a factor of
√

2. Intuitively, points in case 1 are
what we want for the Lemma, points in case 2 will have a nonzero gradient, points in case 3 will
not have a negative semidefinite Hessian (hence points in cases 2 and 3 cannot be local maxima).
We formalize this intuition in the following proof:

Proof of Lemma 5.2. Let ci = 〈x, āi〉 , without loss of generality, we can rearrange the ai’s so that

|c1| ≥ |c2| ≥ · · · ≥ |cn|.

Let k be the index such that |ck| ≥ log d√
d

and |ck+1| < log d√
d

. We will call components 1, 2, ..., k the

large components, and the rest the small components. We assume the following events happen
simultaneously (note that, with high probability, all of them are true):

1. {ai}’s satisfy the (d/∆ log n, 0.01)-RIP property for some universal constant ∆. As a direct
consequence, k � d/ log d and

∑k
i=1 c

2
i ≤ (1.01)2.). (See Definition B.20)

2. For all i, we have ‖ai‖ =
√
d(1± o(1)).

3. For all i 6= j, |〈ai, aj〉| ≤
√
d log d. As a consequence, we have |〈āi, āj〉| ≤ (1 + o(1)) log d√

d
.
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4. Concentration Lemmas B.22, B.23 and B.24 hold.

We aim to show |c1| ≥ 0.99. First, if 0.99 > |c1| >
√

2|c2|, we will show the point has nonzero
grad f(x), and hence cannot be a local maximum.

Claim 5.3. If 0.99 > |c1| >
√

2|c2|, then
|‖P

ā⊥1
∇f(x)‖

|〈∇f(x),ā1〉| <
3
4 ·
‖Π

ā⊥1
x‖

|〈x,ā1〉| + O(
√
nd log4 d)
|c1|3d2 , in particular when

|c1| ≤ 0.99 we know grad f(x) 6= 0.

Proof. Let x′ = ∇f(x), we know the gradient grad f(x) = 0 if and only if x′ is a multiple of x.

Therefore we shall show x′ is not a multiple of x by showing
|‖Π

ā⊥1
x′‖

|〈x′,ā1〉| >
‖Π

ā⊥1
x‖

|〈x,ā1〉| . Intuitively, after

one step of gradient ascent/power iterations, the point should become more correlated with ±a1.
Since x′ =

∑n
i=1 4〈x, ai〉3ai, we can write x′ = 4〈a1, x〉3a1+x′L+x′S , where x′L =

∑k
i=2 4〈x, ai〉3ai

and x′S =
∑n

i=k+1 4〈x, ai〉3ai. The first term has norm (c3
1)(1±o(1))d2 and is purely in the direction

ā1. We just need to show the other terms are small. First, we bound ‖x′S‖ by concentration
inequality Lemma B.23: for any vector x we know

‖
n∑

i=k+1

4〈x, ai〉3ai‖ ≤ O(n+
√
nd log4 d) = o((|c1|3)d2). (5.1)

On the other hand, we have

〈x′L, ā1〉 =

k∑
i=2

4〈x, ai〉3〈ai, ā1〉

≤
k∑
i=2

4|ci|3‖ai‖3 log d |〈ai, aj〉| ≤
√
d log d and ‖ai‖ = (1± o(1))

√
d

≤ 4(1 + o(1))d3/2 log d · |c2|
k∑
i=2

|ci|2 |c2| is the largest

≤ O(d3/2|c2| log d) = o(d2). (5.2)

Therefore x′L does not have large correlation with ā1. We can also bound the norm of Πā⊥1
x′L: by

RIP condition we know ā1, ..., āk form an almost orthonormal basis, therefore

‖Πā⊥1
x′L‖2 ≤ 1.012

k∑
i=2

16|ci|6.

We know ci = 〈c1ā1, āi〉+〈Πā⊥1
x, āi〉, by Claim B.18 we know that ‖a+b‖66 ≤ 1.01‖a‖66+O(‖b‖66),

therefore

k∑
i=2

|ci|6 ≤ 1.01
k∑
i=2

〈Πā⊥1
x, āi〉6 +O(

k∑
i=2

〈c1ā1, āi〉6)

≤ 1.01
k

max
i=2
〈Πā⊥1

x, āi〉4
k∑
i=2

〈Πā⊥1
x, āi〉2 +O(|c1|6 log6 d/d2) (since |〈āi, āj〉| ≤ (1+o(1)) log d√

d
)

≤ 1.013(1 + o(1))c2
2‖Πā⊥1

x‖2 +O(|c1|6 log6 d/d2),
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where the last inequality follows from RIP condition as it implies
∑k

i=2〈Πā⊥1
x, āi〉2 ≤

1.01‖Πā⊥1
x‖2.

Combining these we know

‖Πā⊥1
x′L‖ ≤ 4 ∗ 1.012.5(1 + o(1))c2

2‖Πā⊥1
x‖+O(|c1|6 log6 d/d2). (5.3)

Therefore

|‖Πā⊥1
∇f(x)‖

|〈∇f(x), ā1〉|
≤

‖x′L‖+ ‖Πā⊥1
x′S‖

4(1− o(1))|c1|3d2 − |〈x′S , ā1〉| − ‖x′S‖

≤
‖x′L‖+ ‖Πā⊥1

x′S‖
4(1− o(1))|c1|3d2

(by eqn. (5.2) and (5.1)))

≤

√
nd log4 d+ 4 ∗ 1.012.5(1 + o(1))c2

2‖Πā⊥1
x‖+O(|c1|6 log4 d/d2)

4(1− o(1))|c1|3d2

(by eqn. (5.1) and (5.3)))

≤ 3

4
·
‖Πā⊥1

x‖
|〈x, ā1〉|

+
O(
√
nd log4 d)

|c1|3d2
(since c2

1 ≥ 2c2
2)

Next we show if |c1| ≤
√

2|c2|, then the Hessian Hess f(x) is not negative semidefinite, hence
again x cannot be a local maximum

Claim 5.4. If |c1| ≤
√

2|c2|, we have σmax(Hess f(x)) > 0.

Proof. Consider the space spanned by ā1 and ā2, this is a two dimensional subspace so there is
at least one direction that is orthogonal to x. Let u such a direction (u ∈ span(ā1, ā2), 〈u, x〉 =
0, ‖u‖ = 1). By Claim 2.1, we know the Hessian is equal to

Hess f(x) = 3
n∑
i=1

〈ai, x〉2Pxaia>i Px −

(
n∑
i=1

〈ai, x〉4
)
Px.

Clearly, the first term is PSD and the second term is negative. We will consider u>Hess f(x)u,
and break both terms in the Hessian into the sum of large and small components. For the large
components, we know (c2

1‖a1‖2a1a
>
1 + c2

2‖a2‖2a2a
>
2 ) is a matrix that has smallest singular value at

least c2
2d

2(1 − o(1)) in subspace span(ā1, ā2) because a1 and a2 are almost orthogonal. Also, u is
orthogonal to x so Pxu = u, therefore for large components

u>(3

k∑
i=1

〈ai, x〉2Pxaia>i Px)u ≥ 3u>(c2
1‖a1‖2Pxa1a

>
1 Px + c2

2‖a2‖2Pxa2a
>
2 Px)u

≥ 3c2
2d

2(1− o(1)).

On the other hand, for the second term, the contribution from large components is smaller

u>(

k∑
i=1

〈ai, x〉4)Pxu =

k∑
i=1

〈ai, x〉4 ≤ (1 + o(1))d|c1|2
k∑
i=1

〈ai, x〉2 ≤ (1.03 + o(1))c2
1d

2.

For the small components, we only count their contributions to the second term (because the first
term is positive anyways), by concentration inequality Lemma B.22, we know with high probability
for all u
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u>(
n∑

i=k+1

〈ai, x〉4)Pxu =
n∑

i=k+1

〈ai, x〉4 ≤ 5n� c2
2d

2.

The last inequality is because c2
2 ≥ c2

1/2 ≥ δ2(1− o(1))/2 and n � d2δ2. Therefore, combining all
these terms we know

u>(Hess f(x))u ≥ 3c2
2d

2(1− o(1))− (1.03 + o(1))c2
1d

2 − 5n ≥ 0.5c2
2d

2 > 0.

Therefore the Hessian is not negative semidefinite, and the point x could not have been a local
maximum.

The Lemma follows immediately from the two claims.

Lemma 5.5. Under the same condition as Theorem 3.3, for all vector z in {±āi}, in the set
{x : 〈x, z〉 ≥ 0.99}there is a unique local maximum that is Õ(

√
n/d3)-close to z.

The fact that power method converges to a local maximum in this region is proven by Anand-
kumar et al.[AGJ15]. We give the proof for completeness.

Proof. Without loss of generality we assume 〈x, ā1〉 ≥ 0.99.

By Claim 5.3, we know for any x in the set {x : 〈x, ā1〉 ≥ 0.99}, ∇f(x)
‖∇f(x)‖ is in the same set.

Therefore by Schauder fixed point theorem[Wik16b] there is at least a critical point in this set.

Again by Claim 5.3 we know every critical point must satisfy
|‖Π

ā⊥1
∇f(x)‖

|〈∇f(x),ā1〉| ≤
O(
√
nd log4 d)
|c1|3d2 . Therefore

we only need to prove there is a unique critical point and it is also a local maximum. We do this
by showing the Hessian Hess f(x) is always negative semidefinite in this set.

Again let ci = 〈x, āi〉 and rearrange the ai’s so that

|c1| ≥ |c2| ≥ · · · ≥ |cn|.

Let k be the index such that |ck| ≥ log d√
d

and |ck+1| < log d√
d

. With high probability, we know {ai}
satisfy the (d/4, 0.01)-RIP property. Under RIP condition we know k � d/ log d and

∑k
i=1 c

2
i ≤ (1+

ζ)2. We also condition on event that for all i ‖ai‖ =
√
d(1±o(1)) and for all i, j |〈ai, aj〉| ≤

√
d log d

which happens with high probability when n ≥ d log d.
Now consider the Hessian

Hess f(x) = 3

n∑
i=1

〈ai, x〉2Pxaia>i Px −

(
n∑
i=1

〈ai, x〉4
)
Px.

The second term is obviously larger than c4
1(1− o(1))d2 = (1− o(1))d2. Therefore we only need

to show the spectral norm of the first term is much smaller. We can break the first term into 3
parts: the first component, components 2 to k, and components k+1 to n. For the first component,
we know in the set ‖Pxa1‖ ≤ (1 + o(1))

√
0.02d, so

‖〈a1, x〉2Pxa1a
>
1 Px‖ ≤ (1 + o(1)) · 0.02d2. (5.4)

For the second component,

‖
k∑
i=2

〈ai, x〉2Pxaia>i Px‖ ≤ (1 + o(1))|c2
2|d2‖

k∑
i=2

āiā
>
i ‖ ≤ 0.03d2. (5.5)
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Here the last inequality used the fact that A is RIP and therefore
∑k

i=2 āiā
>
i cannot have large

eigenvalue. Finally for the third component we can bound it directly by concentration inequality
Lemma B.24,

‖
n∑

i=k+1

〈ai, x〉2Pxaia>i Px‖ ≤ O(n+
√
nd log4 d)� d2. (5.6)

Taking the sum of these three equations (5.4-5.6), we know Hess f(x) is always negative semidef-
inite in the set. Therefore the set can only have a unique critical point which is also a local
maximum.

6 Conclusion

We analyze the optimization landscape of the random over-complete tensor decomposition problem
using the Kac-Rice formula and random matrix theory. We show that in the superlevel set L that
contains all the points with function values barely larger than the random guess, there are exactly
2n local maxima that correspond to the true components. This implies that with an initialization
slight better than the random guess, local search algorithms converge to the desired solutions. We
believe our techniques can be extended to 3rd order tensors, or other non-convex problems with
structured randomness.

The immediate open question is whether there is any other spurious local maximum outside this
superlevel set. Answering it seems to involve solving difficult questions in random matrix theory.
Another potential approach to unravel the mystery behind the success of the non-convex methods
is to analyze the early stage of local search algorithms and show that they will enter the superlevel
set L quickly from a good initialization.
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A Brief introduction to manifold optimization

Let M be a Riemannian manifold. For every x ∈ M, let TxM be the tangent space to M at x,
and Px denotes the projection to the tangent space TxM. Let grad f(x) ∈ TxM be the gradient of
f at x on M and Hess f(x) be the Riemannian Hessian. Note that Hess f(x) is a linear mapping
from TxM onto itself.

In this paper, we work with M = Sd−1, and we view it as a submanifold of Rd. We also
view f as the restriction of a smooth function f̄ to the manifold M. In this case, we have that
TxM = {z ∈ Rd : z>x = 0}, and Px = Id− xx>. The gradient can be computed by,

grad f(x) = Px∇f̄(x) ,

where ∇ is the usual gradient in the ambient space Rd. Moreover, the Riemannian Hessian is
defined as,

∀ξ ∈ TxM, Hess f(x)[ξ] = Px(∇grad f(x)[ξ])

= Px∇2f̄(x)ξ − (x>∇f̄(x))ξ .

Here we refer the readers to the book [AMS07] for the derivation of these formulae and the
exact definition of gradient and Hessian on the manifolds.4

B Toolbox

In this section we collect most of the probabilistic statements together. Most of them follow from
basic (but sometimes tedious) calculation and calculus. We provide the full proofs for completeness.

B.1 Sub-exponential random variables

In this subsection we give the formal definition of sub-exponential random variables, which is used
heavily in our analysis. We also summarizes it’s properties.

Definition B.1 (c.f.[Wai15, Definition 2.2]). A random variable X with mean µ = E [X] is sub-
exponential if there are non-negative parameters (ν, b) such that

E
[
eλ(X−µ)

]
≤ e

ν2λ2

2 , ∀λ ∈ R, |λ| < 1/b .

The following lemma gives a sufficient condition for X being a sub-exponential random variable.

Lemma B.2. Suppose random variable X satisfies that for any t ≥ 0,

Pr
[
|X − µ| ≥ p

√
t+ qt

]
≤ 2e−t .

Then X is a sub-exponential random variable with parameter (ν, b) satisfying ν . p and b . q.

The following Lemma gives the reverse direction of Lemma B.2 which controls the tail of a
sub-exponential random variable.

4For example, the gradient is defined in [AMS07, Section3.6, Equation (3.31)], and the Hessian is defined in[AMS07,
Section 5.5, Definition 5.5.1]. [AMS07, Example 5.4.1] gives the Riemannian connection of the sphere Sd−1 which
can be used to compute the Hessian.
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Lemma B.3 ([Wai15, Proposition 2.2]). Suppose X is a sub-exponential random variable with
mean 0 and parameters (ν, b). Then,

Pr [X ≥ x] ≤ max{e−x2/(2ν2), e−x/(2b)} ≤ e−x2/(2ν2) + e−x/(2b) .

A summation of sub-exponential random variables remain sub-exponential (with different pa-
rameters).

Lemma B.4 (c.f. [Wai15]). Suppose independent random variable X1, . . . , Xn are sub-exponential
variables with parameter (ν1, b1), . . . , (νn, bn) respectively, then X1 + · · ·+ Xn is a sub-exponential

random variable with parameter (ν∗, b∗) where ν∗ =
√∑

k∈[n] ν
2
k and b∗ = maxk bk.

The following Lemma uses the Lemma above to prove certain sum of powers of Gaussian random
variables are sub-exponential random variables.

Lemma B.5. Let x ∼ N (0, 1) and z = (x4 − 3x2)1(|x| ≤ τ1/4) where τ > C for a sufficiently
large constant C. Then we have that Z is a sub-exponential random variable with parameter (ν, b)
satisfying ν =

√
41 and b = (4 + oτ (1))

√
τ .

Proof. We verify that Z satisfies the Bernstein condition

E
[
|z|k
]
≤ 1

2
k!ν2bk−2 ∀k ≥ 2 (B.1)

For k = 2, we have that E
[
z2
]
≤ E

[
x8 − 6x6 + 9x4

]
= 41 = 1

2 · 2! · ν2. For any k with (1 −
oτ (1)) e

√
τ

4 ≥ k > 3, we have

E
[
|z|k
]
≤ E

[
x4k1(

√
3 ≤ |x| ≤ τ1/4)

]
+

(
9

4

)k
(since |z| ≤ 9

4 when |x| ≤ 3)

= (4k − 1)!! + (9/4)k ≤ 22k(2k)! + (9/4)k

≤ 22k((2k + 1)/e)2k+1 + (9/4)k (by Claim B.16)

≤ 1

2
(1 + oτ (1))k!(4

√
τ)k−2 (since (1− oτ (1)) e

√
τ

4 ≥ k adn τ is large enough)

≤ 1

2
k!bk−2 (B.2)

On the other hand, when k ≥ (1− oτ (1)) e
√
τ

4 , we have

E
[
|z|k
]
≤ τk +

(
9

4

)k
(since |z| . τ1/4 a.s)

≤
(

4k
√
τ

e
(1 + oτ (1))

)k
≤ 1

2
e(k/e)kbk−2 (since k &

√
τ is large enough and b = 4(1 + oτ (1))

√
τ)

≤ 1

2
k!bk−2
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B.2 Norm of Gaussian random variables

The following Lemma shows that the norm of a Gaussian random variable has an sub-exponential
upper tail and sub-Gaussian lower tail.

Lemma B.6 ([HKZ12b, Proposition 1.1]). Let A ∈ Rn×n be a matrix and Σ = A>A. Let x ∼
N (0, Idn). Then for all t ≥ 0,

Pr
[
‖Ax‖2 − tr(Σ) ≥ 2

√
tr(Σ2)t+ 2‖Σ‖t

]
≤ e−t

Pr
[
‖Ax‖2 − tr(Σ) ≤ −2

√
tr(Σ2)t

]
≤ e−t .

Moreover, ‖Ax‖2 is a sub-exponential random variable with parameter (ν, b) with ν .
√

tr(Σ2) and
b . ‖Σ‖.

We note that this is a slight strengthen of [HKZ12b, Proposition 1.1] with the lower tail. The
strengthen is simple. The key of [HKZ12b, Proposition 1.1] is to work in the eigenspace of Σ and
apply [LM00, Lemma 1]. The lower tail can be bounded exactly the same by using the lower tail
guarantee of [LM00, Lemma 1]. The second statement follows simply from Lemma B.2.

The following Lemma is a simple helper Lemma that says that the norm of a product of a
Gaussian matrix with a vector has a sub-Gaussian lower tail.

Lemma B.7. Let v ∈ Rm be a fixed vector and z1, . . . , zm ∈ Rn be independent Gaussian random
with mean µ ∈ Rn and covariance Σ. Then X = [z1, . . . , zm]v is a Gaussian random variable with
mean (v>1)µ and covariance ‖v‖2Σ.

Moreover, we have that for any t ≥ 0,

Pr
[
‖X‖2 ≥ tr(Σ)− ‖Σ‖ − 2

√
tr(Σ)t

]
≥ 1− e−t . (B.3)

Proof. The mean and variance ofX can be computed straightforwardly. Towards establishing (B.3),
let µ̄ = µ/‖µ‖, and we define X ′ = (Id−µ̄µ̄>)X. Thus we have ‖X‖ ≥ ‖X ′‖ and that X ′ is Gaussian
random variable with mean 0 and covariance Σ′ = (Id− µ̄µ̄>)Σ(Id− µ̄µ̄>). Then by Lemma B.6,
we have that

Pr
[
‖X‖2 ≥ tr(Σ′)− 2

√
tr(Σ′)t

]
≥ Pr

[
‖X ′‖2 ≥ tr(Σ′)− 2

√
tr(Σ′)t

]
≥ 1− e−t

Finally we observe that trΣ ≥ tr(Σ′) ≥ tr(Σ)−‖Σ‖ and this together with equation above completes
the proof.

B.3 Moments of sub-exponential random variables

In this subsection, we give several Lemmas regarding the estimation of the moments of (truncated)
sub-exponential random variables.

We start with a reduction Lemma that states that one can control the moments of sub-
exponential random variable with the moments of the Gaussian random variable and exponential
random variables.

Lemma B.8. Suppose X is a sub-exponential random variable with mean 0 and parameters (ν, b).
Let X1 ∼ N (0, ν2) and X2 be a exponential random variable with mean 2b. Let p ≥ 1 be an integer
and s ≥ 0. Then,

E [Xp1(X ≥ s)] ≤ sp(e−s2/(2ν2) + e−s/(2b)) + p
√

2πν E
[
Xp−1

1 1(X1 ≥ s)
]

+ 2pbE
[
Xp−1

2 1(X2 ≥ s)
]
.
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Proof. Let p(x) be the density of X and let G(x) = Pr[X ≥ x]. By Lemma B.3 we have G(x) ≤
e−x

2/(2ν2) + e−x/(2b). Then we have

E [Xp1(X ≥ s)] =

∫ ∞
s

xpp(x)dx = −
∫ ∞
s

xpdG(x)

= −xpG(x)
∣∣∞
s

+

∫ ∞
s

pxp−1G(x)dx (By integration by parts)

≤ sp(e−s2/(2ν2) + e−s/(2b)) +

∫ ∞
s

pxp−1(e−x
2/(2ν2) + e−x/(2b))dx

= sp(e−s
2/(2ν2) + e−s/(2b)) + p

√
2πν E

[
Xp−1

1 1(X1 ≥ s)
]

+ 2pbE
[
Xp−1

2 1(X2 ≥ s)
]
.

Next we bound the p-th moments of a sub-exponential random variable with zero mean.

Lemma B.9. Let p be an even integer and let X be a sub-exponential random variable with mean
0 and parameters (ν, b). Then we have that

E [|X|p] . νpp!! + (2b)pp! (B.4)

Proof. Let X1 ∼ N (0, ν2) and X2 be a exponential random variable with mean 2b. By Lemma B.8,
we have that

E [Xp1(X ≥ 0)] ≤ p
√

2πν E
[
Xp−1

1 1(X1 ≥ 0)
]

+ 2pbE
[
Xp−1

2

]
.

. νpp!! + (2b)pp! .

For the negative part we can obtain the similar bound, E [(−X)p1(X ≤ 0)] . νpp!!+(2b)pp!. These
together complete the proof.

The Lemma above implies the bound for the moments of sub-exponential variable with arbitrary
mean via Holder inequality.

Lemma B.10. Let X be a sub-exponential random variable with mean µ and parameters (ν, b).
Let p be an integer. Then for any ε ∈ (0, 1) we have,

E |X|p .
1

εp−1
|µ|p +

1

(1− ε)p−1
(νpp!! + (2b)pp!) .

Proof. Write X = µ + Z where Z has mean 0. Then we have that for any ε ∈ (0, 1), by Holder
inequality,

E [|X|p] = E [(µ+ Z)p] ≤ 1

εp−1
|µ|p +

1

(1− ε)p−1 E [|Z|p] .

.
1

εp−1
|µ|p +

1

(1− ε)p−1
(νpp!! + (2b)pp!) . (by Lemma B.9)

The next few Lemmas are to bound the moments of a truncated sub-exponential random vari-
able. We use Lemma B.8 to reduce the estimates to Gaussian and exponential cases. Thus, we first
bound the moment of a truncated Gaussian.
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Claim B.11. Suppose X ∼ N (0, 1). Then, as p → ∞, we have for s ≥ √p, E [|X|p1(|X| ≥ s)] ≤
(1 + op(1))p · p · e−s2/2sp

Proof. We assume p to be an odd number for simplicity. The even case can be bounded by the odd
case straightforwardly. Let Γ(·, ·) be the upper incomplete Gamma function, we have,∫ ∞

s
Xpe−x

2/2dx = −2
p−1

2 · Γ(
p+ 1

2
, x2/2)

∣∣∣∞
s

(since ∂Γ(s,x)
∂x = −xs−1e−x [Wik16a])

= 2
p−1

2 · Γ(
p+ 1

2
, s2/2)

= 2
p−1

2 ((p− 1)/2)! · e−s2/2
(p−1)/2∑
k=0

1

k!

(
s2

2

)k
(see equation (2) of [Wei16])

≤ (1 + op(1))p · 2
p−1

2 ((p− 1)/2)! · e−s2/2 · (p− 1)/2 ·
(
s2e

p− 1

)(p−1)/2

(since k! ≥ e(k/e)k and 1
k!

(
s2

2

)k
is maximized at k = (p− 1)/2 when s2 ≥ p)

≤ (1 + op(1))p · p · e−s2/2sp .

The next Claim estimates the moments of a truncated exponential random variable.

Claim B.12. Suppose X has exponential distribution with mean 1 (that is, the density is p(x) =
e−x). Then, as p→∞, for any s ≥ (1 + ε)p and ε ∈ (0, 1), we have E [Xp1(X ≥ s)] . e−ssp/ε

Proof. We have that ∫ ∞
s

e−xxpdx = −e−xxp
p∑

k=0

p!

(p− k)!
x−k

∣∣∣∞
s

= e−ssp
p∑

k=0

p!

(p− k)!
s−k

≤ e−ssp
∑
k

(
1

1 + ε

)k
(Since s ≥ (1 + ε)p)

. e−ssp/ε .

Combing the two Lemmas and use Lemma B.8 we obtain the bounds for sub-exponential random
variables.

Lemma B.13. Suppose X is a sub-exponential random variable with mean µ and parameters (ν, b).
Then, for integer p ≥ 2, real numbers η, ε ∈ (0, 1) and s ≥ max{ν√p, 2bp(1 + η)}, we have

E [|X|p1(|X| ≥ µ+ s)] ≤ 1

εp−1
|µ|p +

1

(1− ε)p−1
sp
(

(1 + ζp)
pp2e−s

2/(2ν2) + pe−s/(2b)/η
)
.

where ζp → 0 as p→∞.

34



Proof. Write X = µ + Z where Z has mean 0. Then we have that for any ε ∈ (0, 1), by Holder
inequality,

|X|p = (µ+ Z)p ≤ 1

εp−1
|µ|p +

1

(1− ε)p−1
|Z|p . (B.5)

Therefore it remains to bound E [|Z|p]. Let p(z) be the density of Z. Since Z is sub-exponential,
we have that p(z) ≤ max{e−z2/(2ν2), e−z/(2b)} ≤ e−z2/(2ν2) + e−z/(2b). Let Z1 ∼ N (0, ν2) and Z2 be
an exponential random variable with mean 2b. Then by Lemma B.8, we have

E [|Z|p1(|Z| ≥ s)] ≤ sp(e−s2/(2ν2) + e−s/(2b)) + p
√

2πν E
[
Zp−1

1 1(X1 ≥ s)
]

+ 2pbE
[
Xp−1

2 1(X2 ≥ s)
]

≤ sp(e−s2/(2ν2) + e−s/(2b)) + p
√

2πνp E
[
(Z1/ν)p−11(X1/ν ≥ s/ν)

]
+ p(2b)p E

[
(X2/2b)

p−11(X2/(2b) ≥ s/(2b))
]

≤ sp(e−s2/(2ν2) + e−s/(2b)) + p2
√

2πe−s
2/(2ν2)sp(1 + op(1))p + pe−s/(2b)sp/η

. p2
√

2πe−s
2/(2ν2)sp(1 + op(1))p + pe−s/(2b)sp/η .

Combing inequality above and equation (B.5) we complete the proof.

Finally, the following is a helper claim that is used in the proof of Claim B.12.

Claim B.14. For any µ ∈ R and β > 0, we have that∫
e−βx(µ+ x)ddx = −e

−βx(µ+ x)d

β

d∑
k=0

d!

(d− k)!
((µ+ x)β)−k (B.6)

Proof. Let F (x) denote the RHS of (B.6). We differentiate F (x) and obtain that

dF (x)

dx
= e−βx(µ+ x)d

d∑
k=0

d!

(d− k)!
((µ+ x)β)−k − e−βx

β

d−1∑
k=0

d!

(d− k − 1)!

(µ+ x)d−k−1

βk

= e−βx
d∑

k=0

d!

(d− k)!

(µ+ x)d−k

βk
− e−βx

d∑
k=1

d!

(d− k)!

(µ+ x)d−k

βk

= e−βx(1 + x)d .

Therefore, the claim follows from integration both hands of the equation above.

B.4 Auxiliary Lemmas

Lemma B.15. Let τ̄ be unit vector in Rn, w ∈ Rn, and z ∼ N (0, σ2 · (Idn− q̄q̄>)). Then ‖z�w‖2
is a sub-exponential random variable with parameter (ν, b) satisfying ν . σ2‖w‖24 and b . σ2‖w‖2∞.
Moreover, it has mean σ2(‖w‖2 − 〈q̄�2, w�2〉).
Proof. We have that z � w is a Gaussian random variable with covariance matrix Σ =
σ2Pq̄ diag(w�2)Pq̄. Then, z�w can be written as Σ1/2x where x ∼ N (0, Idn). Then by Lemma B.6,
we have that ‖z �w‖2 = ‖Σ1/2x‖2 is a sub-exponential random variable with parameter (ν, b) sat-
isfying

ν2 . tr(Σ2) = σ4tr(Pq̄ diag(w�2)Pq̄ diag(w�2)Pq̄)

≤ σ4tr(diag(w�2)Pq̄ diag(w�2))

= σ4tr(diag(w�4)Pq̄)

≤ σ4‖w‖44 .
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Here at the second and forth line we both used the fact that tr(PA) ≤ tr(A) holds for any symmetric
PSD matrix and projection matrix P .

Moreover, we have b . ‖Σ‖ ≤ σ2 maxk w
2
k. Finally, we have the mean of ‖z � w‖2 is tr(Σ) =

σ2(‖w‖2 − 〈q̄�2, w�2〉), which completes the proof.

Claim B.16 (folklore). We have that e
(
n
e

)n ≤ n! ≤ e
(
n+1
e

)n+1
. It follows that

2e

(
2(n− 1)

e

)n−1

≤ (2n− 2)!! ≤ (2n− 1)!! ≤ (2n)!! = 2nn! ≤ e

2

(
2(n+ 1)

e

)n+1

.

Claim B.17. For any ε ∈ (0, 1) and A,B ∈ R, we have (A+B)d ≤ max{(1+ε)d|A|d, (1/ε+1)d|B|d}

Claim B.18. For any vectors a, b, and any ε > 0, we have ‖a+ b‖66 ≤ (1 + ε)‖a‖66 +O(1/ε5)‖b‖66.

Proof. By Cauchy-Schwartz we know we only need to prove this when a, b are real numbers instead
of vectors. For numbers a, b, (a+ b)6 = a6 + 6a5b+ 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6. All the
intermediate terms aibj(i + j = 6) can be bounded by ε/56 · a6 + O(1/ε5)b6, therefore we know
(a+ b)6 ≤ (1 + ε)a6 +O(1/ε5)b6.

Lemma B.19. For any vector z ∈ Rn, and any partition of [n] into two subsets S and L, and any
η ∈ (0, 1), we have that,

Q(z)d(‖z‖66)−d/2 ≤ 1

ηd/2−1

(
Q(zS)2

‖zS‖66

)d/2
+

1

(1− η)d/2−1

(
Q(zL)2

‖zL‖66

)d/2
.

Proof. By Cauchy-Schwarz inequality, we have that(
‖z‖44 − ‖z‖

2
)2

(‖z‖66)−1 =
(Q(zS) +Q(zL))2

‖zS‖66 + ‖zL‖66
≤ Q(zS)2

‖zS‖66
+
Q(zL)2

‖zL‖66
.

Therefore, we obtain that

(
‖z‖44 − ‖z‖

2
)d

(‖z‖66)−d/2 ≤

(
Q(zS)2

‖zS‖66
+
Q(zL)2

‖zL‖66

)d/2

≤ 1

ηd/2

(
Q(zS)2

‖zS‖66

)d/2
+

1

(1− η)d/2

(
Q(zL)2

‖zL‖66

)d/2
.

(by Holder inequality)

B.5 Restricted Isometry Property and Corollaries

In this section we will describe the Restricted Isometry Property (RIP), which was introduced in
[CT05]. This is the crucial tool that we used in Section 5.

Definition B.20. [RIP property] Suppose A ∈ Rd×n is a matrix whose columns have unit norm.
We say the matrix A satisfies the (k, δ)-RIP property, if for any subset S of columns of size at most
k, let AS be the d× |S| matrix with columns in S, we have

1− δ ≤ ‖AS‖ ≤ 1 + δ.

In our case the random components ai’s do not have unit norm, we abuse notation and say A
is RIP if the column normalized matrix satisfy the RIP property.
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Intuitively RIP condition means the norm of Ax is very close to ‖x‖, if the number of nonzero
entries in x is at most k. From [] we know a random matrix is RIP with high probability:

Theorem B.21 ([Can08]). For any constant δ > 0, when k = d/∆ log n for large enough constant
∆, with high probability a random Gaussian matrix is (k, δ)-RIP.

In our analysis, we mostly use the RIP property to show any given vector x cannot have large
correlation with many components ai’s.

B.6 Concentration Inequalities

We first show if we only look at the components with small correlations with x, the function value
cannot be much larger than 3n.

Lemma B.22. With high probability over ai’s, for any unit vector x, for any threshold τ > 1

n∑
i=1

1(|〈ai, x〉| ≤ τ)〈ai, x〉4 ≤ 3n+O((
√
nd+ dτ4) log d).

Proof. Let Xi = 1(|〈ai, x〉| ≤ τ)〈ai, x〉4 − E[1(|〈ai, x〉| ≤ τ)〈ai, x〉4]. Notice that E[1(|〈ai, x〉| ≤
τ)〈ai, x〉4] ≤ E[〈ai, x〉4] = 3. Clearly E[Xi] = 0 and Xi ≤ τ4. We can apply Bernstein’s inequality,
and we know for any x,

Pr[
n∑
i=1

Xi ≥ t] ≤ exp

(
− t2

15nd+ τ4t

)
.

When t ≥ C((
√
nd + dτ4) log d) for large enough constant, the probability is smaller than

exp(−C ′d log d) for large constant C ′, so we can union bound over all vectors in an ε-net with
ε = 1/d3. This is true even if we set the threshold to 2τ .

For any x not in the ε-net, let x′ be its closest neighbor in ε-net, when ai’s have norm bounded
by O(

√
d) (which happens with high probability), it is easy to show whenever |〈x, ai〉| ≤ τ we

always have |〈x′, ai〉| ≤ 2τ . Therefore the sum for x cannot be much larger than the sum for x′.

Using very similar techniques we can also show the contribution to the gradient for these small
components is small

Lemma B.23. With high probability over ai’s, for any unit vector x, for any threshold τ > 1

‖
n∑
i=1

1(|〈ai, x〉| ≤ τ)〈ai, x〉3ai‖ ≤ O(n+ (
√
nd+ dτ4) log d).

Proof. Let v =
∑n

i=1 1(|〈ai, x〉| ≤ τ)〈ai, x〉3ai. First notice that the inner-product 〈v, x〉 is exactly
the sum we bounded in Lemma B.22. Therefore we only need to bound the norm in the orthogonal
direction of x. Since ai’s are Gaussian we know 〈ai, x〉 and Pxai are independent. So we can apply
vector Bernstein’s inequality, and we know

Pr[‖
n∑
i=1

1(|〈ai, x〉| ≤ τ)〈ai, x〉3Pxai‖ ≥ t] ≤ d exp

(
− t2

15nd+ τ4t

)
.

By the same ε-net argument as Lemma B.22 we can get the desired bound.
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Finally we prove similar conditions for the tensor T applied to the vector x twice.

Lemma B.24. With high probability over ai’s, for any unit vector x, for any threshold τ > 1

‖
n∑
i=1

1(|〈ai, x〉| ≤ τ)〈ai, x〉2aia>i ‖ ≤ O(n+ (
√
nd+ dτ4) log d).

Proof. Let H =
∑n

i=1 1(|〈ai, x〉| ≤ τ)〈ai, x〉2aia>i . First notice that the quadratic form x>Hx is
exactly the sum we bounded in Lemma B.22. We will bound the spectral norm in the orthogonal
direction of x, and use the fact that H is a PSD matrix, so ‖H‖ ≤ 2(x>Hx + ‖PxHPx|) (this is
basically the fact that (a+ b)2 ≤ 2a2 + 2b2). Since ai’s are Gaussian we know 〈ai, x〉 and Pxai are
independent. So we can apply matrix Bernstein’s inequality, because E[Pxaia

>
i Px] = Px, we know

Pr[‖
n∑
i=1

1(|〈ai, x〉| ≤ τ)〈ai, x〉2(Pxaia
>
i Px − Px)‖ ≥ t] ≤ d exp

(
− t2

15nd+ τ4t

)
.

By the same ε-net argument as Lemma B.22 we can get the desired bound.

C Missing proofs in Section 3

Proof of Lemma 3.4. Let A = [a1, . . . , an]. First of all by standard random matrix theory (see, e.g.,
[Section 3.3][LT13] or [RV10, Theorem 2.6]), we have that with high probability, ‖A‖ ≤

√
n+1.1

√
d.

Therefore, we have that with high probability
∑
〈ai, x〉2 ≤ ‖A‖ ≤ n+ 3

√
nd. By the RIP property

of random matrix A (see [BDDW08, Theorem 5.2] or Theorem B.21), we that with high probability,
equation (3.4) holds.

Finally, using a straightforward ε-net argument and union bound, we have that for every unit
vector x,

∑n
i=1〈ai, x〉4 ≥ 15n − O(

√
nd log d). Therefore, when 1/δ2 · d log2 d ≤ n, equation (3.5)

also holds.
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