
A hierarchical loss and its problems when classifying
non-hierarchically

Cinna Wu1, Mark Tygert1*, Yann LeCun2

1 Facebook, 1 Facebook Way, Menlo Park, CA 94025
2 Facebook, 770 Broadway, New York, NY 10003

* corresponding author: tygert@fb.com

Abstract

Failing to distinguish between a sheepdog and a skyscraper should be worse and
penalized more than failing to distinguish between a sheepdog and a poodle; after all,
sheepdogs and poodles are both breeds of dogs. However, existing metrics of failure
(so-called “loss” or “win”) used in textual or visual classification/recognition via neural
networks seldom leverage a-priori information, such as a sheepdog being more similar to
a poodle than to a skyscraper. We define a metric that, inter alia, can penalize failure
to distinguish between a sheepdog and a skyscraper more than failure to distinguish
between a sheepdog and a poodle. Unlike previously employed possibilities, this metric
is based on an ultrametric tree associated with any given tree organization into a
semantically meaningful hierarchy of a classifier’s classes. An ultrametric tree is a tree
with a so-called ultrametric distance metric such that all leaves are at the same distance
from the root. Unfortunately, extensive numerical experiments indicate that the
standard practice of training neural networks via stochastic gradient descent with
random starting points often drives down the hierarchical loss nearly as much when
minimizing the standard cross-entropy loss as when trying to minimize the hierarchical
loss directly. Thus, this hierarchical loss is unreliable as an objective for plain, randomly
started stochastic gradient descent to minimize; the main value of the hierarchical loss
may be merely as a meaningful metric of success of a classifier.

Introduction 1

Metrics for classifier accuracy used in the neural network methods of [1] seldom account 2

for semantically meaningful organizations of the classes; these metrics neglect, for 3

instance, that sheepdogs and poodles are dogs, that dogs and cats are mammals, that 4

mammals, birds, reptiles, amphibians, and fish are vertebrates, and so on. Below, we 5

define a metric — the amount of the “win” or “winnings” for a classification — that 6

accounts for a given organization of the classes into a tree. During an optimization (also 7

known as “training”), we want to maximize the win or, equivalently, minimize the “loss” 8

(loss is the negative of the win). We contrast the hierarchical win to the existing 9

universal standard, the cross-entropy loss discussed by [1] (and by many others). We 10

caution that several of our experiments indicate that plain stochastic gradient descent 11

optimization with random starting points can get stuck in local optima; even so, the 12

hierarchical win can serve as a good metric of success or figure of merit for the accuracy 13

of the classifier. 14

November 25, 2019 1/19



The approach detailed below is a special case of the general methods of [2], [3], and 15

their references. The particular special cases discussed by them and by [4–9] allocate 16

different weights to different leaves, not leveraging “ultrametric trees” as in the present 17

paper (an ultrametric tree is a tree with a so-called ultrametric distance metric such 18

that all leaves are at the same distance from the root, as in the phylogenetics discussed, 19

for example, by [10]). The distinguishing characteristic of the distance metric 20

constructed below is that all leaves are at the same distance from the root, as in an 21

ultrametric tree; this provides a definition and measure of successful classification that 22

is different from other options. 23

A related topic is hierarchical classification, as reviewed by [11] (with further use 24

more recently by [12] and [13], for example); however, the present paper considers only 25

classification into a given hierarchy’s finest-level classes. The design options for 26

classification into only the finest-level classes are more circumscribed, yet such 27

classification is easier to use, implement, and interface with existing codes. The existing 28

standard cross-entropy is the chief alternative in the setting of the present paper (that 29

is, for classification into only the finest-level classes). Cross-entropy loss is the negative 30

of the logarithm of our hierarchical win when the hierarchy is “flat,” that is, when the 31

hierarchy is the degenerate case in which all classes are leaves attached to the same root. 32

Extensive experiments demonstrate the advantages of hierarchical loss in comparison to 33

the conventional cross-entropy. 34

Hierarchical classification, such as that reviewed by [11], is more sophisticated (and 35

potentially more powerful) than what the present article considers. The present paper 36

only changes the metric of success (and objective function), not altering the procedure 37

for classification — hierarchical procedures for classification are often avoided due to 38

complications of systems development and systems programming. We were tasked with 39

changing the figure of merit for measuring success of a classifier without being allowed 40

to pursue more ambitious, full-blown hierarchical processes for classification. The actual 41

real-world motivation for the hierarchical loss of the present article was in recommending 42

places to users, where (for example) sending users to a Vietnamese restaurant when 43

they request a Thai restaurant should be penalized less than sending them to a park 44

instead — different kinds of restaurants are more similar to each other than to a park. 45

We warn that minimizing the hierarchical loss directly via the usual stochastic 46

gradient descent with random starting points was often fruitless even in relatively simple 47

numerical experiments reported below. The complexity of systems deployed in practice 48

typically makes hierarchical procedures for optimization very hard to implement, yet 49

altering only the objective of the optimization has frustratingly little effect on the 50

hierarchical loss during several tests in Section Results and discussion below. 51

The remainder of the present paper has the following structure: Section Methods 52

constructs the hierarchical loss and win. Section Results and discussion illustrates and 53

evaluates the hierarchical loss and win via several numerical experiments. 54

Section Conclusion draws conclusions and proposes directions for future work. 55

Methods 56

Concretely, suppose that we want to classify each input into one of many classes, and 57

that these classes are the leaves in a tree which organizes them into a semantically 58

meaningful hierarchy. Suppose further that a classifier maps an input to an output 59

probability distribution over the leaves, hopefully concentrated on the leaf corresponding 60

to the correct class for the input. We define the probability of any node in the tree to 61

be the sum of the probabilities of all leaves falling under the node (the node represents 62

an aggregated class consisting of all these leaves); a leaf falls under the node if the node 63

is on the path from the root to the leaf. We then define the amount of the “win” or 64

November 25, 2019 2/19



acipenseriformes

paddlefish sturgeon

acipenser

acipenser
(oxyrinchus)

acipenser
(other)

huso
pseudo-

scaphirhynchus
scaphirhynchus

sturgeon
(other)

Fig 1. This is a hierarchy of types of fish (but not the whole hierarchy from
Subsection DBpedia fish of Section Results and discussion).

“winnings” to be the weighted sum (with weights as detailed shortly) of the probabilities 65

of the nodes along the path from the root to the leaf corresponding to the correct class. 66

To calculate the win, we sum across all nodes on the path from the root to the leaf 67

corresponding to the correct class, including both the root and the leaf, weighting the 68

probability at the first node (that is, at the root) by 1/2, weighting at the second node 69

by 1/22, weighting at the third node by 1/23, weighting at the fourth node by 1/24, and 70

so on until the final leaf. We then add to this sum the probability at the final leaf, 71

weighted with the same weight as in the sum, that is, we double-count the final leaf. We 72

justify the double-counting shortly. 73

To compute the probability of each node given the probability distribution over the 74

leaves, we propagate the leaf probabilities through the tree as follows. We begin by 75

storing a zero at each node in the tree. Then, for each leaf, we add the probability 76

associated with the leaf to the value stored at each node on the path from the root to 77

the leaf, including at the root and at the leaf. We save these accumulated values as the 78

propagated probabilities (storing the value 1 at the root — the sum of all the 79

probabilities is 1 of course). 80

Thus, if the probability of the final leaf is 1, then the win is 1. The win can be as 81

large as 1 (this happens when the classification is completely certain and correct) or as 82

small as 1/2 (this happens when the classification is as wrong as possible). The win 83

being 1 whenever the probability of the final leaf is 1 — irrespective of which is the final 84

leaf — means that the weights form an “ultrametric tree,” as in the phylogenetics 85

discussed, for example, by [10]. This justifies double-counting the final leaf. 86

Figs 1–4 illustrate the evaluation of the hierarchical win via examples. The following 87

two subsections summarize in pseudocode the algorithms for propagating the 88

probabilities and for calculating the win, respectively (the latter algorithm runs the 89

former as its initial step). 90

An algorithm for propagating probabilities 91

Input: a discrete probability distribution over the leaves of a tree 92

Output: a scalar value (the total probability) at each node in the tree 93

Procedure: 94

Store the value 0 at each node in the tree. 95

For each leaf, 96

for each node in the path from the root to the leaf (including both the root and the leaf), 97

add to the value stored at the node the probability of the leaf. 98

November 25, 2019 3/19



acipenseriformes
+1/2

paddlefish
sturgeon
+1/4

acipenser

acipenser
(oxyrinchus)

acipenser
(other)

huso
pseudo-

scaphirhynchus
scaphirhynchus

sturgeon
(other)

Fig 2. This depicts the hierarchy of Fig 1 when the correct target leaf is “acipenser
(oxyrinchus)” but the leaf predicted with probability 1 (the “single best class” of
Subsection Choosing a single best class) is “huso” (as indicated with a box around
“huso”). In this case, the hierarchical win is 1/2 + 1/4 = 3/4, as “acipenseriformes” and
“sturgeon” are the nodes on both the path from the root “acipenseriformes” to
“acipenser (oxyrinchus)” and the path from the root “acipenseriformes” to “huso.”

acipenseriformes
+1/2

paddlefish
sturgeon
+1/4

acipenser
+1/8

acipenser
(oxyrinchus)

acipenser
(other)

huso
pseudo-

scaphirhynchus
scaphirhynchus

sturgeon
(other)

Fig 3. This depicts the hierarchy of Fig 1 when the correct target leaf is “acipenser
(oxyrinchus)” but the leaf predicted with probability 1 (the “single best class” of
Subsection Choosing a single best class) is “acipenser (other)” (as indicated with a box
around “acipenser (other)”). In this case, the hierarchical win is 1/2 + 1/4 + 1/8 =
7/8, as “acipenseriformes,” “sturgeon,” and “acipenser” are the nodes on both the path
from the root “acipenseriformes” to “acipenser (oxyrinchus)” and the path from the
root “acipenseriformes” to “acipenser (other).”

November 25, 2019 4/19



acipenseriformes
+1/2

paddlefish
sturgeon
+1/4

acipenser
+1/8

acipenser
(oxyrinchus)

+1/8

acipenser
(other)

huso
pseudo-

scaphirhynchus
scaphirhynchus

sturgeon
(other)

Fig 4. This depicts the hierarchy of Fig 1 when the correct target leaf is “acipenser
(oxyrinchus),” the same as the leaf predicted with probability 1 (the “single best class”
of Subsection Choosing a single best class). In this case, the hierarchical win is 1/2 +
1/4 + 1/8 + 1/8 = 1 (as with all correct predictions); the final node is double-counted
at 1/8 = 1/16 + 1/16.

An algorithm for computing the “win” or “winnings” 99

Input: two inputs, namely (1) a discrete probability distribution over the leaves of a tree, and 100

(2) which leaf corresponds to a completely correct classification 101

Output: a single scalar value (the “win” or “winnings”) 102

Procedure: 103

Run An algorithm for propagating probabilities to obtain a scalar value at each node in the tree. 104

Store the value 0 in an accumulator. 105

Define ` to be the number of nodes in the path from the root (node 1) to the leaf (node `). 106

For j = 1, 2, . . . , `, 107

add to the accumulated value 2−j times the value stored at the path’s jth node. 108

Add to the accumulated value 2−` times the value stored at the path’s `th node (the leaf). 109

Return the final accumulated value. 110

Calculation of gradients 111

To facilitate optimization via gradient-based methods, we now detail how to compute 112

the gradient of the hierarchical win with respect to the input distribution: Relaxing the 113

constraint that the distribution over the leaves be a probability distribution, that is, 114

that the “probabilities” of the leaves be nonnegative and sum to 1, the algorithms 115

specified in the preceding two subsections yield a value for the win as a function of any 116

distribution over the leaves. Without the constraint that the distribution over the leaves 117

be a probability distribution, the win is actually a linear function of the distribution, 118

that is, the win is the dot product between the input distribution and another vector 119

(where this other vector depends on which leaf corresponds to the correct classification); 120

the gradient of the win with respect to the input is therefore just the vector in the dot 121

product. An entry of this gradient vector, say the jth entry, is equal to the win for the 122

distribution over the leaves that consists of all zeros except for one value of one on the 123

jth leaf; this win is equal to the sum of the series 1/2 + 1/22 + 1/23 + 1/24 + . . . , 124

truncated to the number of terms equal to the number of nodes for which the path from 125

the root to the correct leaf and the path from the root to the jth leaf coincide (or not 126

truncated at all if the jth leaf happens to be the same as the leaf for a correct 127

classification). 128

November 25, 2019 5/19



Choosing a single best class 129

If forced to choose a single class corresponding to a leaf of the given hierarchy (rather 130

than classifying into a probability distribution over all leaves) for the final output of the 131

classification, we first identify the node having greatest probability among all nodes 132

(including leaves) at the coarsest level, then the node having greatest probability among 133

all nodes (including leaves) falling under the first node selected, then the node having 134

greatest probability among all nodes (including leaves) falling under the second node 135

selected, and so on, until we select a leaf. The leaf we select corresponds to the class we 136

choose. The following subsection summarizes in pseudocode this procedure for selecting 137

a single best leaf. 138

An algorithm for choosing the single best leaf 139

Input: a discrete probability distribution over the leaves of a tree 140

Output: a single leaf of the tree 141

Procedure: 142

Run An algorithm for propagating probabilities to obtain a scalar value at each node in the tree. 143

Move to the root. 144

Repeating until at a leaf, 145

follow (to the next finer level) the branch containing the greatest among all scalar values 146

stored at this next finer level in the current subtree. 147

Return the final leaf. 148

Logarithms when using a softmax or independent samples 149

In order to provide appropriately normalized results, the input to the hierarchical loss 150

needs to be a (discrete) probability distribution, not just an arbitrary collection of 151

numbers. A “softmax” provides a good, standard means of converting any collection of 152

real numbers into a proper probability distribution. Recall that the softmax of a 153

sequence x1, x2, . . . , xn of n numbers is the normalized sequence exp(x1)/Z, exp(x2)/Z, 154

. . . , exp(xn)/Z, where Z =
∑n

k=1 exp(xk). Notice that each of the normalized numbers 155

lies between 0 and 1, and the sum of the numbers in the normalized sequence is 1 — the 156

normalized sequence is a proper probability distribution. 157

When generating the probability distribution over the leaves via a softmax, we 158

should optimize based on the logarithm of the “win” introduced in the subsections 159

above rather than the “win” itself. In this case, omitting the contribution of the root to 160

the objective value and its gradient makes the most sense, ensuring that a flat hierarchy 161

(that is, a hierarchy which has only one level aside from the root’s) results in the same 162

training as with the usual cross-entropy loss. Taking the logarithm also makes sense 163

because the joint probability of stochastically independent samples is the product of the 164

probabilities of the individual samples, making averaging across the different samples 165

the logarithm of a function (the function could be the win) make more sense than 166

averaging the function directly. That said, taking the logarithm emphasizes highly 167

misclassified samples, which may not be desirable if misclassifying a few samples (while 168

simultaneously reporting high confidence in their classification) should be acceptable. 169

Indeed, if the logarithm of the win for even a single sample is infinite, then the 170

average of the logarithm of the win is also infinite, irrespective of the values for other 171

samples. Whether the hierarchy is full or flat, training on the logarithms of wins is very 172

stringent, whereas the wins without the logarithms can be more meaningful as metrics 173

of success or figures of merit. It can make good sense to train on the logarithm, which 174

works really hard to accommodate and learn from the samples which are hardest to 175

classify correctly, but to make the metric of success or figure of merit be robust against 176

November 25, 2019 6/19



such uninteresting outliers. Thus, training with the logarithm of the win can make good 177

sense, where the win — without the logarithm — is the metric of success or figure of 178

merit for the testing or validation stage. 179

With or without a logarithm, we henceforth omit the contribution of the root to the 180

hierarchical wins and losses that we report, and we multiply by 2 the resulting win, so 181

that its minimal and maximal possible values become 0 and 1 (with 0 corresponding to 182

the most incorrect possible classification, and with 1 corresponding to the completely 183

correct classification). 184

Results and discussion 185

We illustrate the hierarchical loss and its performance using supervised learning for text 186

classification with fastText of [14]. The tables report performance across several 187

experiments, with the columns “training loss (rate, epochs)” listing the following three 188

parameters for training: (1) the form of the loss function used during training (as 189

explained shortly), (2) the initial learning rate which tapers linearly to 0 over the course 190

of training, and (3) the total number of sweeps through the data performed during 191

training (too many sweeps results in overfitting). The training loss “flat” refers to 192

training using the existing standard cross-entropy loss (that is invariably the default in 193

machine learning), which is the same as the negative of the natural logarithm of the 194

hierarchical win when using a flat hierarchy in which all labelable classes are leaves 195

attached to the root (as discussed in Subsection Logarithms when using a softmax or 196

independent samples of Section Methods). The training loss “raw” refers to training 197

using the hierarchical loss, using the full hierarchy. The training loss “log” refers to 198

training using the negative of the natural logarithm of the hierarchical win, using the 199

full hierarchy. The training loss “coarse” refers to training using the usual cross-entropy 200

loss for classification into only the coarsest (aggregated) classes in the hierarchy (based 201

on a suitably smaller softmax for input to the loss). The values reported in the tables 202

for the learning rate and number of epochs yielded among the best results for the 203

accuracies discussed in the following paragraphs, during a limited grid search around the 204

reported values (if increasing the epochs beyond the reported value had little effect, then 205

we report the smaller number of epochs); the appendix details the settings considered. 206

The columns “one-hot win via hierarchy” display the average over all testing samples 207

of the hierarchical win fed with the results of a one-hot encoding of the class chosen 208

according to Subsection Choosing a single best class of Section Methods. (The one-hot 209

encoding of a class is the vector whose entries are all zeros aside from a single entry of 210

one in the position corresponding to the class.) The columns “softmax win via hierarchy” 211

display the average over all testing samples of the hierarchical win fed with the results 212

of a softmax from fastText of [14] (Subsection Logarithms when using a softmax or 213

independent samples of Section Methods above reviews the definition of “softmax”). The 214

columns “−log of win via hierarchy” display the average over all testing samples of the 215

negative of the natural logarithm of the hierarchical win fed with the results of a 216

softmax from fastText (Subsection Logarithms when using a softmax or independent 217

samples of Section Methods above reviews the definition of “softmax”). The columns 218

“cross-entropy” display the average over all testing samples of the usual cross-entropy 219

loss, which is the same as the negative of the natural logarithm of the hierarchical win 220

fed with the results of a softmax when using a “flat” hierarchy in which all labelable 221

classes are leaves attached to the root (as discussed in Subsection Logarithms when 222

using a softmax or independent samples of Section Methods). Please note that the 223

hierarchy and form of the training loss may be different than the hierarchies and forms 224

of the testing losses and wins; for example, using the “flat” training loss does not alter 225

the full hierarchy used in the “−log of win via hierarchy.” 226

November 25, 2019 7/19



The columns “coarsest accuracy” display the fraction of testing samples for which 227

the coarsest classes containing the fine classes chosen during the classification are 228

correct, when classifying each sample into exactly one class, as in Subsection Choosing a 229

single best class of Section Methods. The columns “parents’ accuracy” display the 230

fraction of testing samples for which the parents of the classes chosen during the 231

classification are correct, when classifying each sample into exactly one class; the 232

parents are the same as the coarsest classes in Tables 3 and 4, as the experiments 233

reported in Tables 3 and 4 pertain to hierarchies with only two levels (excluding the 234

root). The columns “finest accuracy” display the fraction of testing samples classified 235

correctly, when classifying each into exactly one finest-level class, again as in 236

Subsection Choosing a single best class of Section Methods. 237

The columns “aggregate precision,” “aggregate recall,” and “aggregate F1” refer to 238

the hierarchical precision, hierarchical recall, and hierarchical F score detailed in the 239

survey of [11]. The columns “aggregate precision” display the total number of nodes on 240

the path from the root to the class chosen when classifying each sample into exactly one 241

class, as in Subsection Choosing a single best class of Section Methods, that are also on 242

the path from the root to the correct class, divided by the total number of nodes on the 243

path from the root to the chosen class (aggregating both totals separately over all 244

samples). The columns “aggregate recall” display the same total as for the aggregate 245

precision, but divided by the total number of nodes on the path from the root to the 246

correct class, rather than on the path from the root to the chosen class (while again 247

aggregating both totals in the quotient separately over all samples). The columns 248

“aggregate F1” display the harmonic mean of the aggregate precision and the aggregate 249

recall. When counting these total numbers of nodes, we never count the root node, but 250

always count any leaf node on the paths. Since the aggregation in the quotients defining 251

these metrics happens separately for each numerator and denominator, these aggregate 252

metrics are not mean values averaged over the samples, unlike all other quantities 253

reported in the tables. As elaborated by [11], these aggregate metrics are common in 254

the study of hierarchical classification (however, hierarchical classification is beyond the 255

scope of the present paper, for the reasons outlined in Section Introduction; the present 256

paper reports the aggregate metrics at the request of some readers, purely for reference 257

and comparative purposes). 258

The last lines of the tables remind the reader that the best classifier would have 259

• higher one-hot win via hierarchy 260

• higher softmax win via hierarchy 261

• lower −log of win via hierarchy 262

• lower cross-entropy 263

• higher coarsest accuracy 264

• higher parents’ accuracy 265

• higher finest accuracy 266

• higher aggregate precision 267

• higher aggregate recall 268

• higher aggregate F1 269

We follow the recommendation from Subsection Logarithms when using a softmax or 270

independent samples of Section Methods above, maximizing the hierarchical win (or its 271

November 25, 2019 8/19



logarithm) calculated without any contribution from the root (excluding the root makes 272

a small difference when taking the logarithm); please note the very last paragraph in 273

the preceeding section — the hierarchical wins reported here omit the contribution from 274

the root and rescale the result by a factor of 2. 275

We hashed bigrams (pairs of words) into a million buckets and trained using 276

stochastic gradient descent, setting the learning rate to start at the values indicated in 277

the tables (these worked at least as well as other settings), then decaying linearly to 0 278

over the course of training, as done by [14]; the starting point for the stochastic gradient 279

descent was random. The “learning rate” is also known as the “step size” or “step 280

length” in the update for each iteration (step) of stochastic gradient descent. 281

Our implementation couples the C++ software of [14] with a Python prototype. 282

Industrial deployment requires acceleration of the Python prototype (rewriting in C++, 283

for instance), but our tests are sufficient for estimating the ensuing gains in accuracy 284

and illustrating the figure of merit, providing a proof of principle. In particular, our 285

experiments indicate that the gains in accuracy due to training with the hierarchical 286

loss are meager except in special circumstances detailed in the subsections below and 287

summarized in the conclusion. Pending further development as suggested in the 288

conclusion, the main present use for the hierarchical win should be as a metric of 289

success or figure of merit — a good notion of “accuracy” — at least when training with 290

plain stochastic gradient descent coupled to backpropagation. 291

Several of our datasets consider the setting in which each class includes at most one 292

training sample. Such a setting is a proxy for applications in “open-world classification,” 293

“few-shot learning,” and “personalization,” which often involves limited or even (for 294

many classes) no training data per individual class, though there may be many 295

individuals. Access to a hierarchy of the classes enables meaningful classification even 296

for classes not represented in the training data, as the hierarchy itself indicates that 297

some classes are very much like others (some of which may appear in the training data). 298

Applying a hierarchical loss is perhaps the simplest method for effective classification 299

and quantification of accuracy when there is at most one training sample per class. 300

When reading the following subsections, please recall that the standard cross-entropy 301

loss is the same as the negative of the logarithm of the hierarchical win with a flat 302

hierarchy. 303

The following subsections detail our experiments and datasets; the subsequent 304

section, Section Conclusion, elucidates the consequences of these experiments. For the 305

experiments, we used the hierarchies that accompanied the datasets; all are available at 306

the web links (URLs) given in the following subsections. Two datasets — those in 307

Subsections Yahoo Answers and DBpedia — provided no hierarchy, so for these we 308

constructed the hierarchies described below in Subsections Yahoo Answers and DBpedia. 309

In all cases, the results display little dependence on the dimension of the space into 310

which we embedded words and their bigrams (words are unigrams), in accordance 311

with [14], provided only that the dimension is somewhat larger than the number of 312

classes for targets in the classification. 313

RCV1-v2 314

Table 1 reports results on RCV1-v2 of [15], which is available for download at 315

http://jmlr.csail.mit.edu/papers/volume5/lewis04a. This dataset includes a 316

hierarchy of 364 classes (semantically, these are classes of industries); each sample from 317

the dataset comes associated with at least one of these 364 class labels, whether or not 318

the class is an internal node of the tree or a leaf. Each sample from the dataset consists 319

of filtered, tokenized text from Reuters news articles (“article” means the title and body 320

text). As described by [15], labels associated with internal nodes in the original 321

hierarchy may be viewed as leaves that fall under those internal nodes while not 322

November 25, 2019 9/19

http://jmlr.csail.mit.edu/papers/volume5/lewis04a


Table 1. Results on RCV1-v2, tested on 5,000 samples

training loss one-hot win softmax win −log of win cross
(rate, epochs) via hierarchy via hierarchy via hierarchy entropy

flat (2, 4) .85 .80 .52 .95
raw (12, 4) .51 .50 4.2 ∞
log (4, 4) .74 .72 .76 4.4

the ideal higher higher lower lower

training loss coarsest parents’ finest
(rate, epochs) accuracy accuracy accuracy

flat (2, 4) .88 .82 .80
raw (12, 4) .74 .26 .21
log (4, 4) .87 .63 .53
coarse (.05, 100) .88

the ideal higher higher higher

training loss aggregate aggregate aggregate
(rate, epochs) precision recall F1

flat (2, 4) .84 .84 .84
raw (12, 4) .38 .46 .42
log (4, 4) .67 .70 .69

the ideal higher higher higher

classifying into any of the lower-level nodes. In our hierarchy, we hence duplicate every 323

internal node into an “other” class under that node, such that the “other” class is a leaf. 324

We discard every sample from the dataset associated with more than one label, and 325

swap the training and testing sets (since the original training set is small, whereas the 326

original testing set is large). Furthermore, we randomly permute all samples in both the 327

training and testing sets, and subsample to 5,000 samples for testing and 200,000 for 328

training. In the hierarchy, there are 10 coarsest classes and 61 parents of the 254 leaves 329

that were actually represented by any samples in the training and testing sets. The 330

space into which we embedded the words and their pairs (bigrams) was 331

1,000-dimensional. For training the classifier into only the coarsest (aggregated) classes, 332

we embedded the words and bigrams into a 20-dimensional space. 333

For this dataset, optimizing based on the hierarchical loss (with or without a 334

logarithm) yields worse accuracy according to all metrics considered compared to 335

optimizing based on the standard cross-entropy loss. 336

Subsampled RCV1-v2 337

Table 2 reports results on the same dataset RCV1-v2 (which is available for download at 338

http://jmlr.csail.mit.edu/papers/volume5/lewis04a) of the preceeding 339

subsection, but retaining only one training sample for each class label. The training set 340

thus consists of 254 samples (many of the 364 possible class labels had no corresponding 341

samples in the training set from the preceeding subsection). As in the preceding 342

subsection, the hierarchy has 10 coarsest classes and 61 parents of the 254 leaves that 343

were used in the training and testing sets. We again embedded the words and their 344

bigrams into a 1,000-dimensional space, while for training the classifier into only the 345

coarsest (aggregated) classes, we again used only 20 dimensions. 346

November 25, 2019 10/19

http://jmlr.csail.mit.edu/papers/volume5/lewis04a


Table 2. Results on RCV1-v2 with at most one training sample per class, tested on
5,000 samples

training loss one-hot win softmax win −log of win cross
(rate, epochs) via hierarchy via hierarchy via hierarchy entropy

flat (.04, 9) .14 .07 2.8 5.5
raw (45, 500) .16 .15 7.2 13
log (3, 40) .17 .09 2.7 5.5

the ideal higher higher lower lower

training loss coarsest parents’ finest
(rate, epochs) accuracy accuracy accuracy

flat (.04, 9) .209 .086 .051
raw (45, 500) .235 .095 .052
log (3, 40) .258 .089 .064
coarse (4, 1000) .324

the ideal higher higher higher

training loss aggregate aggregate aggregate
(rate, epochs) precision recall F1

flat (.04, 9) .121 .118 .120
raw (45, 500) .132 .148 .140
log (3, 40) .141 .166 .153

the ideal higher higher higher

For this subsampled RCV1-v2, optimizing based on the negative of the natural 347

logarithm of the hierarchical win yields better accuracy according to all metrics 348

considered compared to optimizing based on the standard cross-entropy loss, except on 349

the negative of the natural logarithm of the hierarchical win and the cross-entropy loss 350

(for which the accuracies are similar). 351

Yahoo Answers 352

Table 3 reports results on the Yahoo Answers subset introduced by [16], which is 353

available for download at http://goo.gl/JyCnZq. This dataset includes 10 classes 354

(semantically, these are classes of interest groups); each sample from the dataset comes 355

associated with exactly one of these 10 class labels. Each sample from the dataset 356

consists of normalized text from questions and answers given on a website devoted to 357

Q&A. The space into which we embedded the words and their bigrams was 358

20-dimensional, while for training the classifier into only the coarsest (aggregated) 359

classes, we embedded the words and bigrams into a 10-dimensional space. For the 360

nontrivial hierarchy, we grouped the 10 classes into 4 superclasses: 361

1) Leisure: Entertainment and Music, Society and Culture, and Sports 362

2) Newsworthy: Business and Finance, and Politics and Government 363

3) Relations: Family and Relationships 364

4) Science and Technology: Computer and Internet, Education and Reference, 365

Health, and Science and Mathematics 366

November 25, 2019 11/19

http://goo.gl/JyCnZq


Table 3. Results on Yahoo Answers, tested on 60,000 samples

training loss one-hot win softmax win −log of win cross
(rate, epochs) via hierarchy via hierarchy via hierarchy entropy

flat (.1, 4) .76 .67 .67 .91
raw (1, 4) .65 .64 2.6 ∞
log (.1, 4) .76 .67 .68 1.0

the ideal higher higher lower lower

training loss coarsest finest
(rate, epochs) accuracy accuracy

flat (.1, 4) .80 .72
raw (1, 4) .79 .50
log (.1, 4) .80 .71
coarse (.1, 4) .80

the ideal higher higher

training loss aggregate aggregate aggregate
(rate, epochs) precision recall F1

flat (.1, 4) .76 .76 .76
raw (1, 4) .64 .64 .64
log (.1, 4) .76 .76 .76

the ideal higher higher higher

With only 10 classes and two levels for the classification hierarchy, Table 3 indicates 367

that training with or without the hierarchical loss makes little difference. 368

DBpedia 369

Table 4 reports results on the DBpedia subset introduced by [16], which is available for 370

download at http://goo.gl/JyCnZq. This dataset includes 14 classes (semantically, 371

these are categories from DBpedia); each sample from the dataset comes associated 372

with exactly one of these 14 class labels. Each sample from the dataset consists of 373

normalized text from DBpedia articles (“article” means the title and body text). We 374

embedded the words and their bigrams into a 20-dimensional space, except when 375

training a classifier into only the coarsest (aggregated) classes, in which case a space 376

with only 10 dimensions was fine. For the nontrivial hierarchy, we grouped the 14 377

classes into 6 superclasses: 378

1) Institution: Company and EducationalInstitution 379

2) Man-made: Building and MeansOfTransportation 380

3) Media: Album, Film, and WrittenWork 381

4) Organism: Animal and Plant 382

5) Person: Artist, Athlete, and OfficeHolder 383

6) Place: NaturalPlace and Village 384

With merely 14 classes and two levels for the classification hierarchy, Table 4 shows 385

that training with or without the hierarchical loss makes little difference. 386

November 25, 2019 12/19

http://goo.gl/JyCnZq


Table 4. Results on DBpedia, tested on 70,000 samples

training loss one-hot win softmax win −log of win cross
(rate, epochs) via hierarchy via hierarchy via hierarchy entropy

flat (.5, 4) .989 .986 .034 .054
raw (1, 4) .813 .811 .312 6.06
log (.5, 4) .988 .985 .036 .063

the ideal higher higher lower lower

training loss coarsest finest
(rate, epochs) accuracy accuracy

flat (.5, 4) .992 .986
raw (1, 4) .989 .636
log (.5, 4) .992 .985
coarse (.3, 4) .992

the ideal higher higher

training loss aggregate aggregate aggregate
(rate, epochs) precision recall F1

flat (.5, 4) .989 .989 .989
raw (1, 4) .813 .813 .813
log (.5, 4) .988 .988 .988

the ideal higher higher higher

Table 5. Results on DBpedia fish, tested on 6,000 samples

training loss one-hot win softmax win −log of win cross
(rate, epochs) via hierarchy via hierarchy via hierarchy entropy

flat (5, 25) .27 .25 4.4 16
raw (200, 200) .17 .17 6.5 ∞
log (5, 50) .38 .36 3.5 19

the ideal higher higher lower lower

training loss coarsest parents’ finest
(rate, epochs) accuracy accuracy accuracy

flat (5, 25) .38 .26 .065
raw (200, 200) .31 .04 .001
log (5, 50) .60 .22 .014
coarse (3, 70) .60

the ideal higher higher higher

training loss aggregate aggregate aggregate
(rate, epochs) precision recall F1

flat (5, 25) .24 .25 .24
raw (200, 200) .12 .13 .12
log (5, 50) .30 .33 .31

the ideal higher higher higher

November 25, 2019 13/19



DBpedia fish 387

Table 5 reports results on the subset corresponding to fish from the DBpedia of [17], 388

which is available for download at http://web.informatik.uni-mannheim.de/ 389

DBpediaAsTables/DBpedia-3.9/json/Fish.json.gz. This dataset includes 1,298 390

classes (semantically, these are taxonomic groups of fish, such as species containing 391

sub-species, genera containing species, or families containing genera — DBpedia extends 392

to different depths of taxonomic rank for different kinds of fish; our classes are the 393

parents of the leaves in the DBpedia tree). Each sample from the dataset consists of 394

normalized text from the lead section (the introduction) of the Wikipedia article on the 395

associated type of fish, with all sub-species, species, genus, family, and order names 396

removed from the associated Wikipedia article (DBpedia derives from Wikipedia, as 397

discussed by [17]). For each of our finest-level classes, we chose uniformly at random 398

one leaf in the DBpedia taxonomic tree of fish to be a sample in the training set, 399

reserving the other leaves for the testing set (the testing set consists of a random 400

selection of 6,000 of these leaves). In the hierarchy, there are 94 coarsest classes, 367 401

parents of the leaves in our tree, and 1,298 leaves in our tree. Optimizing the 402

hierarchical win — without any logarithm — was wholly ineffective, always resulting in 403

assigning the same finest-level class to all input samples (with the particular class 404

assigned varying according to the extent of training and the random starting point). So 405

taking the logarithm of the hierarchical win was absolutely necessary to train 406

successfully. For training the classifier into only the coarsest (aggregated) classes, we 407

embedded the Wikipedia articles’ words and bigrams into a 200-dimensional space 408

rather than the larger 2,000-dimensional space used for classifying into all 1,298 classes. 409

Here, optimizing based on the negative of the logarithm of the hierarchical win 410

yields much better coarsest accuracy and hierarchical wins than optimizing based on the 411

standard cross-entropy loss, while optimizing based on the standard cross-entropy loss 412

yields much better finest accuracy and cross-entropy. When optimizing based on the 413

negative of the natural logarithm of the hierarchical win, the accuracy on the coarsest 414

aggregates reaches that attained when optimizing the coarse classification directly. 415

LSHTC1 416

Table 6 reports results on a subset of the LSHTC1 dataset introduced by [18], which is 417

available for download at http://lshtc.iit.demokritos.gr (specifically, “DMOZ 418

large” for “LSHTC1”). The subset considered consists of the subtree for class 3261; this 419

subtree includes 18 coarsest classes (though 3 of these have no corresponding samples in 420

the testing or training sets) and 364 finest-level classes (with 288 of these having 421

corresponding samples in the testing and training sets). We reserved one sample per 422

finest-level class for training; all other samples were for testing, and we chose 2,000 of 423

these uniformly at random to form the testing set. Each sample from the dataset 424

consists of normalized, tokenized text in extracts from Wikipedia, the popular 425

crowdsourced online encyclopedia. The hierarchy has 18 coarsest classes (with 15 426

actually represented in the training and testing sets), as well as 111 parents of the 288 427

leaves that were used in the training and testing sets. We embedded the words and their 428

bigrams into a 1,000-dimensional space. For training the classifier into only the coarsest 429

(aggregated) classes, we embedded the words and bigrams into a 20-dimensional space. 430

For this dataset, optimizing based on the hierarchical loss (with or without a 431

logarithm) yields worse accuracy according to all metrics except the accuracy on the 432

coarsest aggregates, compared to optimizing based on the standard cross-entropy loss. 433

When optimizing based on the negative of the natural logarithm of the hierarchical win, 434

the accuracy on the coarsest aggregates approaches its maximum attained when 435

optimizing the coarse classification directly. 436

November 25, 2019 14/19

http://web.informatik.uni-mannheim.de/DBpediaAsTables/DBpedia-3.9/json/Fish.json.gz
http://web.informatik.uni-mannheim.de/DBpediaAsTables/DBpedia-3.9/json/Fish.json.gz
http://web.informatik.uni-mannheim.de/DBpediaAsTables/DBpedia-3.9/json/Fish.json.gz
http://lshtc.iit.demokritos.gr


Table 6. Results on a subset of LSHTC1, tested on 2,000 samples

training loss one-hot win softmax win −log of win cross
(rate, epochs) via hierarchy via hierarchy via hierarchy entropy

flat (6, 1000) .43 .36 1.6 5.0
raw (20000, 1000) .23 .23 .35 ∞
log (15, 15) .36 .30 1.7 5.5

the ideal higher higher lower lower

training loss coarsest parents’ finest
(rate, epochs) accuracy accuracy accuracy

flat (6, 1000) .61 .33 .23
raw (20000, 1000) .46 .24 .01
log (15, 15) .66 .12 .01
coarse (5, 10000) .69

the ideal higher higher higher

training loss aggregate aggregate aggregate
(rate, epochs) precision recall F1

flat (6, 1000) .38 .39 .38
raw (20000, 1000) .23 .18 .20
log (15, 15) .26 .29 .28

the ideal higher higher higher

Conclusion 437

In our experiments, optimizing the hierarchical loss (or, rather, the negative of the 438

logarithm of the hierarchical win) using plain stochastic gradient descent with 439

backpropagation could be helpful relative to optimizing the usual cross-entropy loss. 440

The benefit arose mainly when there were at most a few training samples per class (of 441

course, the training set can still be big, if there are many classes). This may help with 442

“personalization,” which often involves limited data per individual class (even though 443

there may be many, many individuals). 444

The experiments reported in Section Results and discussion above may be 445

summarized as follows: relative to training on the usual cross-entropy loss, training on 446

the negative of the logarithm of the hierarchical win hurt in all respects in Table 1, 447

helped in all respects in Table 2, improved coarse accuracy as much as optimizing 448

directly for coarse classification in Table 5, hurt in most respects in Table 6 while 449

improving coarse accuracy nearly as much as optimizing directly for coarse classification, 450

and made essentially no difference in Tables 3 and 4. Thus, whether optimizing with a 451

hierarchical loss makes sense depends on the dataset and associated hierarchy; 452

developing precise criteria for when the optimization with the hierarchical loss helps 453

might be interesting. 454

Even so, optimizing hierarchical loss using plain stochastic gradient descent with 455

backpropagation (as we did) is rather ineffective, at least relative to what might be 456

possible. We trained using stochastic gradient descent with a random starting point, 457

which may be prone to getting stuck in local optima. To some extent, hierarchical loss 458

collapses the many classes in the hierarchy into a few aggregate superclasses, and the 459

parameters being optimized within the aggregates should be tied closely together during 460

the optimization — plain stochastic gradient descent is unlikely to discover the benefits 461

November 25, 2019 15/19



of such tying, as plain stochastic gradient descent does not tie together these parameters 462

in any way, optimizing all of them independently. Optimizing the hierarchical loss 463

would presumably be more effective using a hierarchical process for the optimization. 464

The hierarchical optimization could alter stochastic gradient descent explicitly into a 465

hierarchical process, or could involve regularization terms penalizing variance in the 466

parameters associated with the leaves in the same coarse aggregate. Unfortunately, 467

either approach would complicate (perhaps prohibitively much) deployment to complex 468

real-world systems. For the time being, hierarchical loss is most useful as a metric of 469

success, gauging the performance of a fully trained classifier as a semantically 470

meaningful figure of merit. While the performance of the hierarchical loss as an 471

objective for optimization varies across datasets, the hierarchical loss provides a 472

meaningful metric of success for classification on any dataset endowed with a hierarchy. 473

Acknowledgements 474

We would like to thank Priya Goyal, Anitha Kannan, and Brian Karrer for their 475

generous and plentiful help. 476

Appendix: Minutiae of tuning hyperparameters 477

Table 7 elaborates on the aforementioned limited grid search performed to ascertain 478

reasonably optimal learning rates and numbers of epochs for training. 479

November 25, 2019 16/19



Table 7. Hyperparameters for grid search

dataset loss learning rates epochs

RCV1-v2 flat 1, 2, 4 3, 4, 5, 6
RCV1-v2 raw 10, 12, 16 3, 4, 5, 6
RCV1-v2 log 2, 4, 6 3, 4, 5, 6
RCV1-v2 coarse .03, .05, .07 50, 100, 200

Subsampled RCV1-v2 flat .02, .03, .04, .05 8, 9, 10, 11
Subsampled RCV1-v2 raw 40, 45, 50 300, 500, 600
Subsampled RCV1-v2 log 1, 2, 3, 4 30, 40, 50
Subsampled RCV1-v2 coarse 2, 4, 8 500, 1000, 2000

Yahoo Answers flat .05, .1, .2, .4 2, 4, 8, 16
Yahoo Answers raw .5, 1, 1.5 2, 4, 8, 16
Yahoo Answers log .05, .1, .2 2, 4, 8, 16
Yahoo Answers coarse .05, .1, .2 2, 4, 8

DBpedia flat .125, .25, .5, 1, 2 2, 4, 8
DBpedia raw .5, 1, 2, 4 2, 4, 8
DBpedia log .125, .25, .5, 1, 2 2, 4, 8
DBpedia coarse .1, .2, .3, .4 2, 4, 8

DBpedia fish flat 3, 5, 10 20, 25, 30
DBpedia fish raw 100, 200, 300 100, 200, 300
DBpedia fish log 3, 5, 10 25, 50, 100
DBpedia fish coarse 1, 2, 3, 4 50, 60, 70, 80

LSHTC1 flat 2, 4, 6, 8 500, 1000, 2000
LSHTC1 raw 10000, 20000, 30000 500, 1000, 2000
LSHTC1 log 10, 15, 20 10, 15, 20
LSHTC1 coarse 3, 5, 7 5000, 10000, 20000

November 25, 2019 17/19



References

1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.

2. Cai L, Hofmann T. Hierarchical document categorization with support vector
machines. In: Proc. 13th ACM Internat. Conf. Information and Knowledge
Management. ACM; 2004. p. 78–87.

3. Kosmopoulos A, Partalas I, Gaussier E, Paliouras G, Androutsopoulos I.
Evaluation measures for hierarchical classification: a unified view and novel
approaches. Data Mining and Knowledge Discovery. 2015;29(3):820–865.

4. Binder A, Kawanabe M, Brefeld U. Efficient classification of images with
taxonomies. In: Proc. 9th Asian Conf. Computer Vision. vol. 5996 of Lecture
Notes in Computer Science. Springer; 2009. p. 351–362.

5. Chang JY, Lee KM. Large margin learning of hierarchical semantic similarity for
image classification. Computer Vision and Image Understanding. 2015;132:3–11.

6. Costa EP, Lorena AC, Carvalho ACPLF, Freitas AA. A review of performance
evaluation measures for hierarchical classifiers. In: Drummond C, Elazmeh W,
Japkowicz N, Macskassy SA, editors. Evaluation Methods for Machine Learning
II: Papers from the AAAI-2007 Workshop. AAAI Press; 2007. p. 182–196.

7. Deng J, Berg AC, Li K, Li FF. What does classifying more than 10,000 image
categories tell us? In: Proc. 11th European Conf. Computer Vision. vol. 5.
Springer-Verlag; 2010. p. 71–84.

8. Deng J, Berg AC, Li K, Li FF. Hierarchical semantic indexing for large scale
image retrieval. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition.
IEEE; 2011. p. 785–792.

9. Wang K, Zhou S, Liew SC. Building hierarchical classifiers using class proximity.
In: Proc. 25th Internat. Conf. Very Large Data Bases. Morgan Kaufmann
Publishers; 1999. p. 363–374.

10. Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB.
Campbell Biology. 10th ed. Pearson; 2013.

11. Silla, Jr CN, Freitas AA. A survey of hierarchical classification across different
application domains. J. Data Mining Knowledge Discovery. 2011;22(1–2):31–72.

12. Kosmopoulos A, Paliouras G, Androutsopoulos I. Probabilistic cascading for
large-scale hierarchical classification. arXiv; 2015. 1505.02251. Available from:
http://arxiv.org/abs/1505.02251.

13. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: IEEE Conf.
Comput. Vision Pattern Recognition. IEEE; 2017. p. 1–9.

14. Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for efficient text
classification. In: Proc. 15th Conf. European Chapter Assoc. Comput.
Linguistics. ACL; 2017. p. 427–431.

15. Lewis DD, Yang Y, Rose TG, Li F. RCV1: a new benchmark collection for text
categorization research. J. Machine Learning Research. 2004;5:361–397.

16. Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems. vol. 28.
Neural Information Processing Systems Foundation; 2015. p. 1–9.

November 25, 2019 18/19

http://arxiv.org/abs/1505.02251


17. Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN, et al.
DBpedia — a large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic Web. 2015;6(2):167–195.

18. Partalas I, Kosmopoulos A, Baskiotis N, Artieres T, Paliouras G, Gaussier E,
et al. LSHTC: a benchmark for large-scale text classification. arXiv; 2015.
1503.08581. Available from: http://arxiv.org/abs/1503.08581.

November 25, 2019 19/19

http://arxiv.org/abs/1503.08581

