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ABSTRACT

Measuring quality and intelligibility of a speech signal is usually a
critical step in development of speech processing systems. To enable
this, a variety of metrics to measure quality and intelligibility under
different assumptions have been developed. Through this paper, we
introduce tools and a set of models to estimate such known metrics
using deep neural networks. These models are made available in
the well-established TorchAudio library, the core audio and speech
processing library within the PyTorch deep learning framework. We
refer to it as TorchAudio-Squim, TorchAudio-Speech QUality and
Intelligibility Measures. More specifically, in the current version of
TorchAudio-squim, we establish and release models for estimating
PESQ, STOI and SI-SDR among objective metrics and MOS among
subjective metrics. We develop a novel approach for objective metric
estimation and use a recently developed approach for subjective met-
ric estimation. These models operate in a “reference-less” manner,
that is they do not require the corresponding clean speech as refer-
ence for speech assessment. Given the unavailability of clean speech
and the effortful process of subjective evaluation in real-world situa-
tions, such easy-to-use tools would greatly benefit speech processing
research and development.

Index Terms— Speech quality, speech intelligibility, PESQ,
STOI, SI-SDR, mean opinion score

1. INTRODUCTION

Speech processing systems more often than not deal with degraded
or corrupted speech signals. Hence, in design and development of
such systems, there is a need to measure the quality of speech sig-
nals. Over the years, a variety of methods/metrics have been devel-
oped for speech assessment. While these methods measure degra-
dations in the speech signals under certain assumptions, for the pur-
poses of this paper we consider two broad classes of metrics: subjec-
tive metrics, which are obtained through human listening tests of the
speech signals, and objective metrics, which do not require human
judgements and are derived primarily by comparing the given speech
signal (degraded) to the corresponding reference clean speech. This
reliance on reference clean speech makes these metrics “intrusive” as
opposed to “non-intrusive” methods which do not require reference
clean speech. Note that, there are certain objective metrics which
may not require reference clean speech [1, 2], but for the purposes of
this paper objective metrics would refer to the more common cases
where reference clean speech is required [1].

Both subjective and objective metrics have their own merits and
disadvantages. Compared to objective methods, subjective meth-
ods are the more reliable approach to assess speech signals as they
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are based on human perceptions and judgements. However, human-
based evaluations are not scalable and often difficult to do. They re-
quire expert listeners in most situations and can be a time-consuming
and tedious process. Objective metrics avoid these problems but
come with their own constraints. They may not always correlate
well with subjective assessments. More importantly though, they re-
quire the reference clean speech to assess quality or intelligibility,
making them impractical for real-world uses, where the reference
clean signals are usually unavailable.

To address the above constraints around both subjective and ob-
jective metrics, in recent years there have been efforts on building
machine learning based estimators of these metrics. On the sub-
jective metrics front, recently a challenge on Mean Opinion Score
(MOS) prediction was organized [3]. Several works have explored
training neural networks for speech MOS estimation [4, 5, 6, 7, 8,
9, 10, 11]. Some such as DNSMOS [12] are trained on large-scale
crowdsourced data of MOS ratings for speech, while others leverage
pre-trained self-supervised models for improved estimation [7]. On
the objective metric front also, there have been quite a few works
on reference-less estimation of well-known objective metrics such
as PESQ, STOI, ESTOI, HASQI, etc. [13, 14, 15, 16, 17].

While these research works have led to progress in development
of metric estimators, widespread use of these reference-less estima-
tors in different speech applications is still uncommon. The primary
reason is lack of simple and easy-to-use tools and inference mod-
els which can be readily integrated into existing speech systems.
We aim to address this problem through this paper. Moreover, such
open-source tools and inference models would augment and support
future research works on metric estimation as well.

We keep the following criteria and principles in mind for our
system. (1) Usable in real-world applications with ease. Since refer-
ence clean speech is often unavailable, we only focus on developing
non-intrusive methods which can estimate metrics without reference
clean speech. (2) Deep learning plays a critical role in the devel-
opment of a large number of current speech systems, and thus our
system will primarily be deep neural network based as well. This
also ensures that we have differentiable estimators which can be eas-
ily utilized for training other deep learning based speech systems. (3)
Both subjective and objective metrics are widely used, and hence es-
timators of metrics falling in both classes will be part of the system.
(4) The tools and models will be continuously developed, and better
models will be released regularly. This includes updating the models
for better metric estimation, reducing computational load, extending
the models to estimate more objective and subjective metrics.

To this end, we are releasing TorchAudio-Squim within the Tor-
chAudio [18] library for estimating speech assessment metrics. Tor-
chAudio is the official audio domain library of PyTorch, which sup-
ports essential building blocks of audio and speech processing and
enables advancement of research in various audio and speech prob-
lems. By integrating speech quality and intelligibility assessment



components into TorchAudio, our goal is to ease the use of these
metrics in design and development of speech processing systems.
The current version of TorchAudio-Squim enables estimation of 3
objective metrics and 1 subjective metric.

2. TORCHAUDIO-SQUIM OVERVIEW

We give a quick overview of the speech quality and intelligibility
assessment tools currently provided through TorchAudio-Squim. As
mentioned before, we are supporting both subjective and objective
metrics in TorchAudio-Squim.

Objective Metrics: In the current version, we are releasing
a model to estimate 3 well-known objective metrics for speech
assessment. These are Perceptual Evaluation of Speech Quality
(PESQ) [19, 20], Short-Time Objective Intelligibility (STOI) [21]
and Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [22]. Note
that, we use Wideband-PESQ [20] and the term PESQ will refer
to WB-PESQ throughout this paper. In this work, we develop a
single network to estimate these 3 metrics. Our approach to objec-
tive metric estimation is novel, and we present complete details of
the approach along with comprehensive experimental results and
analyses in further sections.

Subjective Metrics: On the subjective metric front, we provide
a model to estimate the Mean Opinion Score (MOS) rating. Mean
opinion scores are ratings between 1 to 5 given by human listeners
to quantify quality of a given speech signal. In this version, we are
releasing the NORESQA-MOS [23] model to estimate MOS. This
approach uses one or more random clean speech samples from a
database as reference(s). More details are available in Section 3.

Within TorchAudio, the model architectures are defined under
torchaudio.models module, and the pre-trained models are defined
under torchaudio.pipelines which provide end-to-end solutions for
speech quality and intelligibility assessment.

The following example code shows how to estimate the MOS,
STOI, PESQ, and SI-SDR scores using TorchAudio library1:

from torchaudio.prototype.pipelines import {
SQUIM_OBJECTIVE,
SQUIM_SUBJECTIVE

}

subjective_model = SQUIM_SUBJECTIVE.get_model()
objective_model = SQUIM_OBJECTIVE.get_model()

mos = subjective_model(
test_waveform,
non_match_reference,

)
stoi, pesq, si_sdr = objective_model(

test_waveform
)

3. SUBJECTIVE METRICS: SYSTEM DESCRIPTION

We use NORESQA-MOS [23] to estimate MOS for a given speech
signal. Unlike more common approaches (e.g DNSMOS [9],
NISQA [6]) which attempt to directly estimate MOS from a given
sample, NORESQA-MOS relies on the idea of using non-matching
references for a more grounded estimation [24]. More concretely,
the model takes in a clean speech signal sampled from any database
along with the test speech sample to predict the MOS rating for
it. Note that, the use of a non-matching reference (NMR) does not

1https://pytorch.org/audio/main/prototype.pipelines.html

impact the utility of this model compared to “pure” reference-less
approaches. Any clean speech signal can be used as NMR input.

The MOS model released in the current version of TorchAudio-
Squim is the same as the one in [23], where the NORESQA-MOS
was analyzed and evaluated comprehensively. We request readers to
refer to this paper for details.

4. OBJECTIVE METRICS: SYSTEM DESCRIPTION

In this section, we describe details of our objective metric estimation
approach. The overall schema of the approach is shown in the left
panel of Fig. 1, which uses a deep neural network operating on time-
domain speech signals and estimates all three objective metrics in
one go. We propose a novel architecture based on dual-path recurrent
neural networks (DPRNNs) [25] to perform sequential modeling of
an input time-domain signal, and the learned representations are then
consumed by multiple transformer based branches for metric specific
estimation. Moreover, we also propose a novel multi-task training
strategy for improvements in estimation of the metrics.

4.1. Sequential modeling with dual-path RNN blocks

Given a length-T signal waveform y ∈ RT to assess, we use a
strided 1-D convolutional layer followed by a rectified linear unit
(ReLU) function to segment and encode it, leading to L overlapped
time frames of representations. With N output channels, this con-
volutional layer has a kernel size of P and a stride size of ⌊P/2⌋,
hence a frame size of P and a hop size of ⌊P/2⌋, respectively. This
sequence of time frames is then divided into S overlapped chunks
with a chunk size of R and a hop size of ⌊R/2⌋.

Subsequently, a stack of four DPRNN blocks is employed to
process the chunk sequence U = [U1, . . . , US ] ∈ RN×S×R, where
U1, . . . , US ∈ RN×R. Such block processing can be written as

Ub = fb(Ub−1), b ∈ {1, 2, 3, 4},U0 = U, (1)

where the subscript b indicates the b-th DPRNN block, and f(·)
denotes the mapping function defined by the corresponding block.
We adopt bidirectional long short-term memory (BLSTM) to model
intra-chunk and inter-chunk dependencies. As illustrated in the
right panel of Fig. 1, two sub-blocks are used to perform intra-
and inter-chunk processing, respectively. Each sub-block comprises
of a BLSTM layer and a linear projection layer followed by layer
normalization. The intra-chunk sub-block operates on the third di-
mension of the 3-D representation, and the inter-chunk sub-block on
the second dimension. Moreover, a residual connection is used to
bypass the input to the output in each sub-block.

The output U4 ∈ RN×S×R of the last DPRNN block is fur-
ther processed by a linear projection layer with N units, which is
followed by a parametric rectified linear unit (PReLU) function. We
perform the overlap-add operation on the resulting 3-D representa-
tion at the chunk level, leading to a 2-D representation Z ∈ RN×L.

4.2. Multi-objective learning with transformer blocks

Once the chunk sequence is modeled by the DPRNN blocks, the
learned 2-D representation Z serves as the input to distinct network
branches for different metrics, each of which produces an estimate
of the corresponding metric score. Each branch consists of a trans-
former block as illustrated in Fig. 2. Specifically, the 2-D represen-
tation Z is first fed into a transformer, which essentially comprises
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of a multi-head attention module and two linear layers as depicted in
Fig. 2. Following [26], the multi-head attention is formulated as

MultiHead(Q,K, V ) = Concat(H1, . . . , Hh)W
O. (2)

Each attention head is

Hi = Att(QW
(Q)
i ,KW

(K)
i , V W

(V )
i ), i ∈ {1, . . . , h}, (3)

where W
(Q)
i ∈ Rdq×d, W (K)

i ∈ Rdk×d, W (V )
i ∈ Rdv×d, W (O)

i ∈
Rhdv×d denote trainable projection weight matrices. We adopt the
scaled dot-product attention function, i.e.

Att(Q′,K′, V ′) = Softmax(
Q′(K′)⊤√

d
)V ′, (4)

where Q′ = QW
(Q)
i , K′ = KW

(K)
i and V ′ = VW

(V )
i . Given

the single input Z, self-attention is performed, where Q = K =
V = Z⊤ and dq = dk = dv = N . The two linear layers in
the transformer have d1 and d units, respectively, and the first linear
layer is followed by a ReLU function.

We perform auto-pooling on the 2-D representation X ∈ RL×d

produced by the transformer, which amounts to a 1-D representation
x ∈ Rd. As outlined in [27], the auto-pooling operator can auto-
matically adapt to the characteristics of representations via a learn-

able parameter α ∈ R: x =
∑L

i=1 xi

(
exp(α·xi)∑L

j=1 exp(α·xj)

)
, where

x1, . . . , xL is a sequence of features. The resulting 1-D represen-
tation is processed by two consecutive linear layers with d and 1
units, respectively, yielding the scalar output t. Note that the first
linear layer is followed by a PReLU function. We apply a nonlin-
ear function to the estimated scalar output for STOI and WB-PESQ,
which have a value range of roughly [0, 1] and [1, 4.64], respectively.
Specifically, we adopt the sigmoid function for both metrics, and
additionally perform an affine transformation to accommodate the
value range of WB-PESQ, as follows:

s = 1 + σ(t) · (4.64− 1), (5)

where σ denotes the sigmoid function.

Fig. 3: Scatter plots of speech assessment estimates produced by
MOSA-Net, AMSA and our model with MTL.

4.3. Facilitating speech assessment via multi-task learning

Along with the primary task of metric estimation, we formulate ref-
erence signal estimation as a secondary task by introducing an addi-
tional output branch, akin to [16]. This multi-task learning (MTL)
framework can be helpful in two ways. First, intrusive metrics are
reference-dependent, and hence providing the underlying reference
as a supervisory signal can potentially encourage the shared layers
to learn latent representations of the reference signal, which would
facilitate improved metric estimation. Second, MTL imposes reg-
ularization on the training of shared layers, which we expect can
improve generalization capabilities.

As illustrated in the left panel of Fig. 1, we use a linear layer
with N units as a decoder in the secondary branch. The output 2-D
representation is then converted into a time-domain signal through
the overlap-add operation at the frame level. All branches are jointly
trained to minimize a weighted sum of different losses:

L =
3∑

i=1

wi · Ls(si, ŝi) + w0 · Lz(z, ẑ), (6)

where ŝi and si denote the estimated and the corresponding ground-
truth metric scores, respectively. ẑ and z the estimated and ground-
truth reference signals, respectively. The subscript i = 1, 2, 3 indi-
cates STOI, WB-PESQ and SI-SDR, respectively. Ls and Lz repre-
sent the training loss functions for metric and reference signal esti-
mation, respectively, and wi, i ∈ {0, 1, 2, 3} the weighting factor.

4.4. Experiments

4.4.1. Data and Setup

We use the DNS Challenge 2020 [29] dataset in our experiments.
Degraded speech are obtained through two primary methods. First,



Table 1: Investigation of different loss functions and weighting factors. Boldface numbers highlight the best results in each case.
Ls Weighting Factors STOI (%) WB-PESQ SI-SDR (dB) With

MTL?MAE ↓ PCC ↑ SRCC ↑ MAE ↓ PCC ↑ SRCC ↑ MAE ↓ PCC ↑ SRCC ↑
MSE w1 = 1, w2 = 1, w3 = 1 2.606 0.929 0.919 0.193 0.925 0.939 1.269 0.973 0.969 No
MAE w1 = 1, w2 = 1, w3 = 1 2.442 0.934 0.928 0.175 0.938 0.950 1.163 0.977 0.974 No
MAE w1 = 1, w2 = 2, w3 = 0.5 2.324 0.939 0.935 0.168 0.942 0.951 1.158 0.977 0.973 No
MAE w1 = 1, w2 = 2, w3 = 0.5, w0 = 0.01 2.310 0.936 0.934 0.165 0.944 0.954 1.129 0.978 0.975 Yes
MAE w1 = 1, w2 = 2, w3 = 0.5, w0 = 0.1 2.182 0.942 0.943 0.157 0.949 0.956 1.010 0.982 0.980 Yes
MAE w1 = 1, w2 = 2, w3 = 0.5, w0 = 1 2.039 0.947 0.947 0.143 0.956 0.962 0.843 0.986 0.985 Yes
MAE w1 = 1, w2 = 2, w3 = 0.5, w0 = 1.5 2.018 0.949 0.947 0.143 0.957 0.962 0.841 0.986 0.984 Yes
MAE w1 = 1, w2 = 2, w3 = 0.5, w0 = 2 1.994 0.950 0.950 0.142 0.958 0.963 0.838 0.985 0.985 Yes
MAE w1 = 1, w2 = 2, w3 = 0.5, w0 = 2.5 2.035 0.950 0.951 0.149 0.958 0.963 0.841 0.985 0.984 Yes
MAE w1 = 1, w2 = 2, w3 = 0.5, w0 = 3 2.078 0.949 0.949 0.149 0.956 0.963 0.849 0.986 0.985 Yes
MAE w1 = 1, w2 = 2, w3 = 0.5, w0 = 5 2.001 0.949 0.950 0.142 0.957 0.961 0.845 0.985 0.984 Yes

Table 2: Comparisons of different approaches in terms of MAE, PCC and SRCC. The number of multiply–accumulate operations (MACs)
for processing a 5-second audio sample is provided.

Approach STOI (%) WB-PESQ SI-SDR (dB) # Params # MAC/5sMAE ↓ PCC ↑ SRCC ↑ MAE ↓ PCC ↑ SRCC ↑ MAE ↓ PCC ↑ SRCC ↑
Quality-Net [28] - - 0.396 0.845 0.849 - - - 0.30 M 297.30 K
MOSA-Net [17] 5.254 0.900 0.864 0.335 0.904 0.914 1.990 0.965 0.958 317.19 M 94.86 G
AMSA [13] 3.498 0.913 0.826 0.207 0.932 0.938 1.562 0.968 0.964 2.96 M 687.61 M
MetricNet [16] - - - 0.182 0.938 0.947 - - - 6.61 M 2.08 G
Ours without MTL 2.324 0.939 0.935 0.168 0.942 0.951 1.158 0.977 0.973 7.39 M 40.27 G
Ours with MTL 1.994 0.950 0.950 0.142 0.958 0.963 0.838 0.985 0.985 7.39 M 40.27 G

Table 3: Investigation of multi-objective learning.
Approach Weighting Factors STOI (%) WB-PESQ SI-SDR (dB) With

MTL?MAE ↓ PCC ↑ SRCC ↑ MAE ↓ PCC ↑ SRCC ↑ MAE ↓ PCC ↑ SRCC ↑
STOI Alone - 2.329 0.935 0.928 - - - - - - No
PESQ Alone - - - - 0.177 0.935 0.947 - - - No
SI-SDR Alone - - - - - - - 1.177 0.976 0.947 No
Multi-Objective w1 = 1, w2 = 1, w3 = 1 2.442 0.934 0.928 0.175 0.938 0.950 1.163 0.977 0.974 No
Multi-Objective w1 = 1, w2 = 2, w3 = 0.5 2.324 0.939 0.935 0.168 0.942 0.951 1.158 0.977 0.973 No

we mix clean speech with additive noise, where the signal-to-noise
ratio (SNR) ranges from -15 to 25 dB. Second, we process part of the
noisy mixtures randomly with one of three speech enhancement sys-
tems. These speech enhancement systems are based on the GCRN
architecture [30], with varying degree of performances due to differ-
ent configurations. The training, validation, and test set consist of
roughly 364500, 14600 and 22800 audio samples, respectively. Due
to space constraints, we are unable to show the distribution of PESQ,
STOI and SI-SDR in these data, but it covers the value range of 1 to
4.6 for PESQ, 0.25 to 1 for STOI and -18 to 35 dB for SI-SDR. All
training signals are truncated to 5 seconds.

For a fair comparison, all models are trained and evaluated on
our training and test sets. For our model, we adopt the following con-
figuration for different hyperparameters: N = 256, P = 64, R =
71, h = 4, d = 256, d1 = 1024. As in [25], the value of R is
selected such that R ≈

√
2L ≈ S for the 5-second training signals.

4.4.2. Results and discussion

We measure the performance of metric estimation using the mean
absolute error (MAE), the Pearson correlation coefficient (PCC) and
the Spearman’s rank correlation coefficient (SRCC). For both PCC
and SRCC, higher scores correspond to better performance.

Table 1 investigates different loss functions and weighting fac-
tors. We observe that using the MAE loss as Ls yields a significantly
better performance than using the mean squared error (MSE) loss. In
addition, different weighting factor values are compared, revealing
that using w1 = 1, w2 = 2, w3 = 0.5, w0 = 2 with MTL achieves
almost the best performance in terms of all the three scores.

Table 2 compares our model with several recent models for
deep learning based speech assessment, including Quality-Net [28],
MOSA-Net [17], AMSA [13] and MetricNet [16]. Note that MOSA-
Net and AMSA were developed to estimate multiple metrics simul-
taneously, while Quality-Net and MetricNet estimates only PESQ.
For our model, we use w1 = 1, w2 = 2, w3 = 0.5 and w0 = 2
if MTL is adopted. We observe that our model significantly out-
performs all the baselines in terms of MAE, PCC and SRCC. In

addition, the performance of our model can be further improved
by training with MTL. For example, the MAE, PCC and SRCC
for WB-PESQ estimation improves from 0.168, 0.942 and 0.951
to 0.142, 0.958 and 0.963 by using MTL, respectively. We further
analyse this in Fig. 3, where we observe that the data points for
our model are more densely distributed near the diagonal relative to
MOSA-Net and AMSA, demonstrating that the scores estimated by
our model is better correlated with the true scores.

Our model is based on multi-objective learning, i.e. a single
model is learned for multiple metrics simultaneously. We investigate
the effect of this strategy over training three different models (only
one output branch in Fig. 1) with the same architecture to individu-
ally estimate STOI, PESQ and SI-SDR. As shown in Table 3, train-
ing a single model to estimate multiple metrics simultaneously does
not degrade but slightly improve the performance compared with the
models that estimate each metric alone. The rationale is that differ-
ent metrics are correlated with one another and thus each estima-
tion branch regularizes the training of the other branches, which im-
proves the generalization capability of the model. Moreover, such a
multi-objective learning approach is computationally more efficient
due to the use of shared modules among different objectives.

5. CONCLUSIONS
We have presented TorchAudio-Squim, a system for speech quality
and intelligibility assessment. It is released as part of TorchAudio in
PyTorch which enables easy, accessible uses of deep learning meth-
ods to estimate speech quality and intelligibility in a non-intrusive
manner. This would not only be useful to various speech systems
which require assessment of speech signals but also support research
on non-intrusive methods for speech assessment. TorchAudio-Squim
supports estimation of both subjective and objective speech metrics
through novel methods which are shown to outperform prior state-
of-the-art methods. Moreover, these models will be continuously
developed and improved in future versions of TorchAudio-Squim.
We intend to extend them to other speech assessment metrics and
explore development of computationally more efficient models.
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