
PointRend: Image Segmentation as Rendering

Alexander Kirillov Yuxin Wu Kaiming He Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present a new method for efficient high-quality
image segmentation of objects and scenes. By analogizing
classical computer graphics methods for efficient rendering
with over- and undersampling challenges faced in pixel
labeling tasks, we develop a unique perspective of image
segmentation as a rendering problem. From this vantage,
we present the PointRend (Point-based Rendering) neural
network module: a module that performs point-based
segmentation predictions at adaptively selected locations
based on an iterative subdivision algorithm. PointRend
can be flexibly applied to both instance and semantic
segmentation tasks by building on top of existing state-of-
the-art models. While many concrete implementations of
the general idea are possible, we show that a simple design
already achieves excellent results. Qualitatively, PointRend
outputs crisp object boundaries in regions that are over-
smoothed by previous methods. Quantitatively, PointRend
yields significant gains on COCO and Cityscapes, for both
instance and semantic segmentation. PointRend’s efficiency
enables output resolutions that are otherwise impractical
in terms of memory or computation compared to existing
approaches. Code has been made available at https://
github.com/facebookresearch/detectron2/
tree/master/projects/PointRend.

1. Introduction
Image segmentation tasks involve mapping pixels sam-

pled on a regular grid to a label map, or a set of label maps,
on the same grid. For semantic segmentation, the label map
indicates the predicted category at each pixel. In the case of
instance segmentation, a binary foreground vs. background
map is predicted for each detected object. The modern tools
of choice for these tasks are built on convolutional neural
networks (CNNs) [29, 28].

CNNs for image segmentation typically operate on reg-
ular grids: the input image is a regular grid of pixels, their
hidden representations are feature vectors on a regular grid,
and their outputs are label maps on a regular grid. Regu-
lar grids are convenient, but not necessarily computation-

56×56 112×112 224×224

Mask R-CNN + PointRend

28×28

28×28 224×224

Figure 1: Instance segmentation with PointRend. We introduce
the PointRend (Point-based Rendering) module that makes predic-
tions at adaptively sampled points on the image using a new point-
based feature representation (see Fig. 3). PointRend is general and
can be flexibly integrated into existing semantic and instance seg-
mentation systems. When used to replace Mask R-CNN’s default
mask head [19] (top-left), PointRend yields significantly more de-
tailed results (top-right). (bottom) During inference, PointRend it-
erative computes its prediction. Each step applies bilinear upsam-
pling in smooth regions and makes higher resolution predictions
at a small number of adaptively selected points that are likely to
lie on object boundaries (black points). All figures in the paper are
best viewed digitally with zoom. Image source: [43].

ally ideal for image segmentation. The label maps pre-
dicted by these networks should be mostly smooth, i.e.,
neighboring pixels often take the same label, because high-
frequency regions are restricted to the sparse boundaries be-
tween objects. A regular grid will unnecessarily oversample
the smooth areas while simultaneously undersampling ob-
ject boundaries. The result is excess computation in smooth
regions and blurry contours (Fig. 1, upper-left). Image seg-
mentation methods often predict labels on a low-resolution
regular grid, e.g., 1/8-th of the input [37] for semantic seg-
mentation, or 28×28 [19] for instance segmentation, as a
compromise between undersampling and oversampling.

Analogous sampling issues have been studied for
decades in computer graphics. For example, a renderer
maps a model (e.g., a 3D mesh) to a rasterized image, i.e. a

1

https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend

Figure 2: Example result pairs from Mask R-CNN [19] with its standard mask head (left image) vs. with PointRend (right image),
using ResNet-50 [20] with FPN [30]. Note how PointRend predicts masks with substantially finer detail around object boundaries.

regular grid of pixels. While the output is on a regular grid,
computation is not allocated uniformly over the grid. In-
stead, a common graphics strategy is to compute pixel val-
ues at an irregular subset of adaptively selected points in the
image plane. The classical subdivision technique of [50], as
an example, yields a quadtree-like sampling pattern that ef-
ficiently renders an anti-aliased, high-resolution image.

The central idea of this paper is to view image seg-
mentation as a rendering problem and to adapt classical
ideas from computer graphics to efficiently “render” high-
quality label maps (see Fig. 1, bottom-left). We encap-
sulate this computational idea in a new neural network
module, called PointRend, that uses a subdivision strategy
to adaptively select a non-uniform set of points at which
to compute labels. PointRend can be incorporated into
popular meta-architectures for both instance segmentation
(e.g., Mask R-CNN [19]) and semantic segmentation (e.g.,
FCN [37]). Its subdivision strategy efficiently computes
high-resolution segmentation maps using an order of mag-
nitude fewer floating-point operations than direct, dense
computation.

PointRend is a general module that admits many pos-
sible implementations. Viewed abstractly, a PointRend
module accepts one or more typical CNN feature maps
f(xi, yi) that are defined over regular grids, and outputs
high-resolution predictions p(x′

i, y
′
i) over a finer grid. In-

stead of making excessive predictions over all points on the

output grid, PointRend makes predictions only on carefully
selected points. To make these predictions, it extracts a
point-wise feature representation for the selected points by
interpolating f , and uses a small point head subnetwork to
predict output labels from the point-wise features. We will
present a simple and effective PointRend implementation.

We evaluate PointRend on instance and semantic seg-
mentation tasks using the COCO [31] and Cityscapes [9]
benchmarks. Qualitatively, PointRend efficiently computes
sharp boundaries between objects, as illustrated in Fig. 2
and Fig. 8. We also observe quantitative improvements even
though the standard intersection-over-union based metrics
for these tasks (mask AP and mIoU) are biased towards
object-interior pixels and are relatively insensitive to bound-
ary improvements. PointRend improves strong Mask R-
CNN and DeepLabV3 [5] models by a significant margin.

2. Related Work
Rendering algorithms in computer graphics output a reg-
ular grid of pixels. However, they usually compute these
pixel values over a non-uniform set of points. Efficient pro-
cedures like subdivision [50] and adaptive sampling [40, 44]
refine a coarse rasterization in areas where pixel values
have larger variance. Ray-tracing renderers often use over-
sampling [52], a technique that samples some points more
densely than the output grid to avoid aliasing effects. Here,
we apply classical subdivision to image segmentation.

2

Non-uniform grid representations. Computation on reg-
ular grids is the dominant paradigm for 2D image analy-
sis, but this is not the case for other vision tasks. In 3D
shape recognition, large 3D grids are infeasible due to cu-
bic scaling. Most CNN-based approaches do not go be-
yond coarse 64×64×64 grids [12, 8]. Instead, recent works
consider more efficient non-uniform representations such as
meshes [49, 14], signed distance functions [39], and oc-
trees [48]. Similar to a signed distance function, PointRend
can compute segmentation values at any point.

Recently, Marin et al. [38] propose an efficient semantic
segmentation network based on non-uniform subsampling
of the input image prior to processing with a standard se-
mantic segmentation network. PointRend, in contrast, fo-
cuses on non-uniform sampling at the output. It may be
possible to combine the two approaches, though [38] is cur-
rently unproven for instance segmentation.

Instance segmentation methods based on the Mask R-
CNN meta-architecture [19] occupy top ranks in recent
challenges [34, 3]. These region-based architectures typ-
ically predict masks on a 28×28 grid irrespective of ob-
ject size. This is sufficient for small objects, but for large
objects it produces undesirable “blobby” output that over-
smooths the fine-level details of large objects (see Fig. 1,
top-left). Alternative, bottom-up approaches group pixels
to form object masks [33, 1, 25]. These methods can pro-
duce more detailed output, however, they lag behind region-
based approaches on most instance segmentation bench-
marks [31, 9, 42]. TensorMask [7], an alternative sliding-
window method, uses a sophisticated network design to
predict sharp high-resolution masks for large objects, but
its accuracy also lags slightly behind. In this paper, we
show that a region-based segmentation model equipped
with PointRend can produce masks with fine-level details
while improving the accuracy of region-based approaches.

Semantic segmentation. Fully convolutional networks
(FCNs) [37] are the foundation of modern semantic seg-
mentation approaches. They often predict outputs that have
lower resolution than the input grid and use bilinear upsam-
pling to recover the remaining 8-16× resolution. Results
may be improved with dilated/atrous convolutions that re-
place some subsampling layers [4, 5] at the expense of more
memory and computation.

Alternative approaches include encoder-decoder achitec-
tures [6, 24, 46, 47] that subsample the grid representation
in the encoder and then upsample it in the decoder, using
skip connections [46] to recover filtered details. Current
approaches combine dilated convolutions with an encoder-
decoder structure [6, 32] to produce output on a 4× sparser
grid than the input grid before applying bilinear interpola-
tion. In our work, we propose a method that can efficiently
predict fine-level details on a grid as dense as the input grid.

coarse prediction

point features point predictions

MLP

CNN backbone

fine-grained
features

Figure 3: PointRend applied to instance segmentation. A stan-
dard network for instance segmentation (solid red arrows) takes
an input image and yields a coarse (e.g. 7×7) mask prediction for
each detected object (red box) using a lightweight segmentation
head. To refine the coarse mask, PointRend selects a set of points
(red dots) and makes prediction for each point independently with
a small MLP. The MLP uses interpolated features computed at
these points (dashed red arrows) from (1) a fine-grained feature
map of the backbone CNN and (2) from the coarse prediction
mask. The coarse mask features enable the MLP to make differ-
ent predictions at a single point that is contained by two or more
boxes. The proposed subdivision mask rendering algorithm (see
Fig. 4 and §3.1) applies this process iteratively to refine uncertain
regions of the predicted mask.

3. Method

We analogize image segmentation (of objects and/or
scenes) in computer vision to image rendering in computer
graphics. Rendering is about displaying a model (e.g., a
3D mesh) as a regular grid of pixels, i.e., an image. While
the output representation is a regular grid, the underlying
physical entity (e.g., the 3D model) is continuous and its
physical occupancy and other attributes can be queried at
any real-value point on the image plane using physical and
geometric reasoning, such as ray-tracing.

Analogously, in computer vision, we can think of an im-
age segmentation as the occupancy map of an underlying
continuous entity, and the segmentation output, which is a
regular grid of predicted labels, is “rendered” from it. The
entity is encoded in the network’s feature maps and can be
accessed at any point by interpolation. A parameterized
function, that is trained to predict occupancy from these in-
terpolated point-wise feature representations, is the coun-
terpart to physical and geometric reasoning.

Based on this analogy, we propose PointRend (Point-
based Rendering) as a methodology for image segmenta-
tion using point representations. A PointRend module ac-
cepts one or more typical CNN feature maps of C chan-
nels f ∈ RC×H×W , each defined over a regular grid (that
is typically 4× to 16× coarser than the image grid), and

3

outputs predictions for the K class labels p ∈ RK×H′×W ′

over a regular grid of different (and likely higher) resolu-
tion. A PointRend module consists of three main compo-
nents: (i) A point selection strategy chooses a small number
of real-value points to make predictions on, avoiding exces-
sive computation for all pixels in the high-resolution output
grid. (ii) For each selected point, a point-wise feature rep-
resentation is extracted. Features for a real-value point are
computed by bilinear interpolation of f , using the point’s 4
nearest neighbors that are on the regular grid of f . As a re-
sult, it is able to utilize sub-pixel information encoded in the
channel dimension of f to predict a segmentation that has
higher resolution than f . (iii) A point head: a small neu-
ral network trained to predict a label from this point-wise
feature representation, independently for each point.

The PointRend architecture can be applied to instance
segmentation (e.g., on Mask R-CNN [19]) and semantic
segmentation (e.g., on FCNs [37]) tasks. For instance seg-
mentation, PointRend is applied to each region. It com-
putes masks in a coarse-to-fine fashion by making predic-
tions over a set of selected points (see Fig. 3). For seman-
tic segmentation, the whole image can be considered as a
single region, and thus without loss of generality we will
describe PointRend in the context of instance segmentation.
We discuss the three main components in more detail next.

3.1. Point Selection for Inference and Training

At the core of our method is the idea of flexibly and
adaptively selecting points in the image plane at which to
predict segmentation labels. Intuitively, these points should
be located more densely near high-frequency areas, such as
object boundaries, analogous to the anti-aliasing problem in
ray-tracing. We develop this idea for inference and training.

Inference. Our selection strategy for inference is inspired
by the classical technique of adaptive subdivision [50] in
computer graphics. The technique is used to efficiently ren-
der high resolutions images (e.g., via ray-tracing) by com-
puting only at locations where there is a high chance that
the value is significantly different from its neighbors; for all
other locations the values are obtained by interpolating al-
ready computed output values (starting from a coarse grid).

For each region, we iteratively “render” the output mask
in a coarse-to-fine fashion. The coarsest level prediction is
made on the points on a regular grid (e.g., by using a stan-
dard coarse segmentation prediction head). In each itera-
tion, PointRend upsamples its previously predicted segmen-
tation using bilinear interpolation and then selects the N
most uncertain points (e.g., those with probabilities closest
to 0.5 for a binary mask) on this denser grid. PointRend then
computes the point-wise feature representation (described
shortly in §3.2) for each of these N points and predicts their
labels. This process is repeated until the segmentation is up-
sampled to a desired resolution. One step of this procedure

point
prediction

8× 88× 84× 4

2×

Figure 4: Example of one adaptive subdivision step. A predic-
tion on a 4×4 grid is upsampled by 2× using bilinear interpola-
tion. Then, PointRend makes prediction for the N most ambigu-
ous points (black dots) to recover detail on the finer grid. This
process is repeated until the desired grid resolution is achieved.

a) regular grid b) uniform c) mildly biased

k = 3,β = 0.75

d) heavily biased

k = 10,β = 0.75k = 1,β = 0.0

Figure 5: Point sampling during training. We show N=142

points sampled using different strategies for the same underlying
coarse prediction. To achieve high performance only a small num-
ber of points are sampled per region with a mildly biased sampling
strategy making the system more efficient during training.

is illustrated on a toy example in Fig. 4.
With a desired output resolution of M×M pixels and a

starting resolution of M0×M0, PointRend requires no more
than N log2

M
M0

point predictions. This is much smaller
than M×M , allowing PointRend to make high-resolution
predictions much more effectively. For example, if M0 is
7 and the desired resolutions is M=224, then 5 subdivision
steps are preformed. If we select N=282 points at each
step, PointRend makes predictions for only 282·4.25 points,
which is 15 times smaller than 2242. Note that fewer than
N log2

M
M0

points are selected overall because in the first
subdivision step only 142 points are available.

Training. During training, PointRend also needs to select
points at which to construct point-wise features for train-
ing the point head. In principle, the point selection strategy
can be similar to the subdivision strategy used in inference.
However, subdivision introduces sequential steps that are
less friendly to training neural networks with backpropaga-
tion. Instead, for training we use a non-iterative strategy
based on random sampling.

The sampling strategy selects N points on a fea-
ture map to train on.1 It is designed to bias se-
lection towards uncertain regions, while also retaining
some degree of uniform coverage, using three principles.
(i) Over generation: we over-generate candidate points by

1The value of N can be different for training and inference selection.

4

randomly sampling kN points (k>1) from a uniform distri-
bution. (ii) Importance sampling: we focus on points with
uncertain coarse predictions by interpolating the coarse
prediction values at all kN points and computing a task-
specific uncertainty estimate (defined in §4 and §5). The
most uncertain βN points (β ∈ [0, 1]) are selected from
the kN candidates. (iii) Coverage: the remaining (1− β)N
points are sampled from a uniform distribution. We illus-
trate this procedure with different settings, and compare it
to regular grid selection, in Fig. 5.

At training time, predictions and loss functions are only
computed on the N sampled points (in addition to the coarse
segmentation), which is simpler and more efficient than
backpropagation through subdivision steps. This design is
similar to the parallel training of RPN + Fast R-CNN in a
Faster R-CNN system [13], whose inference is sequential.

3.2. Point-wise Representation and Point Head

PointRend constructs point-wise features at selected
points by combining (e.g., concatenating) two feature types,
fine-grained and coarse prediction features, described next.

Fine-grained features. To allow PointRend to render fine
segmentation details we extract a feature vector at each sam-
pled point from CNN feature maps. Because a point is a
real-value 2D coordinate, we perform bilinear interpolation
on the feature maps to compute the feature vector, follow-
ing standard practice [22, 19, 10]. Features can be extracted
from a single feature map (e.g., res2 in a ResNet); they can
also be extracted from multiple feature maps (e.g., res2 to
res5, or their feature pyramid [30] counterparts) and con-
catenated, following the Hypercolumn method [17].

Coarse prediction features. The fine-grained features en-
able resolving detail, but are also deficient in two regards.
First, they do not contain region-specific information and
thus the same point overlapped by two instances’ bound-
ing boxes will have the same fine-grained features. Yet, the
point can only be in the foreground of one instance. There-
fore, for the task of instance segmentation, where different
regions may predict different labels for the same point, ad-
ditional region-specific information is needed.

Second, depending on which feature maps are used for
the fine-grained features, the features may contain only rel-
atively low-level information (e.g., we will use res2 with
DeepLabV3). In this case, a feature source with more con-
textual and semantic information can be helpful. This issue
affects both instance and semantic segmentation.

Based on these considerations, the second feature type is
a coarse segmentation prediction from the network, i.e., a
K-dimensional vector at each point in the region (box) rep-
resenting a K-class prediction. The coarse resolution, by
design, provides more globalized context, while the chan-
nels convey the semantic classes. These coarse predictions

are similar to the outputs made by the existing architectures,
and are supervised during training in the same way as exist-
ing models. For instance segmentation, the coarse predic-
tion can be, for example, the output of a lightweight 7×7
resolution mask head in Mask R-CNN. For semantic seg-
mentation, it can be, for example, predictions from a stride
16 feature map.

Point head. Given the point-wise feature representation
at each selected point, PointRend makes point-wise seg-
mentation predictions using a simple multi-layer percep-
tron (MLP). This MLP shares weights across all points (and
all regions), analogous to a graph convolution [23] or a
PointNet [45]. Since the MLP predicts a segmentation la-
bel for each point, it can be trained by standard task-specific
segmentation losses (described in §4 and §5).

4. Experiments: Instance Segmentation
Datasets. We use two standard instance segmentation
datasets: COCO [31] and Cityscapes [9]. We report the
standard mask AP metric [31] using the median of 3 runs
for COCO and 5 for Cityscapes (it has higher variance).

COCO has 80 categories with instance-level annotation.
We train on train2017 (∼118k images) and report results
on val2017 (5k images). As noted in [16], the COCO
ground-truth is often coarse and AP for the dataset may not
fully reflect improvements in mask quality. Therefore we
supplement COCO results with AP measured using the 80
COCO category subset of LVIS [16], denoted by AP!. The
LVIS annotations have significantly higher quality. Note
that for AP! we use the same models trained on COCO
and simply re-evaluate their predictions against the higher-
quality LVIS annotations using the LVIS evaluation API.

Cityscapes is an ego-centric street-scene dataset with
8 categories, 2975 train images, and 500 validation im-
ages. The images are higher resolution compared to COCO
(1024×2048 pixels) and have finer, more pixel-accurate
ground-truth instance segmentations.

Architecture. Our experiments use Mask R-CNN with a
ResNet-50 [20] + FPN [30] backbone. The default mask
head in Mask R-CNN is a region-wise FCN, which we de-
note by “4× conv”.2 We use this as our baseline for com-
parison. For PointRend, we make appropriate modifications
to this baseline, as described next.

Lightweight, coarse mask prediction head. To compute
the coarse prediction, we replace the 4× conv mask head
with a lighter weight design that resembles Mask R-CNN’s
box head and produces a 7×7 mask prediction. Specifi-
cally, for each bounding box, we extract a 14×14 feature

2Four layers of 3×3 convolutions with 256 output channels are applied
to a 14×14 input feature map. Deconvolution with a 2×2 kernel trans-
forms this to 28×28. Finally, a 1×1 convolution predicts mask logits.

5

map from the P2 level of the FPN using bilinear interpola-
tion. The features are computed on a regular grid inside the
bounding box (this operation can seen as a simple version of
RoIAlign). Next, we use a stride-two 2×2 convolution layer
with 256 output channels followed by ReLU [41], which
reduces the spatial size to 7×7. Finally, similar to Mask
R-CNN’s box head, an MLP with two 1024-wide hidden
layers is applied to yield a 7×7 mask prediction for each of
the K classes. ReLU is used on the MLP’s hidden layers
and the sigmoid activation function is applied to its outputs.

PointRend. At each selected point, a K-dimensional fea-
ture vector is extracted from the coarse prediction head’s
output using bilinear interpolation. PointRend also interpo-
lates a 256-dimensional feature vector from the P2 level of
the FPN. This level has a stride of 4 w.r.t. the input image.
These coarse prediction and fine-grained feature vectors are
concatenated. We make a K-class prediction at selected
points using an MLP with 3 hidden layers with 256 chan-
nels. In each layer of the MLP, we supplement the 256 out-
put channels with the K coarse prediction features to make
the input vector for the next layer. We use ReLU inside the
MLP and apply sigmoid to its output.

Training. We use the standard 1× training schedule and
data augmentation from Detectron2 [51] by default (full de-
tails are in the appendix). For PointRend, we sample 142

points using the biased sampling strategy described in the
§3.1 with k=3 and β=0.75. We use the distance between
0.5 and the probability of the ground truth class interpo-
lated from the coarse prediction as the point-wise uncer-
tainty measure. For a predicted box with ground-truth class
c, we sum the binary cross-entropy loss for the c-th MLP
output over the 142 points. The lightweight coarse predic-
tion head uses the average cross-entropy loss for the mask
predicted for class c, i.e., the same loss as the baseline 4×
conv head. We sum all losses without any re-weighting.

During training, Mask R-CNN applies the box and mask
heads in parallel, while during inference they run as a cas-
cade. We found that training as a cascade does not improve
the baseline Mask R-CNN, but PointRend can benefit from
it by sampling points inside more accurate boxes, slightly
improving overall performance (∼0.2% AP, absolute).

Inference. For inference on a box with predicted class c,
unless otherwise specified, we use the adaptive subdivision
technique to refine the coarse 7×7 prediction for class c to
the 224×224 in 5 steps. At each step, we select and update
(at most) the N=282 most uncertain points based on the
absolute difference between the predictions and 0.5.

4.1. Main Results

We compare PointRend to the default 4× conv head in
Mask R-CNN in Table 1. PointRend outperforms the de-
fault head on both datasets. The gap is larger when evaluat-

output COCO Cityscapes
mask head resolution AP AP! AP
4× conv 28×28 35.2 37.6 33.0
PointRend 28×28 36.1 (+0.9) 39.2 (+1.6) 35.5 (+2.5)

PointRend 224×224 36.3 (+1.1) 39.7 (+2.1) 35.8 (+2.8)

Table 1: PointRend vs. the default 4× conv mask head for Mask
R-CNN [19]. Mask AP is reported. AP! is COCO mask AP eval-
uated against the higher-quality LVIS annotations [16] (see text
for details). A ResNet-50-FPN backbone is used for both COCO
and Cityscapes models. PointRend outperforms the standard 4×
conv mask head both quantitively and qualitatively. Higher output
resolution leads to more detailed predictions, see Fig. 2 and Fig. 6.

28
×
28

22
4×

22
4

Figure 6: PointRend inference with different output resolu-
tions. High resolution masks align better with object boundaries.

mask head output resolution FLOPs # activations
4× conv 28×28 0.5B 0.5M
4× conv 224×224 34B 33M
PointRend 224×224 0.9B 0.7M

Table 2: FLOPs (multiply-adds) and activation counts for a
224×224 output resolution mask. PointRend’s efficient subdi-
vision makes 224×224 output feasible in contrast to the standard
4× conv mask head modified to use an RoIAlign size of 112×112.

ing the COCO categories using the LVIS annotations (AP!)
and for Cityscapes, which we attribute to the superior anno-
tation quality in these datasets. Even with the same output
resolution PointRend outperforms the baseline. The differ-
ence between 28×28 and 224×224 is relatively small be-
cause AP uses intersection-over-union [11] and, therefore,
is heavily biased towards object-interior pixels and less sen-
sitive to the boundary quality. Visually, however, the differ-
ence in boundary quality is obvious, see Fig. 6.

Subdivision inference allows PointRend to yield a high
resolution 224×224 prediction using more than 30 times
less compute (FLOPs) and memory than the default 4×
conv head needs to output the same resolution (based on
taking a 112×112 RoIAlign input), see Table 2. PointRend
makes high resolution output feasible in the Mask R-CNN
framework by ignoring areas of an object where a coarse

6

points per COCO Cityscapes
output resolution subdivision step AP AP! AP

28×28 282 36.1 39.2 35.4
56×56 282 36.2 39.6 35.8

112×112 282 36.3 39.7 35.8
224×224 282 36.3 39.7 35.8
224×224 142 36.1 39.4 35.5
224×224 282 36.3 39.7 35.8
224×224 562 36.3 39.7 35.8
224×224 1122 36.3 39.7 35.8

Table 3: Subdivision inference parameters. Higher output res-
olution improves AP. Although improvements saturate quickly (at
underlined values) with the number of points sampled at each sub-
division step, qualitative results may continue to improve for com-
plex objects. AP! is COCO mask AP evaluated against the higher-
quality LVIS annotations [16] (see text for details).

56×56 112×112 224×22428×28

Figure 7: Anti-aliasing with PointRend. Precise object delin-
eation requires output mask resolution to match or exceed the res-
olution of the input image region that the object occupies.

prediction is sufficient (e.g., in the areas far away from ob-
ject boundaries). In terms of wall-clock runtime, our unop-
timized implementation outputs 224×224 masks at ∼13 fps,
which is roughly the same frame-rate as a 4× conv head
modified to output 56×56 masks (by doubling the default
RoIAlign size), a design that actually has lower COCO AP
compared to the 28×28 4× conv head (34.5% vs. 35.2%).

Table 3 shows PointRend subdivision inference with dif-
ferent output resolutions and number of points selected at
each subdivision step. Predicting masks at a higher res-
olution can improve results. Though AP saturates, visual
improvements are still apparent when moving from lower
(e.g., 56×56) to higher (e.g., 224×224) resolution outputs,
see Fig. 7. AP also saturates with the number of points sam-
pled in each subdivision step because points are selected in
the most ambiguous areas first. Additional points may make
predictions in the areas where a coarse prediction is already
sufficient. For objects with complex boundaries, however,
using more points may be beneficial.

COCO Cityscapes
selection strategy AP AP! AP
regular grid 35.7 39.1 34.4
uniform (k=1,β=0.0) 35.9 39.0 34.5
mildly biased (k=3,β=0.75) 36.3 39.7 35.8
heavily biased (k=10,β=1.0) 34.4 37.5 34.1

Table 4: Training-time point selection strategies with 142 points
per box. Mildly biasing sampling towards uncertain regions per-
forms the best. Heavily biased sampling performs even worse than
uniform or regular grid sampling indicating the importance of cov-
erage. AP! is COCO mask AP evaluated against the higher-quality
LVIS annotations [16] (see text for details).

COCO
mask head backbone AP AP!

4× conv R50-FPN 37.2 39.5
PointRend R50-FPN 38.2 (+1.0) 41.5 (+2.0)

4× conv R101-FPN 38.6 41.4
PointRend R101-FPN 39.8 (+1.2) 43.5 (+2.1)

4× conv X101-FPN 39.5 42.1
PointRend X101-FPN 40.9 (+1.4) 44.9 (+2.8)

Table 5: Larger models and a longer 3× schedule [18].
PointRend benefits from more advanced models and the longer
training. The gap between PointRend and the default mask head
in Mask R-CNN holds. AP! is COCO mask AP evaluated against
the higher-quality LVIS annotations [16] (see text for details).

4.2. Ablation Experiments

We conduct a number of ablations to analyze PointRend.
In general we note that it is robust to the exact design of the
point head MLP. Changes of its depth or width do not show
any significant difference in our experiments.

Point selection during training. During training we select
142 points per object following the biased sampling strat-
egy (§3.1). Sampling only 142 points makes training com-
putationally and memory efficient and we found that using
more points does not improve results. Surprisingly, sam-
pling only 49 points per box still maintains AP, though we
observe an increased variance in AP.

Table 4 shows PointRend performance with different se-
lection strategies during training. Regular grid selection
achieves similar results to uniform sampling. Whereas bias-
ing sampling toward ambiguous areas improves AP. How-
ever, a sampling strategy that is biased too heavily towards
boundaries of the coarse prediction (k>10 and β close to
1.0) decreases AP. Overall, we find a wide range of param-
eters 2<k<5 and 0.75<β<1.0 delivers similar results.

Larger models, longer training. Training ResNet-50 +
FPN (denoted R50-FPN) with the 1× schedule under-fits
on COCO. In Table 5 we show that the PointRend im-
provements over the baseline hold with both longer training
schedule and larger models (see the appendix for details).

7

Mask R-CNN + 4 conv Mask R-CNN + PointRend DeeplabV3 DeeplabV3 + PointRend×

Figure 8: Cityscapes example results for instance and semantic segmentation. In instance segmentation larger objects benefit more
from PointRend ability to yield high resolution output. Whereas for semantic segmentation PointRend recovers small objects and details.

5. Experiments: Semantic Segmentation
PointRend is not limited to instance segmentation and

can be extended to other pixel-level recognition tasks. Here,
we demonstrate that PointRend can benefit two semantic
segmentation models: DeeplabV3 [5], which uses dilated
convolutions to make prediction on a denser grid, and Se-
manticFPN [24], a simple encoder-decoder architecture.

Dataset. We use the Cityscapes [9] semantic segmentation
set with 19 categories, 2975 training images, and 500 vali-
dation images. We report the median mIoU of 5 trials.

Implementation details. We reimplemented DeeplabV3
and SemanticFPN following their respective papers. Se-
manticFPN uses a standard ResNet-101 [20], whereas
DeeplabV3 uses the ResNet-103 proposed in [5].3 We fol-
low the original papers’ training schedules and data aug-
mentation (details are in the appendix).

We use the same PointRend architecture as for in-
stance segmentation. Coarse prediction features come from
the (already coarse) output of the semantic segmentation
model. Fine-grained features are interpolated from res2 for
DeeplabV3 and from P2 for SemanticFPN. During training
we sample as many points as there are on a stride 16 fea-
ture map of the input (2304 for deeplabV3 and 2048 for Se-
manticFPN). We use the same k=3,β=0.75 point selection
strategy. During inference, subdivision uses N=8096 (i.e.,
the number of points in the stride 16 map of a 1024×2048
image) until reaching the input image resolution. To mea-
sure prediction uncertainty we use the same strategy dur-
ing training and inference: the difference between the most
confident and second most confident class probabilities.

DeeplabV3. In Table 6 we compare DeepLabV3 to
DeeplabV3 with PointRend. The output resolution can also
be increased by 2× at inference by using dilated convolu-
tions in res4 stage, as described in [5]. Compared to both,

3It replaces the ResNet-101 res1 7×7 convolution with three 3×3 con-
volutions (hence “ResNet-103”).

method output resolution mIoU
DeeplabV3-OS-16 64×128 77.2
DeeplabV3-OS-8 128×256 77.8 (+0.6)

DeeplabV3-OS-16 + PointRend 1024×2048 78.4 (+1.2)

Table 6: DeeplabV3 with PointRend for Cityscapes semantic
segmentation outperforms baseline DeepLabV3. Dilating the res4
stage during inference yields a larger, more accurate prediction,
but at much higher computational and memory costs; it is still in-
ferior to using PointRend.

Figure 9: PointRend inference for semantic segmentation.
PointRend refines prediction scores for areas where a coarser pre-
diction is not sufficient. To visualize the scores at each step we
take argmax at given resolution without bilinear interpolation.

method output resolution mIoU
SemanticFPN P2-P5 256×512 77.7
SemanticFPN P2-P5 + PointRend 1024×2048 78.6 (+0.9)

SemanticFPN P3-P5 128×256 77.4
SemanticFPN P3-P5 + PointRend 1024×2048 78.5 (+1.1)

Table 7: SemanticFPN with PointRend for Cityscapes semantic
segmentation outperform the baseline SemanticFPN.

PointRend has higher mIoU. Qualitative improvements are
also evident, see Fig. 8. By sampling points adaptively,
PointRend reaches 1024×2048 resolution (i.e. 2M points)
by making predictions for only 32k points, see Fig. 9.

SemanticFPN. Table 7 shows that SemanticFPN with
PointRend improves over both 8× and 4× output stride
variants without PointRend.

8

Appendix A. Instance Segmentation Details

We use SGD with 0.9 momentum; a linear learning rate
warmup [15] over 1000 updates starting from a learning rate
of 0.001 is applied; weight decay 0.0001 is applied; hori-
zontal flipping and scale train-time data augmentation; the
batch normalization (BN) [21] layers from the ImageNet
pre-trained models are frozen (i.e., BN is not used); no test-
time augmentation is used.

COCO [31]: 16 images per mini-batch; the training sched-
ule is 60k / 20k / 10k updates at learning rates of 0.02 / 0.002
/ 0.0002 respectively; training images are resized randomly
to a shorter edge from 640 to 800 pixels with a step of 32
pixels and inference images are resized to a shorter edge
size of 800 pixels.

Cityscapes [9]: 8 images per mini-batch the training
schedule is 18k / 6k updates at learning rates of 0.01 /
0.001 respectively; training images are resized randomly to
a shorter edge from 800 to 1024 pixels with a step of 32 pix-
els and inference images are resized to a shorter edge size
of 1024 pixels.

Longer schedule: The 3× schedule for COCO is 210k /
40k / 20k updates at learning rates of 0.02 / 0.002 / 0.0002,
respectively; all other details are the same as the setting de-
scribed above.

Appendix B. Semantic Segmentation Details

DeeplabV3 [5]: We use SGD with 0.9 momentum with 16
images per mini-batch cropped to a fixed 768×768 size;
the training schedule is 90k updates with a poly learning
rate [36] update strategy, starting from 0.01; a linear learn-
ing rate warmup [15] over 1000 updates starting from a
learning rate of 0.001 is applied; the learning rate for ASPP
and the prediction convolution are multiplied by 10; weight
decay of 0.0001 is applied; random horizontal flipping and
scaling of 0.5× to 2.0× with a 32 pixel step is used as train-
ing data augmentation; BN is applied to 16 images mini-
batches; no test-time augmentation is used;

SemanticFPN [24]: We use SGD with 0.9 momentum
with 32 images per mini-batch cropped to a fixed 512×1024
size; the training schedule is 40k / 15k / 10k updates at
learning rates of 0.01 / 0.001 / 0.0001 respectively; a linear
learning rate warmup [15] over 1000 updates starting from
a learning rate of 0.001 is applied; weight decay 0.0001 is
applied; horizontal flipping, color augmentation [35], and
crop bootstrapping [2] are used during training; scale train-
time data augmentation resizes an input image from 0.5×
to 2.0× with a 32 pixel step; BN layers are frozen (i.e., BN
is not used); no test-time augmentation is used.

method
trimap mIoU

mIoU
8px 20px

DeeplabV3-OS-16 42.4 57.5 77.2
DeeplabV3-OS-16 + PointRend 47.3 (+4.9) 61.2 (+3.7) 78.4 (+1.2)

SemanticFPN P2-P5 47.0 60.6 77.7
SemanticFPN P2-P5 + PointRend 48.6 (+1.6) 62.1 (+1.5) 78.6 (+0.9)

Table 8: Cityscapes mIoU within trimaps of different pixel widths.
PointRend significantly improves segmentation quality around
boundaries as the difference is larger for narrower trimaps.

Appendix C. Semantic Segmentation Bound-
ary Quality

Intersection-over-union (IoU) [11] is heavily biased to-
wards object-interior pixels and less sensitive to the bound-
ary quality. The common approach to evaluate segmen-
tation accuracy around boundaries is to calculate IoU for
a “trimap”, a narrow band surrounding segment bound-
aries [27, 38, 4, 26]. In Table 8 we compare mIoU for
trimaps of different pixel widths for models with and with-
out PointRend for semantic segmentation on Cityscapes.
We confirm that PointRend boosts boundaries quality as the
improvement is larger for narrow trimaps.

Appendix D. AP! Computation
The first version (v1) of this paper on arXiv has an er-

ror in COCO mask AP evaluated against the LVIS annota-
tions [16] (AP!). The old version used an incorrect list of
the categories not present in each evaluation image, which
resulted in lower AP! values.

References
[1] Anurag Arnab and Philip HS Torr. Pixelwise instance

segmentation with a dynamically instantiated network. In
CVPR, 2017. 3

[2] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.
In-place activated batchnorm for memory-optimized training
of DNNs. In CVPR, 2018. 9

[3] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-
iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,
Wanli Ouyang, et al. Hybrid task cascade for instance seg-
mentation. In CVPR, 2019. 3

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. DeepLab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected CRFs. PAMI, 2018. 3, 9

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. arXiv:1706.05587, 2017. 2, 3, 8, 9

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 3

9

[7] Xinlei Chen, Ross Girshick, Kaiming He, and Piotr Dollár.
TensorMask: A foundation for dense object segmentation. In
ICCV, 2019. 3

[8] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3D-R2N2: A unified approach
for single and multi-view 3D object reconstruction. In
ECCV, 2016. 3

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 2, 3, 5, 8, 9

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In ICCV, 2017. 5

[11] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
PASCAL visual object classes challenge: A retrospective.
IJCV, 2015. 6, 9

[12] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. In ECCV, 2016. 3

[13] Ross Girshick. Fast R-CNN. In ICCV, 2015. 5
[14] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh

R-CNN. In ICCV, 2019. 3
[15] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv:1706.02677, 2017.
9

[16] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A
dataset for large vocabulary instance segmentation. In ICCV,
2019. 5, 6, 7, 9

[17] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-
tendra Malik. Hypercolumns for object segmentation and
fine-grained localization. In CVPR, 2015. 5

[18] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking
imagenet pre-training. In ICCV, 2019. 7

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 1, 2, 3, 4, 5, 6

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2, 5, 8

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 9

[22] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In NIPS,
2015. 5

[23] Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. ICLR, 2017. 5

[24] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In CVPR, 2019.
3, 8, 9

[25] Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bog-
dan Savchynskyy, and Carsten Rother. InstanceCut: from
edges to instances with multicut. In CVPR, 2017. 3

[26] Pushmeet Kohli, Philip HS Torr, et al. Robust higher order
potentials for enforcing label consistency. IJCV, 2009. 9

[27] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected crfs with gaussian edge potentials. In
NIPS, 2011. 9

[28] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Im-
ageNet classification with deep convolutional neural net-
works. In NIPS, 2012. 1

[29] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1989. 1

[30] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 2, 5

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, 2014. 2, 3, 5, 9

[32] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for semantic
image segmentation. In CVPR, 2019. 3

[33] Shu Liu, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. SGN:
Sequential grouping networks for instance segmentation. In
CVPR, 2017. 3

[34] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In
CVPR, 2018. 3

[35] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In ECCV, 2016.
9

[36] Wei Liu, Andrew Rabinovich, and Alexander C Berg.
Parsenet: Looking wider to see better. arXiv:1506.04579,
2015. 9

[37] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 1, 2, 3, 4

[38] Dmitrii Marin, Zijian He, Peter Vajda, Priyam Chatterjee,
Sam Tsai, Fei Yang, and Yuri Boykov. Efficient segmenta-
tion: Learning downsampling near semantic boundaries. In
ICCV, 2019. 3, 9

[39] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019. 3

[40] Don P Mitchell. Generating antialiased images at low sam-
pling densities. ACM SIGGRAPH Computer Graphics, 1987.
2

[41] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010. 6

[42] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In CVPR, 2017. 3

[43] Paphio. Jo-Wilfried Tsonga [19]. CC BY-NC-SA
2.0. https://www.flickr.com/photos/paphio/
2855627782/, 2008. 1

10

https://www.flickr.com/photos/paphio/2855627782/

[44] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
based rendering: From theory to implementation, chapter 7.
Morgan Kaufmann, 2016. 2

[45] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, 2017. 5

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In MICCAI, 2015. 3

[47] Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao,
Dong Liu, Yadong Mu, Xinggang Wang, Wenyu Liu, and
Jingdong Wang. High-resolution representations for labeling
pixels and regions. arXiv:1904.04514, 2019. 3

[48] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Octree generating networks: Efficient convolutional archi-
tectures for high-resolution 3D outputs. In ICCV, 2017. 3

[49] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2Mesh: Generating 3D mesh
models from single RGB images. In ECCV, 2018. 3

[50] Turner Whitted. An improved illumination model for shaded
display. In ACM SIGGRAPH Computer Graphics, 1979. 2,
4

[51] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 6

[52] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-
time kd-tree construction on graphics hardware. In ACM
Transactions on Graphics (TOG), 2008. 2

11

https://github.com/facebookresearch/detectron2

