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Abstract—Motivated by large-scale optimization problems aris-
ing in the context of machine learning, there have been several
advances in the study of asynchronous parallel and distributed
optimization methods during the past decade. Asynchronous
methods do not require all processors to maintain a consistent
view of the optimization variables. Consequently, they generally
can make more efficient use of computational resources than
synchronous methods, and they are not sensitive to issues like
stragglers (i.e., slow nodes) and unreliable communication links.
Mathematical modeling of asynchronous methods involves proper
accounting of information delays, which makes their analysis
challenging. This article reviews recent developments in the de-
sign and analysis of asynchronous optimization methods, covering
both centralized methods, where all processors update a master
copy of the optimization variables, and decentralized methods,
where each processor maintains a local copy of the variables.
The analysis provides insights as to how the degree of asynchrony
impacts convergence rates, especially in stochastic optimization
methods.

I. INTRODUCTION

Since the slowing of Moore’s scaling law, parallel and
distributed computing have become a primary means to solve
large computational problems. Much of the work on parallel
and distributed optimization during the past decade has been
motivated by machine learning applications. The goal of fitting
a predictive model to a dataset is formulated as an optimization
problem that involves finding the model parameters that
provide the best predictive performance. During the same
time, advances in machine learning have been enabled by the
availability of ever larger datasets and the ability to use larger
models, resulting in optimization problems potentially involving
billions of free parameters and billions of data samples [1]–[3].

There are two general scenarios where the use of parallel
computing resources naturally arises. In one scenario, the data
is available in one central location (e.g., a data center), and the
aim is to use parallel computing to train a model faster than
would be possible using serial methods. The ideal outcome is
to find a parallel method that achieves linear scaling, where
the time to achieve a solution of a particular quality decreases
proportionally to the number of processors used; i.e., doubling
the number of parallel processors reduces the compute time by
half. However, unlike serial methods, parallel optimization
methods generally require coordination or communication
among multiple processors.

In the second scenario, which is receiving increasing interest,
the data is widely distributed (e.g., residing on users’ devices),
and the goal is to train a model using all of the data without
collecting it in one location. The motivation to process the
data in a distributed way may be for privacy reasons, and it

may also be too expensive (in terms of communication time
and bandwidth) to communicate the data. Although this survey
primarily focuses on the first scenario, many of the results and
methods discussed can be readily applied in the second.

Parallel and distributed algorithms may be classified as
synchronous or asynchronous. Synchronous algorithms require
that the processors serialize after every update, so that every
processor always has a consistent view of optimization variables.
This generally makes serial algorithms easier to analyze, im-
plement, and debug, and consequently synchronous algorithms
have been more widely studied. However, synchronization may
also lead to poor utilization of computational resources. If one
processor is slower than the others, they must all wait idling
at the serialization point until the slowest processor catches
up, resulting in wasted compute cycles.

Asynchronous algorithms do not impose a global synchro-
nization point at the end of each iteration. Consequently, each
processor may have a different view of the optimization variable
when performing local computations. Properly accounting for
these inconsistencies complicates the analysis of asynchronous
iterative algorithms. Also, because their execution is non-
deterministic, asynchronous algorithms can be challenging to
implement and debug. The appeal of asynchronous methods is
that they indeed can make more efficient use of computational
resources, resulting in faster wall-clock convergence.

A. Historical context
The dynamics of asynchronous iterations are much richer

than their synchronous counterparts, and quantifying the
impact of asynchrony on the convergence times of iterative
algorithms is challenging. Some of the first results on the
convergence of asynchronous iterations were derived by Chazan
and Miranker [4] who were motivated by encouraging empirical
results for parallel and asynchronous linear equation solvers [5].
Their theoretical results considered linear iterations under
bounded asynchrony. Several authors have extended this work
to nonlinear iterations involving maximum norm contractions
(e.g., [6]) and for monotone iterations (e.g., [7]). Powerful con-
vergence results for broad classes of asynchronous algorithms,
including maximum norm contractions and monotone mappings,
under different assumptions on communication delays and
update rates were presented by Bertsekas [8], Tsitsiklis et al. [9],
and in the celebrated book of Bertsekas and Tsitsiklis [10]. An
important insight in this line of work is that asynchrony can be
modelled as time-varying update rates and information delays
with respect to a global ordering of events in the system.

The framework of [10] defines two models of asynchrony:
totally asynchronous and partially asynchronous algorithms.
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In totally asynchronous algorithms the information delays may
grow arbitrarily large, and therefore the best one can expect is
asymptotic convergence. In partially asynchronous algorithms,
both inter-update times and information delays remain bounded
and algorithms may converge to a target accuracy in finite time.

Although the framework for modeling asynchronous algo-
rithms in [10] is both powerful and elegant, the most concrete
results consider totally asynchronous iterations. In particular,
pseudo-contractions in the block-maximum norm are shown to
converge when executed in a totally asynchronous manner [10,
Section 6.2]; however, in machine-learning applications, first-
order methods rarely result in maximum-norm contractions.
For example, for convex quadratic optimization problems, the
gradient descent iterations are maximum norm contractions
only if the Hessian is diagonally dominant. The asymptotic
nature of these results also means that they do not characterize
how the amount of asynchrony impacts convergence times.

In contrast, we will show below that many important
optimization algorithms for machine-learning tolerate some
level of asynchrony and that it is possible to quantify how
asynchrony affects the number of iterations required to find a
solution with a given target accuracy. Such results provide
important insight into engineering trade-offs between the
longer iteration times in synchronous systems and additional
(but faster) iterations in asynchronous implementations. A
challenge comes from the fact that many optimization methods
used for deep learning are inherently stochastic; e.g., they
use sampling to approximate the gradient when determining
the direction in which to update the model parameters. The
results available in [10] for partially asynchronous methods are
difficult to apply in the stochastic setting, where randomized
update orders and workloads affect update frequencies and
computation times. To address these challenges, a new wave of
research on analysis and design of asynchronous and distributed
optimization algorithms has emerged, and significant theoretical
and technological advances have recently been made.

B. This article

This article surveys advances in the field of asynchronous
and parallel distributed optimization made in the past decade.
Since the work we survey is mainly motivated by applications
from machine learning, we review background material on this
topic in Section II. Then, in Section III, we introduce necessary
background on parallel and distributed computing systems.

The parallel and distributed optimization methods we survey
can be divided into two categories. Centralized methods, which
we discuss in Section IV, maintain one master copy of the
optimization variables. In one iteration of these methods,
a processor reads the master variables, performs a local
computation, and then updates the master copy. However,
between the time a processor reads the master variables and then
updates them, other processors may have already performed
updates. In extreme cases, the master variables may be updated
simultaneously by multiple processors while they are being
read by others.

Decentralized methods, discussed in Section V, form the
second category. In decentralized methods there is no master

copy; rather, each processor maintains a local copy of the
optimization variables. Processors update their local copies
and synchronize them with other processors directly. These
methods are typically implemented on distributed-memory
systems, although they may also be applicable in large shared-
memory systems with non-uniform memory access, where the
time it takes a given processor to access different locations in
memory depends on the physical distance between the memory
location and the processor.

Throughout this article we focus on first-order methods,
which only make use of gradient information, since they
are the most widely-used methods for training machine
learning models today [11], [12]. We also focus on stochastic
optimization methods, where gradient information is obtained
by sampling a subset of data points. Newton-type methods,
which make use of second-order derivatives and curvature, have
not received wide adoption because they involve computing
and storing the Hessian matrix or an approximation thereof,
which requires significant computation and memory when the
problem dimension is large, as is typical of many machine
learning problems. Also, Newton-type methods tend to be more
sensitive to noise and stochasticity. Nevertheless, recent work
explores the viability of stochastic Newton-type methods in
centralized [13] and distributed [14] settings.

When discussing both centralized and decentralized methods,
we survey existing algorithms and their convergence guaran-
tees, and we also discuss the main analysis techniques. We
emphasize results for the partially asynchronous model, where
information delays are bounded. In Section V we include a
numerical example illustrating how asynchronous decentralized
algorithms may be used for training deep neural-networks. We
conclude in Section VI with a discussion of open problems
and directions for future work.

C. Other Applications

Throughout the rest of this article, we will use example
applications from machine learning to illustrate asynchronous
optimization methods. We note in passing that asynchronous
parallel and distributed optimization methods are also relevant
to a variety of other applications, including the operation of
distributed infrastructure systems such as power systems [15]
and water distribution, the internet-of-things (IoT), smart grids,
networks of autonomous vehicles, and wireless communication
networks [16].

II. BACKGROUND

A. Optimization

This article focuses on optimization methods to solve the
problem

minimize
w∈Rd

f(w) . (1)

A point w ∈ Rd is called a local minimizer of the objective
function f if f(w) ≤ f(w′) for all other points w′ in a
neighborhood of w, and w? is called a global minimizer if
f(w?) ≤ f(w′) for all w′ ∈ Rd.
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Serial iterative optimization methods start from an initial
point w(0) and generate a sequence w(1), w(2), . . . by perform-
ing update steps. The performance of an optimization method
is measured in terms of the number of steps required to reach
a solution of a certain quality. Performance guarantees depend
on the particular method, the assumed characteristics of the
objective function f , and how it can be evaluated.

Update steps, going from w(k) to w(k+1), typically make use
of the (negative) gradient −∇f(w(k)) at w(k), which points in
the direction that decreases the objective function f in a small
neighborhood around w(k). The objective function is said to
be smooth if the gradient changes gradually; formally, there is
a constant L > 0 such that∥∥∇f(w)−∇f(w′)

∥∥ ≤ L∥∥w − w′∥∥
for all points w,w′ ∈ Rd. The smaller L, the smoother the
function f , and consequently first-order optimization methods
can take larger steps while still ensuring convergence. A point
w ∈ Rd is called a stationary point if ∇f(w) = 0; in this case
the gradient does not point in any direction, so w may be a
(local or global) minimizer. Non-smooth problems are more
challenging because even a small change in parameter space
may result in a drastic change in the gradient direction.

An important class of optimization problems is related to the
notion of convexity. Formally, f is convex if for any α ∈ (0, 1)
it holds that

f(αw + (1− α)w′) ≤ αf(w) + (1− α)f(w′).

When f is convex, every stationary point of f is a global
minimizer of f , and so iterative methods that converge to
stationary points are guaranteed to find a global minimizer. In
general, there may be many points that minimize f . When
f(w)− µ

2 ‖w‖
2
2 is also convex, for some parameter µ > 0, we

say that f is strongly convex, and we refer to µ as the strong
convexity parameter. Strongly convex functions have a unique
global minimizer that is also the unique stationary point of f ,
and they are also easier to optimize than functions which are
only convex. We refer the interested reader to [17] for details.

B. Machine Learning

Machine learning methods train a parameterized model to
make predictions on a set of data with the goal that the model
makes accurate predictions on never-before seen data. For
example, in an image classification task, the model is shown
an image and asked to predict which class, among a finite
but possibly large set of classes, best describes the image
content (e.g., dog, cat, human, . . . ). Similarly, in a document
classification task, the model is given a text and asked to predict
which class best describes its content (e.g., in which section
of the newspaper the text appeared).

Training of such models is typically formulated as an
optimization problem on the form (1) with

f(w) =
1

m

m∑
i=1

fi(w) + r(w) (2)

and fi(w) = `(p(xi;w), yi). Here, {(xi, yi)}mi=1 denotes a
collection of m training samples, each consisting of an input

xi and target yi. The goal is to learn the parameters w of a
model p(x;w) so that p(xi;w) matches yi well on the training
data. The loss function ` measures how well a prediction
p(xi;w) matches the target yi. When d > m or if the model
class {p(x;w) : w ∈ Rd} is otherwise rich/expressive, one
may use a regularization function r(w) to avoid over-fitting
the training data. The regularization function can also be used
to impose other constraints on the model parameters w.

This framework can describe a variety of common machine
learning settings. For example, for a binary classification
problem where yi ∈ {0, 1}, using the model p(yi = 1|xi;w) =(
1 + exp(−〈w, xi〉)

)−1
, loss `(p, yi) = −yi log(p) − (1 −

yi) log(1 − p), and regularizer r(w) = 1
2‖w‖

2
2 corresponds

to the popular `2-regularized logistic regression method [18,
Section 8.3]; the resulting optimization problem is smooth
and strongly convex. Other methods, including support vector
machines, least-squares regression, and sparsity-inducing `1-
regularized methods can all be cast in this framework as convex
optimization problems [19].

Deep neural networks (DNNs) currently achieve state-of-
the-art performance for the majority of machine learning tasks.
The details of the DNN models p(x;w) and loss functions `
are beyond the scope of this paper; the interested reader is
referred to [20]. From the view of asynchronous distributed
optimization, training DNNs also fits into the framework of (2),
but the resulting optimization problem is typically not convex.

C. Optimization Methods for Large Scale Learning

An optimization problem with objective (2) can become
“large-scale” in a few different ways: the number of training
samples m can be large, the dimension of the training inputs
x and/or targets y can become large, and the dimension d of
the optimization variable can be large. To handle the large m
setting, it is common to select a smaller subset of samples at
each update. In some cases, to handle the large d setting one
may also use coordinate descent methods that only update a
subset of the coordinates at each update.

The iterative methods we consider all have the following
general form: given an initial point w(0), repeat for k ≥ 0,

w(k+1) = w(k) − γ(k)s(k), (3)

where γ(k) ∈ R+ is a step-size, and s(k) ∈ Rd is a search (or
update) direction. The full gradient1 of the objective f in (2)
may be expensive to compute (e.g., if m or d is large), so we
focus on algorithms that approximate the gradient ∇f(w(k))
by a quantity which is easier to compute and which can be
efficiently computed in parallel.

D. Stochastic Gradient Descent

To simplify the discussion for now, suppose that there is no
regularizer; i.e., r(w) = 0. The classical stochastic gradient
descent (SGD) method [12], [21] considers random search
directions s(k) which are equal to the gradient in expectation

1To simplify the discussion throughout, we assume the loss and regularization
functions are continuously differentiable, and will talk about gradient methods.
We make specific remarks about modifications to handle non-smooth functions
below.
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and have bounded second moment, i.e., E[s(k) | w(k)] =
∇f(w(k)) and E[‖s(k) − ∇f(w(k))‖2 | w(k)] ≤ σ2, where
σ2 <∞ is assumed to be given.

For optimization problems of the form (2), one natural way
to obtain random search directions is to use

s(k) = ∇fi(k)(w(k)), (4)

where i(k) is drawn uniformly at random from {1, . . . ,m}. By
only evaluating the gradient of a single component function,
the computational cost per iteration is effectively reduced by a
factor m.

The SGD method (3)–(4) is inherently serial: the gradient
computations take place on a single processor which needs
access to the whole dataset. The desire to have faster methods
for training larger models on larger datasets has resulted in a
strong interest in developing parallel optimization algorithms
that are able to split the data and distribute the computation
across multiple processors or multiple servers.

A common practical solution for parallelizing stochastic
gradient methods and reducing the stochastic variance is to
employ mini-batches. Mini-batch SGD method evaluates a
subset I(k) ⊆ {1, . . . ,m} of b component gradients in parallel
and uses the search direction

s(k) =
1

b

∑
i∈I(k)

∇fi(w(k)). (5)

If we have n ≤ b processors working in parallel, the hope is
that we can compute s(k) roughly n times faster than a single
processor. In addition, by averaging b component gradients,
we reduce the variance of the search direction by a factor
of 1/b per iteration. These factors combine to allow parallel
mini-batch SGD algorithms to achieve near-linear speedup in
the number of compute nodes [22].

However, the parallel SGD method as described above is
synchronous: the compute nodes all read the current decision
vector w(k), evaluate the gradient of their assigned component
function(s) at w(k), and then update the current iterate. Once
all b gradient updates have been applied to the decision vector,
the algorithm can proceed to the next iteration.

Below we will discuss a variety of ways in which methods
of the form (3) can be made to run asynchronously. First,
we review key aspects of parallel and distributed computing
architectures, that will inform the subsequent discussion.

III. ARCHITECTURES

Advances in computing hardware and communication in-
frastructures along with the emergence of virtualization and
container technologies have enabled a multitude of options for
affordable large-scale computing. High-performance computing
(HPC) environments traditionally available only at supercomput-
ing centers are now easily accessible as commoditized cloud
services provided by many companies. Similarly, hardware
accelerators such as tensor processing units (TPUs), general-
purpose graphics processing units (GPUs) and multi-core
central processing units (CPUs), together with generous access
to high-bandwidth memory and storage have increased the
compute capabilities of traditional servers by many orders of

magnitude. Finally, enabling technologies such as the 5G make
it possible to deploy and interconnect low-powered compute
nodes to jointly collect and process data on the edge.

Obtaining the best possible performance from such compute
resources relies on our ability to parallelize the computations
across multiple computational units (cores, devices, clouds).
Different compute resources can work concurrently using their
local copies of the model parameters and local datasets to
speed up the computation of (stochastic) gradients. However,
simultaneously updating the shared model parameters in (3)
using these local gradients results in undefined behaviour, and
thus, has to be serialized. There are two different approaches
to serializing simultaneous updates. Synchronous approaches
mandate that all compute nodes arrive at a barrier to exchange
their local updates before proceeding. This makes it possible
for all the nodes to have the same view over the shared
parameters at all times as if the algorithm is running serially.
The main disadvantage of this approach is that the overall
performance of the algorithm depends on the slowest compute
node. Asynchronous approaches, on the other hand, let the
compute nodes update the shared parameters at their own pace.
This makes it possible for faster nodes to progress without
needing to wait for the slower nodes, which results in better
performance. However, the main challenge in this setting is to
incorporate the stale updates coming from slower nodes to the
shared model parameters.

We can categorize parallel computing architectures into two
classes based on how the simultaneous updates are serialized.
Shared-memory architectures span compute resources such as
many-core CPUs and hardware accelerators, which have many
compute nodes that share the same physical memory space
(Figure 1, left). Even though the nodes share the same physical
memory, non-uniform memory access (NUMA) designs and
deep cache hierarchies in today’s architectures invalidate the
assumption that nodes have immediate access to a memory
region (see, e.g., [23]–[28] that revisit algorithms and take this
issue into account). In shared-memory architectures, all the seri-
alization primitives are in the same physical space. Synchronous
operations are usually implemented using semaphores, where
nodes signal their presence and proceed with their next task
only after every other node has also arrived. Asynchronous
operations, on the other hand, are usually implemented in
one of two ways: by mutual exclusion (mutex) locks or atomic
operations. Mutex locks are generally used to protect the shared
model parameters as a whole during simultaneous accesses,
which results in consistent views over the parameters. Atomic
operations, on the other hand, protect the individual elements
of the shared parameters, and thus, result in inconsistent views
over the parameters as a whole.

To better understand this, let us consider a scenario when
two nodes are trying to update the shared parameter vector
w = [0, 0, 0]

> while another one is trying to read it, all at the
same time (see Figure 2). At the top, we observe the case when
nodes acquire the lock, one by one (in a sequential order in the
example) before attempting their task (updating or reading) and
release the lock afterwards. Because the second node acquires
the lock after the first node has finished updating, it reads the
new parameter as w2 = [1, 0, 1]

>. At the bottom, we observe
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Figure 1. (Left) Shared-memory architecture where multiple CPUs read
simultaneously from a dataset and update the parameters by obtaining a lock.
(Right) Distributed-memory architecture where shared parameters are kept in
centralized masters, and workers send their updates asynchronously.
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Figure 2. (Top) Serializing access to shared parameters using a mutex
lock (L). (Bottom) Serializing access to individual elements using atomic
operations. Different compute nodes’ local updates are shown on the time axis
for visualization purposes. Only the non-zero updates are applied, and thus,
take time.

the case when individual coordinates of the parameter vector
are updated/read using atomic operations. In this case, the first
two nodes are accessing the first coordinate atomically at the
same time (with a load before store ordering in the example)
whereas the third node is updating the third coordinate. Later,
the second node is reading the second coordinate while the first
one is updating the third coordinate. As a result, the second
node has an inconsistent view over the parameter vector (i.e.,
the vector, w2 = [0, 0, 3]

>, read by the second node would
have never existed during the update sequence). It is worth
noting that, in this example, using mutex locks takes more time
(six units of time, discarding prefetching and caching effects)
than using atomic operations (roughly three units of time).
In fact, this observation is true when the updates are sparse.
Atomic operations provide faster serialization (at the expense
of inconsistent views) when fewer nodes are competing for
the same blocks of coordinates whereas mutex locks provide
more efficient serialization when the underlying operations are
more expensive (dense updates).

Distributed-memory architectures cover networks of comput-
ers, IoT-enabled edge devices and modern computer setups in
which CPUs and accelerators work together but have different

physical memory spaces. Figure 1 (right) shows an example
of a network of computers in a particular communication
topology. In this setup, also known as the parameter server
setup [29], [30], the communication is centralized around a
set of nodes (called the masters or the servers) that keep the
shared parameters and constitute the hubs of a star network.
Worker nodes (or clients) pull the shared parameters from and
send their updates to the central nodes.

When there are no masters in the setup, and the nodes are
allowed to communicate with each other in a more general
way, it becomes a multi-agent setup. In this setup, updating
the shared parameter vector is decentralized among the partic-
ipating agents while obeying their respective communication
topologies. The main challenge in distributed-memory architec-
tures, as opposed to shared-memory, is that access to data in
another node’s memory space requires some sort of message
passing over network sockets. This, in turn, makes serialization
and synchronization operations rather expensive. Synchronous
operations use blocking communication primitives in the sense
that all participating nodes have to wait for a message before
proceeding. Depending on the communication constraints and
topology, this can yield different communication complexities.
For instance, in a ring topology in which only point-to-point
communication is allowed, and nodes are queried in a round-
robin fashion, we have O(n) communication complexity. On
the other hand, if many-to-many or all-to-all communication
is allowed, naïve implementations offer O

(
n2
)

complexities
whereas collective communication operations (such as broadcast
and reduce) that use a butterfly-like communication pattern
achieve the optimal O

(
log(n)

)
[31]. Nevertheless, even the

optimal synchronous operations still suffer from the deadlock
(a situation in which all the nodes are waiting for an output of
each other or of a dead/offline node) and straggler (node that is
slow due to either computation or communication performance)
problems, especially when messages are delivered slowly or
may be lost altogether.

To alleviate these problems, asynchronous operations are
preferred, although, this time, it becomes harder to design and
analyze algorithms. In asynchronous operations, nodes can
interleave communication and computation based on their own
pace; yet, they have to deal with not only delayed information
over the parameter vector, when there is one writer and multiple
readers (e.g., one master node in a parameter server), but also
inconsistent views over the vector when the vector is shared
among multiple masters.

IV. CENTRALIZED ASYNCHRONOUS ALGORITHMS

Recall that our goal is to minimize an objective function of
the form (2), and let us again suppose there is no regularizer,
so that

f(w) =
1

m

m∑
i=1

fi(w).

In this section, we discuss asynchronous iterative methods
for minimizing f that involve updating a master copy of the
optimization variables w(k).
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The serial SGD method discussed in Section II-D performs
updates of the form

w(k+1) = w(k) − γ(k)s(k)

with search direction s(k) = ∇fi(k)(w(k)) where i(k) is
sampled uniformly at random between 1 and m; i.e., the
gradient of f is approximated as the gradient at one of the
data points.

Although the search direction in SGD is an unbiased estimator
of ∇f , its variance (and higher moments) are typically non-
zero, which limits the achievable solution accuracy. Specifically,
if f is µ-strongly convex and each fi is L-smooth, then iterates
of SGD for a fixed step-size γ(k) = γ ∈

(
0, 1

L

)
satisfy

E[‖w(k) − w?‖2] ≤
[
1− 2γµ(1− γL)

]k ‖w(0) − w?‖2

+
γσ2

µ(1− γL)
,

where w? = arg minw f(w), and σ2, defined as

σ2 =
1

m

m∑
i=1

∥∥∇fi(w?)∥∥2
,

is the variance of the search direction at the optimum [32,
Theorem 2.1]. The first term of the SGD theoretical upper
bound decays to zero at a linear rate, while the second term is
a constant and describes the residual error. This means that SGD
with a fixed step-size γ converges linearly to a neighborhood
of the optimum whose radius is proportional to σ2 and γ.
Decreasing γ reduces the residual error, but it also results in a
slower convergence. For any desired accuracy ε > 0, letting

γ =
µε

2µεL+ 2σ2

ensures that E[‖w(k) − w?‖2] ≤ ε for all iterations

k ≥ 2

(
Q+

σ2

µ2ε

)
log(ε0/ε),

where ε0 = ‖w(0) − w?‖2, and Q = L/µ is the condition
number of the function f . This expression shows how a large
value of σ2 forces a small step-size γ to reach ε-accuracy, and
therefore results in long convergence times.

It is common for the iteration complexity, and for optimal
or allowable choices of algorithm parameters, to depend on
the problem constants L and µ. In practice, these may not
be directly known, and one may use an upper bound on
L and a lower bound on µ instead. An upper bound on
the gradient Lipschitz constant L can be easily obtained
during the execution of an algorithm by tracking the ratio∥∥∇f(xk+1)−∇f(xk)

∥∥ /‖xk+1 − xk‖. This leads to methods
which resemble a backtracking line search, such as those
described in [33], [34], to upper bound the allowable step
sizes. Note, however, that exactly tracking the aforementioned
ratio requires the evaluation of the full gradient, which might
not be plausible in the asynchronous setting. In such scenarios,
techniques such as that in [35] could be used to estimate upper
bounds on the allowable step sizes without requiring the full
gradient evaluation. Estimating a lower bound on µ is much
more challenging. One approach for estimating a lower bound

on µ is provided in [36]. However, when using an `2 regularizer
of the form r(w) = (λ/2)‖w‖22, then λ directly provides a
lower bound on µ.

A. Asynchronous parallel stochastic gradient methods

Recall that the mini-batch SGD method, which uses the search
direction (5), can leverage multiple processors to compute
gradient terms in parallel, but it is inherently synchronous:
processors read the current decision vector, compute a gradient
of their assigned component functions, and update the iterate.
Once all b gradient updates have been performed on the decision
vector, the algorithm proceeds to the next iteration.

As suggested in [37], this process can be pipelined. In
such a realization, a master node interacts with worker
nodes in a round-robin fashion, collecting their most recent
stochastic (mini-batch) gradient, updating the decision vector
and returning the new iterate to the worker before proceeding
to serve the next worker. In a system with n workers, each
worker evaluates a stochastic gradient on a decision vector
which is τ = n iterates old, but can use a local mini-batch
which is O(n) times larger and still finish its work before the
next chance to interact with the master node. In this algorithm,
the decision vector is thus updated using the search direction

s(k) =
1

b

∑
i∈I(k)

∇fi(w(k−τ)).

Interestingly, the constant delay τ introduces negligible penalty
in the convergence rate of the algorithm [37].

The round-robin interaction can be problematic in practice
if some workers struggle to finish their work in time. The
master may then have to wait, accept a suboptimal search
direction from the worker, or skip its update altogether. As
shown in [38], however, the same performance can be attained
by an asynchronous parallel mini-batch algorithm which avoids
global synchronization and allows worker nodes to read and
write back to the master at their own pace. In this case, the
search direction used in the update rule of the algorithm is
given by

s(k) =
1

b

∑
i∈I(k)

∇fi(w(k−τ(k))),

where τ (k) is a time-varying delay capturing the staleness of
the information used to compute the search direction for the
kth update. In [39], it was shown that if τ (k) is bounded, so
that τ (k) ≤ τmax for all k, then the iteration complexity of
the asynchronous parallel mini-batch algorithm for strongly
convex smooth optimization is given by

O

((τmax + 1)2Q+
σ2

µ2ε

)
log(1/ε)

 .

In practice, τmax will depend on the number of parallel
processors used for implementation of the algorithm. As long
as τmax is of the order 1/

√
ε, the iteration complexity of the

asynchronous algorithm is asymptotically O((1/ε) log(1/ε)),
which is exactly the iteration complexity achieved by serial SGD.
This means that the delay becomes increasingly harmless as the
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asynchronous algorithm progresses. Furthermore, as n workers
are being run asynchronously and in parallel, updates may occur
roughly n times as quickly, which means that a near-linear
speedup in the number of workers can be expected.

When the decision vector dimension is very large, reading
or writing the full vector takes considerable time. In a shared-
memory system, it is then ineffective to lock the full vector
during memory access. Instead, one typically only protects
individual entries by using atomic read and write operations.
This process is even more efficient if gradients are sparse and
tend to have non-overlapping support. The probability that
different workers simultaneously attempt to access the same
elements of the decision vector is then low, and the n workers
effectively run independently in parallel.

The first analysis of such a “lock-free” SGD algorithm, called
HOGWILD!, appeared in [40]. To describe the convergence
results, we need to introduce some additional notation. In
particular, let Ei be the support of ∇fi(x) and define

∆ =

max
j=1,...,d

|{i : j ∈ Ei}|

m
.

The parameter ∆ ∈ [ 1
m , 1] is a measure of the sparsity for the

optimization problem. In a fully dense dataset, ∆ is equal to 1
and in a completely sparse dataset, ∆ is equal to 1/m.

HOGWILD! lets each core run its own SGD iterations without
any attempt to coordinate or synchronize with other cores,
repeating the following steps:
• Use atomic read operations to copy the shared decision

variable w into a local variable ŵ.
• Sample a component function fi and use ŵ to compute
s = ∇fi(ŵ).

• Use atomic write operations to update the current w in
shared memory

[w]e ← [w]e − γ[s]e, for e ∈ Ei.

Note that for the write operation, only elements in the
support of ∇fi need to be updated.

During the execution of HOGWILD!, processors do not
synchronize or follow an order between reads or writes. This
implies that while one processor is evaluating its gradient,
others may update the value of w stored in the shared memory.
Therefore, the value ŵ at which the gradient is calculated by a
processor may differ from the value of w to which the update
is applied. Note also that a full vector ŵ read for a processor
might not correspond to any state of w in the shared memory
at any time point (cf. Figure 2, bottom).

It was shown in [41] that the iteration complexity of
HOGWILD! for smooth strongly convex optimization is

O

((
√

∆τmax + 1)Q+
σ2

µ2ε

)
log(1/ε)

 ,

where τmax is the maximum delay between reading and
updating for cores. It follows that when τmax = O

(
1√
∆

)
,

HOGWILD! converges at the same rate as the serial SGD and
therefore enjoys near-linear speedup.

B. Variance reduction and incremental aggregation methods

A drawback with constant step-size SGD algorithms, includ-
ing the parallel and asynchronous variants discussed above, is
that the iterates {w(k)} will not converge to an optimizer w?,
but will exhibit a residual error. This error, which arises due to
the mismatch between the gradients of individual component
functions and their average, can be eliminated using incremental
aggregation methods. Such methods maintain an estimate of the
full gradient ∇f(w) whose error has a diminishing variance.

Stochastic average gradient (SAG) is a randomized incre-
mental aggregation method, which uses the search direction as
the average of all component gradients evaluated at previous
iterates. Specifically, at iteration k, SAG will have stored
∇fi(w(dki )) for all i ∈ {1, . . . ,m}, where dki represents
the latest iterate at which ∇fi was evaluated. An index
j ∈ {1, . . . ,m} is then drawn uniformly at random and the
search direction is set by

s(k) =
1

m

∇fj(w(k))−∇fj(w(dkj )) +

m∑
i=1

∇fi(w(dki ))


=

1

m

∇fj(wk) +

m∑
i=1,i6=j

∇fi(w(dki ))

 . (6)

Although this s(k) is not an unbiased estimator of ∇f(w(k)),
SAG enjoys a linear rate of convergence to the true optimizer
without any residual error [42]. Specifically, SAG with the
constant step-size γ = 1

16L has the iteration complexity of

O
(
(Q+ n) log(1/ε)

)
.

Inspired by SAG, several variance reduction methods were
proposed including, to name a few, stochastic variance reduced
gradient (SVRG) [43], stochastic average gradient with an
unbiased estimator (SAGA) [44], and stochastic dual coordinate
accent (SDCA) [45]. The SAG method is a randomized variant
of the incremental aggregated gradient method (IAG) [46]. The
search direction of IAG is identical to that of SAG (6), but the
index j of the component function updated at every iteration
is chosen cyclically rather than randomly. More precisely,
the component functions are processed one-by-one using a
deterministic cyclic order on the index set {1, 2, . . . ,m}, and
hence, dki admits the recursion

dki =

{
k if i = (k − 1 mod m) + 1 ,

dk−1
i otherwise.

The natural parallelization strategy for SAG and IAG is the
same as for SGD: multiple workers draw independent indices
uniformly at random from {1, . . . ,m}, compute ∇fi(x) and
return these to a master that modifies the search direction,
updates the decision vector, and pushes the updated decision
vectors to idle workers. More precisely, the search direction
used in the update rule of the asynchronous IAG is given by

s(k) =
1

m

m∑
i=1

fi(w
(dki )).
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Note that the values

τki := k − dki ,

can be viewed as the delay encountered by the gradients of
the component functions at kth update.

In [47], it was shown that if τki ≤ τmax for all i and k ∈ N,
then asynchronous IAG with constant step-size

γ ∈
(

0,
8µ

25L(τmax + 1)(µ+ L)

)
requires

O
(

(τmax + 1)2Q2 log(1/ε)
)

iterations to achieve an ε-optimal solution. Since the analysis
in [47] considers deterministic guarantees on ε-optimality, it is
natural that the convergence time bounds are more conservative
than those of its stochastic counterparts.

In [41], a lock-free asynchronous version of SAGA, called
ASAGA, was proposed. If the maximum delay bound in the
ASAGA implementation satisfies τmax < m/10, then the
iteration complexity is given by

O
((

(
√

∆τmax + 1)Q+m
)

log(1/ε)

)
.

Therefore, ASAGA obtains the same iteration complexity as
SAG and SAGA when τmax satisfies τmax ≤ O(m) and

τmax ≤ O

(
1√
∆

max

{
1,
m

Q

})
.

This means that in the well-conditioned regime where m > Q, a
linear speedup is theoretically possible for ASAGA even without
sparsity. This is in contrast to some work on asynchronous
incremental gradient methods which required sparsity to get a
theoretical linear speedup over their sequential counterpart [48].

C. Asynchronous coordinate descent methods

Stochastic gradient methods handle datasets with many
samples m by using a search direction that avoids evaluating
the gradient of the loss at every sample. Similarly, coordinate
descent methods address problems with large decision vector
dimension d by avoiding to compute updates for every decision
variable in every iteration.

Coordinate descent methods, which traditionally cycle
through coordinates in a deterministic order, have a long history
in optimization (see, e.g., [49]). The research was revitalized by
Nesterov’s elegant analysis of randomized coordinate descent
methods [50]. At each iteration k, these methods draw a random
coordinate j(k) from {1, . . . , d} and perform the update

[w(k+1)]j(k) = [w(k)]j(k) − γ[∇f(w(k))]j(k) (7)

Similarly to mini-batching in SGD, one is not restricted to
picking a single coordinate to update in each iteration, but can
sample random subsets (blocks) of coordinates [50].

Synchronous parallel coordinate descent methods have been
suggested in, e.g., [51], [52]. In each iteration of these
methods, a master node draws n (blocks of) coordinates
and distributes the work to evaluate the associated partial

gradients on n workers. The master waits for all workers
to return before it updates the decision vector and continues
with the next iteration. An asynchronous coordinate descent
method for shared-memory architectures was proposed and
analyzed in [53]. In essence, this method spawns n parallel
coordinate descent processes. In each process, a worker thread
performs an inconsistent read of w(k) from the shared memory,
draws a random coordinate index and performs the update (7)
using atomic writes. Linear convergence is proven under the
assumption that the maximum overlap τmax (defined in the
same way as for HOGWILD! above) is small enough. When
the coupling between components is weak (in a precise sense
defined in [53]), τmax can be of order d1/4, while the maximal
admissible τmax shrinks close to one when the coupling is
strong. An extension of this asynchronous coordinate scheme
to operator mappings is presented in [54].

Note that coordinate descent methods are naturally variance-
reduced, since partial derivatives at the optimum are all zero,
i.e., [∇f(w?)]j = 0 for all j = 1, . . . , d. Thus, the value
of variance-reduced coordinate descent methods may appear
limited. However, the main drawback of many coordinate
descent methods is that they cannot handle non-separable
regularizers. Variance-reduced coordinate descent methods, on
the other hand, allow us to solve optimization problems with
arbitrary (not necessarily separable) regularizers [55], [56].

D. Proximal methods for convex and non-convex optimization

For ease of exposition, we have described stochastic gradient
methods for smooth and strongly convex losses. However, many
of the results extend directly to proximal gradient methods
for optimization problems with convex and non-convex loss
functions plus a possibly non-smooth regularization term.
Specifically, the results in [39], [53] already consider composite
optimization problems comprising a smooth finite-sum term
and a non-smooth regularizer. An extension of ASAGA to
such problems is described and analyzed in [57]. Convergence
rate of asynchronous mini-batch algorithms and randomized
coordinate descent methods for non-convex optimization are
studied in [58]. Extensions of HOGWILD! to non-convex
optimization problems are presented in [59] and [60]. In [61],
a theoretical upper-bound on the convergence rate of IAG for
non-convex composite optimization is derived.

E. Analysis techniques

As mentioned above, the framework of [10] for partially
asynchronous algorithms (i.e., those with bounded delay), is not
directly applicable to stochastic optimization methods described
above. Instead, convergence guarantees have typically been
established on a per-algorithm basis, often using complex and
laborious induction proofs in which sources of conservatism
are hard to isolate. A closer analysis of these proofs reveals
that they rely on a few common principles. One such principle
is to introduce a well-defined global ordering of events in the
system, and model (bounded) asynchrony as (bounded) time-
varying delays [10]. As discussed in [41], this ordering may
be non-trivial in algorithms such as ASAGA and HOGWILD!.
Another principle is to view iterates as perturbed versions of
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ideal quantities [48]. A third principle is to reduce expressions
for the evolution of the iterate suboptimality, which typically
depends on many previous iterates, to standard forms that are
well-understood. A number of such sequence results, derived
specifically for asynchronous optimization algorithms, are
introduced in [62], [63].

To be more concrete, let us consider asynchronous algorithms
as gradient iterations with additive gradient errors, i.e.,

w(k+1) = w(k) − γ
(
∇f(w(k)) + e(k)

)
.

Similar to known lines of convergence proofs for gradient
and subgradient methods with errors, it follows directly by
expanding the squared norm of the iterate error that

||w(k+1) − w?||
2

= ||w(k) − w?||
2
− 2γ〈w(k) − w?,∇f(w(k))〉

+ γ2||∇f(w(k))||2 + E(k),

where the gradient errors are encapsulated by the last term

E(k) = γ2||e(k)||
2
− 2γ〈w(k) − γ∇f(w(k))− w?, e(k)〉.

Letting V (k) = ||w(k) − w?||2, and using standard strong
convexity and smoothness inequalities [17] allow us to derive

V (k+1) ≤
(

1− 2γ
µL

L+ µ

)
V (k) + E(k),

for any step-size γ ∈
(

0, 2
L+µ

]
. Note that when E(k) = 0,

taking γ = 2
L+µ leads to

V (k+1) ≤
(
Q− 1

Q+ 1

)2

V (k),

which guarantees linear convergence of the iterates to the
optimum. This is the standard analysis of the gradient descent
method. For the asynchronous case, the error term E(k) can
often be bounded by terms involving only distances of the
current and past iterates from w?, i.e.,

V (k+1) ≤
(

1− 2γ
µL

L+ µ

)
V (k) +H

(
V (k), V (k−1), . . . , V (0)

)
,

where the function H models the history dependence. For
example, the analysis of IAG in [47] establishes the bound

H
(
V (k), V (k−1), . . . , V (0)

)
= (6γ2L2τ + 9γ4L4τ2) max

k−2τ≤s≤k
V (s).

To analyze the effect of the asynchrony on IAG, it is then
convenient to use the following sequence result.

Lemma 1 ([62]). Let {V (k)} be a nonnegative sequence
satisfying

V (k+1) ≤ pV (k) + q max
k−d≤s≤k

V (s), k ∈ N,

for some positive integer d and non-negative scalars p and q
such that p+ q ≤ 1. Then, we have

V (k) ≤ ρkV (0), k ∈ N,

where ρ = (p+ q)
1

p+q .

Using this result with

d = 2τ, p = 1− 2γ
µL

L+ µ
, q = 6γ2L2τ + 9γ4L4τ2,

yields that the iterates generated by IAG with constant step-size

γ ∈
(

0,
8µ

25L(τ + 1)(µ+ L)

)
are globally linearly convergent [47].

For stochastic asynchronous algorithms, it is sometimes
more natural to interpret the algorithmic effects of asynchrony
as perturbing the stochastic iterates with bounded noise [48].
Consider the following iteration

w(k+1) = w(k) − γg(w(k) + η(k), ξ(k)),

where η(k) is a stochastic error term, ξ(k) is a random variable
independent of w(k), and g is an unbiased estimator of the
true gradient of f at w(k):

Eξ(k)

[
g(w(k), ξ(k))

]
= ∇f(w(k)).

Let ŵ(k) = w(k) + η(k). Then,

||w(k+1) − w?||2 = ||w(k) − w?||2 + γ2||g(ŵ(k))||2

− 2γ〈ŵ(k) − w?, g(ŵ(k))〉
+ 2γ〈ŵ(k) − w(k), g(ŵ(k))〉.

Assume that ŵ(k) and ξ(k) are independent. Then, taking
expectation and using a standard strong convexity bound as
well as a squared triangle inequality yields

V (k+1) ≤
(

1− γµ

2

)
V (k) − 2γX(k) + γ2 E[||g(ŵ(k))||2]︸ ︷︷ ︸

R
(k)
0

+ γµE[||ŵ(k) − w(k)||2]︸ ︷︷ ︸
R

(k)
1

+ 2γ E[〈ŵ(k) − w(k), g(ŵ(k))〉]︸ ︷︷ ︸
R

(k)
2

,

where V (k) = E[||w(k) − w?||2] and X(k) = E[f(w(k)) −
f?]. Note that R(k)

0 , R(k)
1 , and R

(k)
2 are error terms due to

asynchrony: R(k)
0 captures the delayed gradient decay with

each iteration, R(k)
1 represents the mismatch between the true

iterate and its noisy (outdated) estimate, and R
(k)
2 measures

the size of the projection of that mismatch on the gradient
at each step. To derive the convergence rate, we bound these
error terms using past values of X(k), i.e.,

V (k+1) ≤
(

1− γµ

2

)
V (k) − 2γX(k)

+H
(
X(k), X(k−1), . . . , X(0)

)
.

For example, HOGWILD! admits the history function

H
(
X(k), X(k−1), . . . , X(0)

)
= 4γ2LC2

k−1∑
j=k−τ

X(j)

+ 4γ2LC1X
(k),
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where C1 = 1 +
√

∆τ and C2 =
√

∆ + γµC1 [41]. The
following result is then convenient to apply.

Lemma 2 ([63]). Assume the non-negative sequences {V (k)}
and {X(k)} satisfy

V (k+1) ≤ aV (k) − bX(k) + c

k∑
j=k−τ

X(j), (8)

where a ∈ (0, 1), and b and c are nonnegative real numbers.
If a < 1 and

c

1− a
1− aτ+1

aτ
≤ b,

then V (k) ≤ akV (0) for all k ∈ N0.

Using this result with a = 1 − γµ/2, b = 2γ, and
c = 4γ2LC2, immediately yields the convergence rate of
HOGWILD! stated in Section IV-A above.

A similar analysis can be made for IAG, HOGWILD!, and
many other algorithms, also in the absence of strong convexity.
These results require slightly different sequence results. It is
also possible to derive convergence rate results for iterations
with unbounded delays. In fact, [64] presents the convergence
rate results for asynchronous max-norm contractions for both
the totally and partially asynchronous models.

There are methods that use an aggregate of iterates instead
of the current iterate in their update rules, such as variance
reduction methods MISO [65] and FINITO [66], incremental
gradient methods [67], and delay-tolerant gradient methods [68].
To be more specific, let y(k)

i be the copy of the decision variable
w used in the most recent computation of ∇fi available at
iteration k. The variable y(k)

i is updated as

y
(k)
i =

{
w(k) if i = i(k) ,

y
(k−1)
i otherwise,

where i(k) is the index of the component function chosen
uniformly at random at step k. Then, the update of MISO and
FINITO is given by

w(k+1) =
1

m

m∑
i=1

y
(k)
i − γ

m∑
i=1

∇fi(y(k)
i ).

Since the update rule of these algorithms cannot be written as

w(k+1) = w(k) − γs(k),

their convergence does not follow directly from the arguments
above. Nevertheless, we note that the proof in [68, Equation
8] hinges on the same argument as Lemma 1.

V. DECENTRALIZED ALGORITHMS

Decentralized algorithms (also known as “consensus,” “gos-
sip,” or “multi-agent” algorithms) are an alternative to
parameter-server algorithms in the distributed memory setting.
As the name suggests, in decentralized methods, there is
no authoritative copy of the parameters; rather, each worker
maintains and updates a local working copy of the optimization
variables. In contrast to centralized methods, decentralized

methods do not have a single bottleneck or point-of-failure,
and thus may potentially scale to larger problems.

Consider a system with n workers, and let w(k)
i denote the

copy at worker i after k iterations. A simple synchronous
decentralized method starts with all nodes at the same initial
point w(0)

i = w(0) and repeats updates of the form

w
(k+1)
i =

n∑
j=1

P
(k)
i,j w

(k)
j − γ

(k)
i s

(k)
i , (9)

where P (k)
i,j is a scalar between 0 and 1 quantifying the influence

of worker j on worker i, and s
(k)
i is the search direction

computed at worker i.
If P (k)

i,j = 1/n for all i, j ∈ [n] and k ≥ 0, then the variables
at every worker are identical (i.e., exactly equal to their average)
after every update. Furthermore, if the directions s

(k)
j are

independent stochastic gradients computed using b gradient
samples, then the method is equivalent to SGD with mini-batch
size nb. Implementing this update with P (k)

i,j = 1/n requires
coordination among all workers. This can be accomplished
in a communication-efficient way using the ALLREDUCE
primitive mentioned in Section III; we refer to such a method
as ALLREDUCE SGD (AR-SGD) [69], [70]. In a system where
P

(k)
i,j = 1/n for all i, j ∈ [n] and k ≥ 0, each node could

viewed as being a worker and a central authority for the purpose
of contrasting with the methods discussed in Section IV.

In general, the updates at each worker need not depend on
the values from all other workers. For more general values of
P

(k)
i,j , worker i only needs to receive messages from worker j

if P (k)
i,j > 0. When there are n workers, the entries P (k)

i,j can
be collectively viewed as an n× n matrix P (k). Equivalently,
one can form a communication graph with one vertex for each
worker and with an edge set E(k) containing a (directed) edge
from j to i if P (k)

i,j 6= 0.
A natural way to generalize the notion of averaging while

reducing the communication overhead is to make use of
matrices P (k) (equivalently, communication graphs) that are
sparse, and that correspond to a diffusion or random walk. In
an asynchronous implementation, it is possible that messages
may be delayed, and so it is not practical to assume that P (k)

is symmetric and doubly-stochastic,2 since this would impose
that if i receives a message from j then j also receives one
from i to perform an update. Such a method is referred to as
push-pull since it requires two-way exchange of information.
Doubly-stochastic methods guarantee that workers converge
to the network-wide average at a geometric rate, but they are
inherently synchronous.

Methods using row-stochastic P (k) are referred to as pull-
based methods; they only involve a one-way exchange of
information, and the weights P (k)

i,j are determined and applied
by the receiver i. Row-stochastic methods guarantee that
the vectors w

(k)
i at each worker converge to a consensus

at a geometric rate. However, the consensus values are not
necessarily an unbiased estimate of the network-wide average;

2A matrix P is row-stochastic (respectively, column-stochastic) if each row
(respectively, column) of P sums to 1, and all entries are non-negative. P is
doubly-stochastic if it is both row- and column-stochastic.



11

this bias in the consensus values can prevent the iterates in (9)
from converging to a minimizer of (2).

Methods using column-stochastic P (k) are referred to as
push-based methods; they only involve a one-way exchange of
information, and the weights P (k)

i,j are determined and applied
by the sender j. Column-stochastic methods guarantee that
the vectors w

(k)
i at each worker converge at a geometric

rate, but not necessarily to a consensus. Rather, the limit
value depends on the message-passing topology (through the
stationary distribution, if P (k) = P is constant over time and
seen as the transition matrix of a Markov chain). However,
unlike row-stochastic methods, this discrepancy is easy to
correct in column-stochastic methods.

The PUSH-SUM algorithm [71] (also called ratio consensus)
is a column-stochastic method in which each worker tracks
one additional parameter, referred to as the push-sum weight,
that can be used to compensate for discrepancies due to the
message-passing topology. The push-sum weight, which we
denote by φ(k)

i , is initialized to 1 at every worker. Whenever a
worker communicates its parameters, it also communicates the
push-sum weight. Any imbalance built up in the parameters also
appears in the push-sum weight. Therefore, by rescaling the
parameters by the push-sum weight, workers running the PUSH-
SUM algorithm are guaranteed to converge to a consensus on
the network-wide average at a geometric rate. Decentralized
optimization methods built on PUSH-SUM have the form,

w
(k+1)
i =

n∑
j=1

P
(k)
i,j w

(k)
j − γ

(k)
i s

(k)
i ,

φ
(k+1)
i =

n∑
j=1

P
(k)
i,j φ

(k)
j ,

z
(k+1)
i =

w
(k+1)
i

φ
(k+1)
i

.

(10)

The (synchronous) Stochastic Gradient-Push (SGP) algo-
rithm [72] is an analog of stochastic gradient descent for
decentralized optimization. Specifically, SGP uses updates (10)
where the search direction s

(k)
j is a stochastic mini-batch

gradient evaluated by worker j at the rescaled point z(k)
j on a

subset of the data I(k)
j ,

s
(k)
j =

∑
m∈I(k)

j

∇`
(
p(xm; z

(k)
j ), ym

)
.

When the functions fi are strongly convex, each worker j
running SGP with a diminishing step-size is guaranteed to
converge to a minimizer of f [72]:

f(ẑ
(K)
j )− f(w?) ≤ O

(
logK

K

)
,

where ẑ(K)
j is a weighted average of the sequence {z(k)

j }Kk=0

produced at worker j.
The SGP algorithm is synchronous since each worker i

blocks to send and receive messages from other workers j for
which P (k)

i,j > 0 before proceeding to the next iteration. Since
pull-based methods and push-based methods only involve a

one-way exchange of information, they are readily amenable
to asynchronous implementations. In the next section we will
describe some specific asynchronous decentralized optimization
methods along with their known convergence guarantees.

A. Asynchronous Decentralized Methods

The Overlap Stochastic Gradient-Push (OSGP) algorithm [73]
builds on SGP by allowing for message delays. OSGP uses the
same search direction as SGP, but reduces the communication
and synchronization overhead by overlapping communication of
parameters between workers with multiple stochastic gradient
updates. Let τ (k)

i,j denote the delay experienced by a message
sent from worker j and received by worker i at iteration k (i.e.,
the message was transmitted at time k − τ (k)

i,j ). By convention,
we take τ (k)

i,i = 0 for all k and i ∈ [n]. Let M(k)
i denote the

set such that τ (k)
i,j ∈ M(k) implies that worker i received a

message from j at iteration k with delay τ (k)
i,j . The updates in

OSGP can be written in terms of these delayed indices as

w
(k+1)
i =

∑
τ
(k)
i,j ∈M

(k)
i

P
(k−τ(k)

i,j )

i,j w
(k−τ(k)

i,j )

j − γ(k)
i s

(k)
i ,

φ
(k+1)
i =

∑
τ
(k)
i,j ∈M

(k)
i

P
(k−τ(k)

i,j )

i,j φ
(k−τ(k)

i,j )

j .

(11)

The rescaling update for z(k)
i is identical to the one in SGP.

Note that, although OSGP handles message delays, it does
not deal with computation delays (i.e., heterogeneous update
rates amongst workers). Specifically, each OSGP worker i must
perform the updates in (11) at every iteration.

The Asynchronous Gradient-Push algorithm (AGP) proposed
in [74] and analyzed in [75] is an analog of gradient descent
for asynchronous decentralized optimization, and deals with
both message and computation delays. This algorithm is
similar to SGP, but removes all synchronization points. Let
δ

(k)
i ∈ {0, 1} denote a binary indicator that is equal to 1

if worker i completes an update at iteration k, and is equal
to 0 otherwise. The global iteration counter k (used only to
describe the algorithm) increments whenever any worker (or
subset of workers) completes a gradient-based update. If worker
i completes an update at iteration k (i.e., δ(k)

i = 1), then the
AGP update is identical to that in (11). If worker i does not
complete an update at iteration k (i.e., δ(k)

i = 0), then its
iterates remain unchanged

w
(k+1)
i = w

(k)
i , φ

(k+1)
i = φ

(k)
i , z

(k+1)
i = z

(k)
i . (12)

In contrast to OSGP, note that the AGP workers do not
necessarily update their parameters at every iteration.

Suppose the message delays and the time between an AGP
worker’s successive updates are bounded. When the functions
fi are strongly convex and L-smooth, workers running AGP up
to a global iteration K minimize a re-weighted version of (2),
defined as [75]

minimize
w∈Rd

n∑
i=1

p
(K)
i fi(w) , (13)
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where the re-weighting values p(K)
i > 0 are given by

p
(K)
i :=

K−1∑
k=0

γ
(k)
i δ

(k)
i , and p

(K)
i :=

p
(K)
i∑n

i=1 p
(K)
i

. (14)

In particular, letting w?K denote the minimizer of (13), it can
be shown that [75, Theorems 4 & 5]

1

K

K∑
k=0

∥∥∥∥∥∥ 1

n

n∑
i=1

z
(k)
i − w?K

∥∥∥∥∥∥
2

≤ O
(

1√
K

)
.

If all workers use the same constant step-size and perform a
similar number of gradient-based updates by the end of training,
then p

(K)
i ≈ 1/n, and the workers converge to the unbiased

minimizer of the objective in (2). On the other hand, workers
that perform more updates than their peers bias the solution
towards their local objective.

This convergence theory also suggests an approach for
correcting the bias: slower workers can use larger step-sizes in
order to compensate for their slower update rates. To do this
workers need an idea of how many updates they have performed
locally relative to the total number of updates performed by all
workers. This can also be estimated in a decentralized way by
communicating one additional scalar variable, and when the
functions fi are convex and smooth, it can be shown that [76]

max
k≤K

f(z
(k)
j )− fi(w?) ≤ O

(
logK√
K

)
.

In [77] a similar method is analyzed in the context of stochastic
gradients.

Further improvements are obtained in [78] and [79] by
incorporating robust PUSH-SUM, which tolerates dropped
messages by using additional memory at each worker, and
by incorporating gradient-tracking schemes, which lead to
faster iteration-wise convergence but also involve twice the
communication overhead per iteration, and hence may not be
practical for machine learning problems with high-dimensional
models.

We note that decentralized asynchronous methods have
also been proposed based on applying coordinate descent
methods to a dual formulation [80], [81]. However, while
these methods allow for randomized update order, they are not
asynchronous in the sense considered in this paper, of allowing
for communication and computation delays.

In the next subsection, we will describe general proof
techniques for analyzing asynchronous decentralized optimiza-
tion algorithms under bounded message and computation
delays. Following that discussion, we will summarize empirical
assessments of these methods in the literature, and conclude
by describing practical challenges and open problems in this
budding research area.

B. Analysis

Similar to centralized methods, analysis techniques for
decentralized methods also exploit the idea of using a well-
defined order of events in the system. However, decentralized
methods require fundamentally different analysis techniques
than centralized methods. To simplify the discussion, suppose
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Figure 3. (a) Example of a delay-free 4-worker network. Edges are labeled
with column-stochastic weights Pi,j . (b) The same network augmented with
virtual nodes and edges (dashed blue lines). For readability, this figure only
shows the virtual workers/edges used to model delays for messages transmitted
to worker 0; in the analysis, virtual nodes and edges are added for every
worker. This particular example illustrates a message from 3 to 0 with a delay
of τmax = 2.

that the averaging weights P (k)
i,j are static (i.e., workers always

choose the same averaging weights to communicate with
their neighbours). Equations such as (9) and (10) describe
synchronous decentralized optimization algorithms from an
individual worker’s perspective. However, it is typically easier
to study these methods from a global perspective by collectively
viewing the entries Pi,j as an n×n matrix P and viewing the
variables w(k)

i and s
(k)
i as the rows of n × d matrices W (k)

and S(k) respectively. Then equation (9) can be re-written in
matrix-vector form as

W (k+1) = PW (k) − Γ(k)S(k), (15)

where Γ(k) is an n×n diagonal matrix with the step-size γ(k)
i

on the ith diagonal. Similarly, (10) can be re-written as

W (k+1) = PW (k) − Γ(k)S(k)

φ(k+1) = Pφ(k)

Z(k+1) = diag(φ(k+1))−1W (k+1),

(16)

where φ(k+1) is an n × 1 vector containing the push-sum
weights, and diag(φ(k+1)) is a diagonal matrix with the push-
sum weight φ(k+1)

i on the ith diagonal.
Broadly, there are three main steps involved in proving

convergence of workers’ parameters under the assumption of
bounded message and computation delays: (i) mathematically
modelling delays, (ii) proving convergence of the optimization
iterates to a consensus sequence under the delay model, (iii)
proving convergence of the consensus sequence to a minimizer.

(i) Modelling delays: Recall that one can form a communica-
tion graph G(V, E) with one vertex for each worker and with an
edge set E containing a (directed) edge from j to i if Pi,j 6= 0.
In order to model message delays in analysis, the reference
graph G(V, E) is augmented with virtual nodes and edges
that store information that has been transmitted but not yet
received. Because the message delays are bounded, the number
of virtual nodes and edges needed is finite. Figure 3 shows an
example of such a graph augmentation for the delays along
one edge. Note that the message delays under this bounded
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delay model can still vary across edges, and can vary from
one iteration to the next. Graph augmentation techniques have
also been used to study distributed averaging and agreement
algorithms with communication delays [82]–[85]; additional
work is needed to properly account for computation delays
in asynchronous distributed optimization. In short, one can
model asynchronous delay-prone message passing over the
graph G(V, E) as synchronous time-varying message passing
over the time-varying augmented graph G̃(Ṽ, Ẽ(k)). One can
also incorporate heterogeneous update rates into the analysis by
multiplying the diagonal step-size matrix Γ(k) in equations (15)
and (16) with a diagonal binary indicator matrix ∆(k), with ith

diagonal δ(k)
i indicating whether worker i completed an update

at global iteration k. We emphasize that graph augmentation
techniques are only used for the purpose of analysis, to model
decentralized systems with delays.

The augmented version of equation (15) is

W̃ (k+1) = P̃ (k)W̃ (k) − ∆̃(k)Γ̃(k)S̃(k), (17)

where the augmented matrix W̃ (k) has dimensions (τmax +
1)n × d; i.e., one row containing the parameters at each
worker and each virtual node at iteration k. We emphasize
that this modeling is only used for analysis and is not needed
to implement asynchronous decentralized methods. The rows
of the (τmax + 1)n× d matrix S̃(k) that correspond to virtual
nodes are always equal to 0. Equation (16) can be described
similarly with respect to this enlarged state-space.

Note that the averaging matrix P̃ (k) in (17) is time-varying
for two reasons: first, only those workers that are active at
iteration k perform an update, and second, message delays
can vary across iterations. Overall, this model reduces the
time-varying and delay-prone dynamics of a decentralized
asynchronous algorithm to the evolution of an augmented
synchronous system.

(ii) Convergence to a consensus sequence: Note that (17) can
be viewed as the evolution of a perturbed Markov chain with
state-transition matrix P̃ (k) and perturbations ∆̃(k)Γ̃(k)S̃(k).
Using standard tools from the Markov chain literature [86],
[87], one can characterize the convergence rate of the iterates
w

(k)
i to a consensus sequence w(k) using the joint spectral

properties of the matrices P̃ (k). The resulting bounds are often
of the form∥∥∥w(k)

i − w
(k)
∥∥∥ ≤ Cρk∥∥∥w0

i

∥∥∥+C

k∑
`=0

ρki

∥∥∥δ(k−`)
i γ

(k−`)
i s

(k−`)
i

∥∥∥ ,
(18)

for all i ∈ [n], where ρ ∈ (0, 1) and C ∈ (0,∞) are
constants that depend on the delays and graph connectivity,
and {w(k)} is the consensus sequence. It follows from (18)
that if the perturbations (δ

(k)
i γ

(k)
i s

(k)
i ) tend to 0, then all

workers converge to the consensus sequence w(k), even in
the presence of arbitrary, uniformly bounded message and
computation delays. There are several different approaches
in the literature for bounding ρ; see [75], [76], [78] for
details. When the weight matrices P (k) are column-stochastic
or doubly-stochastic, the consensus sequence w(k) is typically
defined as the network-wide average of the parameters at
iteration k (i.e., 1/n

∑n
i=1 w

(k)
i ).

To prove that the iterates w(k)
i converge to the consensus

sequence using (18), one must show that the perturbations
(gradient-based updates) (δ

(k)
i γ

(k)
i s

(k)
i ) tend to 0. When using

a diminishing step-size (i.e., γ(k)
i → 0), this is a trivial

result (as long as the search directions remain bounded).
When using a constant step-size, the conditions for consensus,
namely (δ

(k)
i γ

(k)
i s

(k)
i ) converging to 0 for all i ∈ [n], and

the conditions for optimality, namely w(k) converging to a
minimizer, are often tightly interdependent. Gradient-tracking
methods using a constant step-size, such as ASY-SONATA,
have this interdependence, and typically show consensus
and optimality simultaneously using (18) and the small-gain
theorem [88]. In brief, the small-gain-theorem says that if, for
all positive integers K, there exists λ ∈ (0, 1), finite constants
C1, C2 ≥ 0, and gains G1, G2 ≥ 0 with G1G2 < 1, such that

sup
k≤K

∥∥∥s(k)
i

∥∥∥
λk

≤ sup
k≤K

G1

∥∥∥w(k)
i − w(k)

∥∥∥
λk

+ C1,

and

sup
k≤K

∥∥∥w(k)
i − w(k)

∥∥∥
λk

≤ sup
k≤K

G2

∥∥∥s(k)
i

∥∥∥
λk

+ C2,

then both
∥∥∥w(k)

i − w(k)
∥∥∥ and

∥∥∥s(k)
i

∥∥∥ converge to 0 at a
linear rate characterized by the sequence {λk}. It is rela-
tively straightforward to generalize the small-gain-theorem
to characterize other convergence rates as well; e.g., proving
sublinear convergence by replacing the sequence {λk} in the
denominators with a sublinearly convergent sequence {rk}.

(iii) Convergence of consensus sequence to a minimizer: We
will now describe a general approach for proving convergence
of the consensus sequence in a way that provides some intuition
into the convergence behaviour of asynchronous decentralized
optimization methods.

Due to the presence of the binary indicator δ(k)
i in the

gradient-based updates in (17), one cannot guarantee a contrac-
tion with respect to the global objective at sufficiently large
iterations k. Intuitively, some workers may take gradient steps
that move the parameters away from the global minimizer. The
key observation is that, while each iteration may not produce
a descent direction, the sum of the gradient-based updates∑
k

∑n
i=1 δ

(k)
i γ

(k)
i s

(k)
i over sufficiently many consecutive iter-

ations may point in a descent direction when the computation
delays are bounded. For example, for AGP it can be shown that
this cumulative gradient vector points in a descent direction
with respect to the re-weighted minimizer defined in (13);
see [75, Lemmas 2 and 3].

Typically, after obtaining a contraction result over a finite-
time horizon, standard tools from the optimization literature can
be applied to obtain convergence of the consensus sequence.

Validity of the bounded delay assumption. All analysis
techniques presented in this article assume arbitrary, uniformly
bounded (but possibly time-varying) message and computation
delays. In practice, we can control the upper bound on the
delays by using tools described in Section III. If a worker has
not received a message from its neighbours in over τ iterations,
it blocks and waits to receive a message.
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(c) Time-per-iteration (ms/itr) vs. number of
workers

Figure 4. Training a ResNet-50 convolutional neural network on the ImageNet classification task over a network of servers. Each worker is an entire server
consisting of 40 CPUs and 8 GPUs. Workers are interconnected by a 10 Gbps ethernet network. (a)/(b) The average training loss versus the number of
iterations/wall-clock time when training with 32 workers. Shaded around each line is the max. and min. error achieved by any given worker in that iteration.
(c) Observing how each worker’s time per iteration scales as we increase the number of workers (proportional to the number of GPUs).

C. Non-convexity

While the discussion in this section has largely focused
on convex objectives, much of the analysis techniques can
be extended to non-convex objectives with minor alterations.
Specifically, steps (i) and (ii) in the analysis (modelling delays
and proving convergence of the optimization iterates to a
consensus sequence), remain unchanged. Step (iii), proving
convergence of the consensus sequence to a minimizer, is
the only part that requires adjustment to account for non-
convex objectives. In step (iii), one must obtain the contraction
result over a finite-time horizon without making use of the
(sub)gradient inequality; instead, it is common to make use of a
Taylor-series expansion to express the relationship between the
change in the objective error after taking an optimization step,
and the expected descent provided by the stochastic search-
direction over a finite-time horizon.

As an example, the analysis of the OSGP method for smooth
non-convex objectives with stochastic gradients in [73] uses this
general proof sketch. Suppose the message delays are uniformly
bounded (i.e., there exists a τmax > 0 such that τ (k)

i,j ≤ τmax

for all k and i, j ∈ [n]). If OSGP is run for K iterations and all
workers use a constant step-size γ :=

√
n/K, then each worker

is guaranteed to converge to a stationary point of (2) when the
objectives fi are non-convex and L-smooth [73]

1

n

1

K

K∑
k=0

n∑
i=1

∥∥∥∇fi(z(k)
i )
∥∥∥2

≤ O
(

1√
nK

)
. (19)

Remarkably, OSGP converges to a stationary point of smooth
non-convex functions with the same order-wise iteration
complexity as centralized SGD. Since the analysis for OSGP
handles general (strongly-connected) digraphs, and arbitrary
(but bounded) time-varying message delays, equation (19) also
provides a bound on the convergence rate for SGP (synchronous
delay-free setting), and ALLREDUCE SGD (synchronous delay-
free all-to-all setting).

D. Example: Training a deep neural network

Next we provide an illustrative example of how some of the
algorithms mentioned in Section V-A can be used to speed up
training of a deep convolutional neural network model on an

image classification task. Each worker is a server consisting
of 40 CPU cores and 8 GPUs. The servers are interconnected
via a 10 Gbps Ethernet network. All methods are implemented
using PyTorch [89] version 0.4.1 using the tcp distributed
backend. We train a ResNet-50 [90] model containing roughly
25 million optimizable parameters to classify images in the
ImageNet dataset [91], made up of over 1 million images and
1000 different image classes.

We compare OSGP, SGP, and ALLREDUCE SGD. Recall
that ALLREDUCE SGD is a synchronous method that exactly
synchronizes all workers after every update, mathematically
equivalent to taking P

(k)
i,j = 1/n for all i, j ∈ [n]. SGP

is a synchronous decentralized method, and OSGP is an
asynchronous decentralized method whose analysis allows for
delayed messages. Both OSGP and SGP use a time-varying
communication graph sequence P (k)

i,j with 1 out-neighbour per
node; i.e., after each update, a worker transmits a message to
just one other worker. See [73] for additional details about the
experimental setup.

Figure 4 (a) shows the loss, f(w), as a function the number
of iterations when training with 32 workers (256 GPUs and
1280 CPU cores). Figure 4 (b) shows the same loss as a function
of the wall-clock time. Although OSGP and SGP converge at
slower iteration-wise rates than ALLREDUCE SGD, Figure 4 (b)
illustrates that OSGP has significantly reduced training time by
mitigating the synchronization and communication overhead.
Figure 4 (c) shows the time per iteration as a function of
the number of workers in the system, for n = 4, 16, and
32 (i.e., 32, 128, and 256 GPUs). The time-per-iteration for
both OSGP and SGP remains relatively constant since the
communication overhead is always fixed. The time-per-iteration
of ALLREDUCE SGD increases since the synchronization and
communication costs increase with the number of workers. In
short, the asynchronous decentralized method OSGP optimizes
f(w) faster than the synchronous methods (in terms of wall-
clock time), and exhibits better scaling.

VI. CONCLUSIONS AND DIRECTIONS

While asynchronous decentralized optimization algorithms
have shown promising results on large-scale machine learning
benchmarks [73], [92]–[94], there is still much work to be done
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in understanding the convergence properties of these methods.
Section V-A outlines some of the known convergence results,
but the constants in these rates are typically large and do not
accurately reflect the scaling behaviour of the algorithms. For
instance, it is not clear how well these constants reflect the true
dependency of the convergence rates on the number of workers,
the communication graph, or the delays due to asynchrony.
Some recent works such as [95], [96] try to provide a closer
look at the constants in the convergence rates of synchronous
decentralized optimization algorithms.

Another challenge involves incorporating non-linear gradient-
based updates. Optimization methods using non-linear
momentum-based updates are commonly used in deep learn-
ing [97], [98]. If the gradient-based update is non-linear, then it
may not be possible to guarantee that the consensus sequence
converges to a minimizer of (2). This issue applies to both
synchronous and asynchronous decentralized optimization algo-
rithms. In practice, one typically observes drastic degradation
in performance, relative to centralized methods, when naïvely
applying decentralized optimization algorithms with non-linear
gradient-based updates to large-scale deep learning tasks. One
recent work [94] tackles this issue in the synchronous case
by periodically incorporating global synchronization between
agents. Incorporating non-linear gradient-based updates into
both synchronous and asynchronous multi-agent optimization
algorithms is still an open problem.

Our discussion focused on analysis under a partially asyn-
chronous delay model, where information delays are only
assumed to be bounded, and thus did not cover other work
which assumes that delays follow more specific probabilistic
models [99], [100]. Such assumptions may lead to tighter
bounds when they accurately reflect the salient properties of the
underlying system, but verifying the validity of such models is
more challenging in practice. In contrast, bounded information
delays can be enforced algorithmically, albeit potentially at the
cost of some idling.

Lastly, although the inconsistent read perspective is a
convenient abstraction for analysis of parallel optimization
algorithms in shared memory, it is not an accurate description
of the behavior of current multi-core systems with non-
uniform memory access. In these systems, frequent concurrent
operations on the same elements in shared memory create
contention and reduce the efficiency of cache hierarchies.
Instead, emerging high-performance algorithms for multi-
processors, such as [24], [101] bear striking resemblance
with the decentralized methods described in this paper: cores
operate on local (inconsistent) copies of the decision vector and
coordinate to guarantee global convergence. We believe that
there is a significant scope for designing new algorithms tailored
to the specifics of NUMA architetures instead of adapting
algorithms designed with simpler hardware abstractions.
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