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A ACCELERATION READINGS AND
SIM-TO-REAL

MovingAverage Filtering. Since real IMU data pairedwith ground-
truth full-body motions are small in size, following previous work
[Huang et al. 2018], we place virtual IMU sensors on virtual charac-
ters driven by captured motions to synthesize IMU orientation and
acceleration readings. Using the AMASS [Mahmood et al. 2019]
motion dataset (a collection of smaller motion capture datasets), we
create a large-scale synthetic IMU dataset for training our model.

However, synthetic and real IMU data exhibit vastly di�erent
noise pro�les. Acceleration data in the real dataset are noisy, but
not in the same way as the noise in the synthetic dataset, which
is caused by double di�erentiation of mocap data (Figure 6 Top).
On the other hand, orientation data are usually less noisy because
they are processed by the in-sensor Kalman �lter [Kalman et al.
1960]. Previous work [Huang et al. 2018; Yi et al. 2021] recognized
this distribution mismatch problem and proposed to �rst train the
model exclusively on the synthetic data and then �netune it on a
smaller real dataset. This two-step solution leads to a more complex
training procedure that requires careful tuning to avoid over�tting
the real dataset.

Figure 6: Example of synthesized (orange) and real (blue)
acceleration data, before (top) and after (bottom) moving
average �ltering.

We found that simply running an average �lter on both synthetic
and real acceleration data (with window length of 11 in our imple-
mentation) would bring the two data sources su�ciently close to
each other (Fig. 6 Bottom).We then train the model only once on the
combined dataset. Combining both data sources simpli�es training
from two stages to one stage, and avoids the risk of catastrophic
forgetting during �netuning.

In practice, �ltering causes latency during real-time inference,
as computing moving average requires future IMU readings. We
use 5 times steps (83ms) of future readings, the same requirement
as [Huang et al. 2018; Yi et al. 2021], though they require future
readings as part of model input while we merely use them for
�ltering.

Summing Up (Integrate) Past Accelerations. Another issue we dis-
cover for non-�at terrain motions is that the sensor readings (both
orientation and acceleration) during a stair step is much similar to
a normal �at-ground step, especially in the case of real, noisy IMU
data. Note that pelvis also accelerates up and down in a normal
walking step resembling an inverted pendulum. However, if we
sum up the raw IMU acceleration readings within a small window

of recent history (e.g. past 0.5s), similar to "integrating" accelera-
tion to delta velocities, we could observe a more di�erent signal
shape between stairs and normal steps. Empirically, we �nd adding
this additional history sum features for each channel, increasing
acceleration features from R18 to R36 (concatenating with �ltered
accelerations), improves stair recognition on real hardware.

B MODEL DETAILS
We use the AMASS dataset to generate synthetic training data fol-
lowing the smoothing procedure in Appendix A. It consists of over
a dozen di�erent motion capture datasets performing a variety of
activities. In addition, we include 8 out of 10 subjects’ data from the
DIP dataset. We use pyBullet [Coumans and Bai 2016] for calculat-
ing forward kinematics during data synthesis, SBP label generation,
root correction, and �nal visualizations. As the DIP real IMU data
do not have root motion, we use a pre-trained model to label pseudo
ground-truth SBPs for the DIP motions.

We use standard loss functions for the model outputs, i.e., mean-
squared error for joint rotations, mean-squared error for vC and
Cartesian elements of cC , and binary cross-entropy for binary ele-
ments of cC , (i.e. 1C ). Speci�cally, for joint rotations,

L� = kqC � q̄C k22 ,

where q̄C is the ground-truth full-body joint rotations, represented
as �rst two columns (6D) of each rotationmatrix as noted previously
in the main text. Similarly for root velocities,

L' = kvC � v̄C k22 ,

and for the SBP predictions cC ,

L⇠ =
5’

8=1

���r (8)C � r̄ (8)C

���2
2
+

5’
8=1

(�1̄ (8)C log1 (8)C �(1�1̄ (8)C ) log(1�1 (8)C )) .

Since our model during training time predicts a whole trajectory
window, we experimented with a jerk loss penalizing deviation of
neighboring frames, but it did not produce visible improvements.
This might be due to the fact that during test time we still only
use the last prediction at each step. Instead, we pass our output
through an exponential moving average �lter as post processing,
at the expense of slight increase in joint accuracy errors (Appendix
F).

Our model is trained in PyTorch [Paszke et al. 2019] using the
Adam optimizer [Kingma and Ba 2014], with a batch size of 256
and a learning rate of 0.0001 multiplied with a cosine schedule
[Loshchilov and Hutter 2016]. We perform training for 1000 epochs,
which takes around 6 hours with a GeForce GTX 2080Ti GPU. Once
trained, our model is small enough to run at 60 fps on a 2080Ti
machine, with bottleneck being the python wrapper of pyBullet.
Our model uses max window size" = 39. It contains a total number
of 3, 677, 315 parameters, comparing to 4, 798, 771 in TransPose and
10, 801, 934 in DIP.

Note that our model requires an initial full-body pose given in
the �rst step of prediction. In practice this is always the case since
the sensors need to be calibrated with a T pose before each use, as
they are allowed to be slightly di�erently worn. See Appendix D
for more details.
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C TERRAIN GENERATION DETAILS
Grid size is empirically set to 0.1m, and number of grids ! ⇥ ! is set
so that terrain is large enough. We initialize the height map N with
all zero values, where zero is set to the initial root height minus a
constant heightF .F represents the lower bound of how low the
subject could possibly reach in this capture. We assume no cluster
means are below this value. If the user can provide a tighterF (e.g.
starting the capture on the lowest ground plane), we can generate
a more visually pleasing terrain by producing no dents lower than
the speci�ed ground plane. During real-time demos, w is set to be
tight, to indicate that we know the motion will not go lower than
the starting ground plane.

If there were only two SBPs with di�erent heights, Voronoi dia-
gram will render a 1-step stair that is in�nitely wide. For aesthetics,
we limit the area each new SBP can in�uence to 1m ⇥1m, which
could be nevertheless still wider than the real stairs in scene. While
we can arbitrarily make this in�uence region narrower, we note
that, without additional information, both are equally plausible,
and new SBPs can always crop the terrain narrower with more
information streaming in (Video 1m40s).

For a newly active SBP, we ignore it for C0 seconds before using
it for the terrain algorithm, to allow it to settle in height. C0 is 50
frames or the the moment SBP becomes inactive, whichever comes
earlier. The pelvis SBP is only used in terrain generation if it is
> 0.2m away from the feet, to avoid building terrains at the pelvis
height when the subject is standing still.

D SENSOR CALIBRATION
When testing on real hardware, as the raw sensor readings are
in di�erent coordinate frames from the frame of system input,
calibration is needed to obtain the o�set transforms between the
coordinate frames beforehand. We adopt a slightly di�erent IMU
calibration procedure from previous works that is nevertheless still
straightforward to explain.

We start from de�ning a few coordinate frames. Let ⌧= be the
base (i.e. identity) frame of each of the 6 sensors (for the Xsens
sensors we used, identity orientation could mean di�erent poses
per sensor). Let ⌧? be any �xed global frame the user speci�es,
whose G axis indicates the speci�ed front, ~ axis corresponds to
the left, and I axis corresponds to the upwards. (Note this axis
de�nition is di�erent from DIP and TransPose models.) Let (C be
the sensor frame, while (0 de�nes the sensor frame during T-pose
calibration. Let ⌫C be the bone frame, while ⌫0 de�nes the bone
frame during T-pose calibration. We omit the sensor indices 9 (e.g.
⌧ ( 9)
= , ( ( 9)C ) since calibration is agnostic to each sensor.
Using these notations, X(C⌧=

represents the raw sensor orientation
reading based from frame ⌧= , and a(C represents the raw acceler-
ation reading which is always local in sensor frame. The system
however expects both bone orientation and acceleration reading in
⌧? , i.e., X⌫C

⌧?
and a⌧? . We have the following relations:

X⌫C
⌧?

= X⌧=
⌧?

X(C⌧=
X⌫C
(C
,

a⌧? = X⌧=
⌧?

X(C⌧=
a(C � ā(C ,

where we note that ā(C is the constant acceleration bias in global
frame, usually just the gravitational acceleration. From these re-
lations, it should be clear that the goal of calibration is simply to
obtain X⌧=

⌧?
and X⌫C

(C
before each system run.

In the �rst calibration step, we place all sensors to align with the
speci�ed global frame so that X(⌧=

= X
⌧?

⌧=
, and obtain X⌧=

⌧?
which

is simply {X(⌧=
}) . Following [Yi et al. 2021], we keep all sensors

still on ground for three seconds and take the average reading.
Next, to obtain X⌫C

(C
, the user wears all six sensors and stand in a T

pose, facing the same "front" as⌧? . We assume that the sensor will
stay static with respect to the bone throughout the entire system
run, therefore X⌫C

(C
= X⌫0

(0
. Since the orientation of each bone at a

standard T pose, X⌫0
⌧?

, is known, we are able to obtain X⌫0
(0

from the

T-pose raw sensor reading X(0⌧=
using:

X⌫0
(0

= {X(0⌧=
}) X⌧?

⌧=
X⌫0
⌧?

,

where same as the �rst step, T pose is maintained for three seconds
and we use the average reading for X(0⌧=

.

E ADDITIONAL ANALYSIS
We present results of two additional experiments in this section.
First to showcase how much the performance our autoregressive
model will degrade over time, we repeat the quantitative experi-
ment of Table 1 but on random 3000-frame (50s) windows of each
motion, instead of 600 frames (10s). Note that since many test mo-
tions are shorter than 50s, this experiment setting may unevenly
bias statistics. For brevity, the DIP model is not included in this
comparison:

Table 3: Comparison of model performance on evaluation
motion segments of maximum length 50 seconds. Bold num-
bers indicate the best performing entries.

Our TIP Model
DIPEval TotalCapture DanceDB

joint angle errors (degree) 12.33555 9.46942 15.28491
joint position errors (2<) 5.86926 5.40289 8.23641
root errors in 2s (meter) 0.08545 0.09504
root errors in 5s (meter) 0.16679 0.20369
root errors in 10s (meter) 0.20338 0.38935
joint position jitter (</B3) 0.84848 0.80672 1.39043
root jitter (</B3) 0.64593 0.64609 0.95740

TransPose Model
DIPEval TotalCapture DanceDB

joint angle errors (degree) 12.78403 11.56577 17.22182
joint position errors (2<) 6.16507 5.76287 8.35314
root errors in 2s (meter) 0.18543 0.14899
root errors in 5s (meter) 0.32042 0.28216
root errors in 10s (meter) 0.32111 0.45332
joint position jitter (</B3) 0.57619 0.76578 1.44662
root jitter (</B3) 0.49804 0.70235 1.29385
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Reading the numbers from Table 3, degradation of model per-
formance is minimal on longer motions, and the statistics trends
between our model and TransPose remain unchanged. As a side
note, the DanceDB dataset contains more short motions, making
the sampling a random 50s segment more likely to cover the be-
ginnings of motions. We therefore see both TIP and TransPose
have improved root errors in 2s since the motions usually start from
standing and are less dynamic in the �rst two seconds.

Second, to showcase the bene�t of acceleration preprocessing,
we perform an ablation study where we remove the average �lter-
ing and summation operations from our TIP system, both during
training and test time.

Table 4: Ablation of model performance on evaluation mo-
tion segments of 10s. Bold numbers indicate the best per-
forming entries.

Our TIP Model
DIPEval TotalCapture DanceDB

joint angle errors (degree) 12.09586 8.91642 15.57031
joint position errors (2<) 5.82242 5.14566 8.50089
root errors in 2s (meter) 0.08031 0.20295
root errors in 5s (meter) 0.1351 0.29681
root errors in 10s (meter) 0.19446 0.35759
joint position jitter (</B3) 0.8823 0.75075 1.43867
root jitter (</B3) 0.66211 0.61108 0.98474

Our TIP Model, w/o Acceleration Preprocessing
DIPEval TotalCapture DanceDB

joint angle errors (degree) 13.02724 9.18290 15.67625
joint position errors (2<) 6.35219 5.29268 8.58611
root errors in 2s (meter) 0.09096 0.16825
root errors in 5s (meter) 0.18015 0.25855
root errors in 10s (meter) 0.20726 0.34444
joint position jitter (</B3) 0.85845 0.79335 1.44460
root jitter (</B3) 0.64661 0.63560 1.00417

From Table 4, We see a visible improvement from preprocess-
ing the raw acceleration readings on real-IMU datasets (DIPEval
& TotalCapture). As expected, preprocessing is unimportant for
synthesized IMU data (DanceDB).

Qualitative comparisons between our method and TransPose are
presented using the following two representative motions (Figure 7,
Video 3m33s). Our TIP model can generate a more stable sitting
posture by making better use of its own past predictions and utiliz-
ing run-time IK correction (Figure 7 Top). Figure 7 Bottom shows
that our algorithm is terrain agnostic while TransPose assumes
a �at ground and uses this assumption to correct the algorithm’s
vertical root prediction.

F DISCUSSIONS
Thoughwe have shown clear improvement on existing challenges of
temporal consistency due to ambiguity, dynamic motion coverage,
and terrain coverage, our system still has a few drawbacks for future
work. First, it tends to underestimate the terrain height rather than
overestimate (e.g. Video 3m52s) - collecting more annotated real

Figure 7: Motion reconstruction for sitting on a chair (from
real IMU data, top) and climbing steps (from synthesized IMU
data, bottom). Our character is shown in yellow, TransPose
in purple and Ground-Truth motion is shown in green. The
red spheres are predicted SBPs. Playing back motion on re-
constructed terrains.

IMU data on various terrain types, and increasing training samples
with uneven terrains through data upsampling, could both help
improve terrain reconstruction. Second, terrain height estimations
remain challenging since they solely depend on motion prediction,
and are susceptible to sensor noises. For example, locomotion on
a slightly bumpy ground versus on a �at ground is theoretically
near-ambiguous given IMU’s noise level (Video 4m6s). Third, our
motion reconstruction quality on real hardware can degrade on
motion types that are rare in training, thus a�ecting the quality of
generated terrains (Video 4m21s). Finally, though our work does
not claim contribution over the jitter level of reconstructed motions,
the smoothing �lter during post-processing is far from ideal and
hurts our motion accuracy by e�ectively increasing latency.

Another very visible problem we observe is the model’s bias
to body types. Our synthesized data were generated from virtual
characters with random heights sampled from 1.6m to 1.8m. We
observed that the algorithm generalizes better to taller users than
shorter ones. We hypothesize that this phenomenon is due to the
magnitude of acceleration, as the model might be more easily con-
fused by smaller signals from a shorter user. Similarly, existing
real IMU datasets might have a bias in human shapes. Some per-
sonalized training and �netuning of the model may eventually be
necessary for reconstructing more accurate and detailed motion
for each individual user.

The terrain generated from our algorithm is "plausible" in the
sense that it cannot distinguish, sorely from IMU readings, if the
foot is resting on a terrain or simply staying stationary in air (Video
4m58s). An algorithm that takes the distribution of commonly seen
environments into consideration could guide our system to generate
more likely terrains in such ambiguous cases.



SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Yifeng Jiang, Yuting Ye, Deepak Gopinath, Jungdam Won, Alexander W. Winkler, and C. Karen Liu

REFERENCES
EmreAksan,Manuel Kaufmann, Peng Cao, andOtmarHilliges. 2021. A Spatio-temporal

Transformer for 3D Human Motion Prediction. International Conference on 3D
Vision (3DV) (2021).

Sheldon Andrews, Ivan Huerta, Taku Komura, Leonid Sigal, and Kenny Mitchell. 2016.
Real-Time Physics-Based Motion Capture with Sparse Sensors. In Proceedings of
the 13th European Conference on Visual Media Production (CVMP 2016) (CVMP 2016).
Article 5.

Eric R. Bachmann, Robert B. McGhee, Xiaoping Yun, and Michael J. Zyda. 2001. Inertial
and Magnetic Posture Tracking for Inserting Humans into Networked Virtual
Environments. In Proceedings of the ACM Symposium on Virtual Reality Software
and Technology (VRST ’01). 9–16.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Je�rey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. (2020).
arXiv:2005.14165 [cs.CL]

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. 2019. OpenPose: Real-
time Multi-Person 2D Pose Estimation using Part A�nity Fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2019).

Young-Woon Cha, Husam Shaik, Qian Zhang, Fan Feng, Andrei State, Adrian Ilie, and
Henry Fuchs. 2021. Mobile. Egocentric Human Body Motion Reconstruction Using
Only Eyeglasses-mounted Cameras and a Few Body-worn Inertial Sensors. In 2021
IEEE Virtual Reality and 3D User Interfaces (VR).

Adrian Hilton Charles Malleson, John Collomosse. 2020. Real-Time Multi-person
Motion Capture fromMulti-view Video and IMUs. International Journal of Computer
Vision 128 (06 2020).

Vasileios Choutas, Federica Bogo, Jingjing Shen, and Julien Valentin. 2021. Learning
to Fit Morphable Models. CoRR abs/2111.14824 (2021). arXiv:2111.14824 https:
//arxiv.org/abs/2111.14824

Erwin Coumans and Yunfei Bai. 2016. Pybullet, a python module for physics simulation
for games, robotics and machine learning. (2016).

Michael B. Del Rosario, Heba Khamis, Phillip Ngo, Nigel H. Lovell, and Stephen J.
Redmond. 2018. Computationally E�cient Adaptive Error-State Kalman Filter for
Attitude Estimation. IEEE Sensors Journal 18, 22 (2018), 9332–9342.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Rad-
ford, and Ilya Sutskever. 2020. Jukebox: A Generative Model for Music.
arXiv:2005.00341 [eess.AS]

Andrea Dittadi, Sebastian Dziadzio, Darren Cosker, Ben Lundell, Tom Cashman, and
Jamie Shotton. 2021. Full-Body Motion From a Single Head-Mounted Device:
Generating SMPL Poses From Partial Observations. In International Conference on
Computer Vision 2021.

H. Durrant-Whyte and T. Bailey. 2006. Simultaneous localization and mapping: part I.
IEEE Robotics Automation Magazine 13, 2 (2006), 99–110. https://doi.org/10.1109/
MRA.2006.1638022

E. Foxlin. 1996. Inertial head-tracker sensor fusion by a complementary separate-bias
Kalman �lter. In Proceedings of the IEEE 1996 Virtual Reality Annual International
Symposium. 185–194.

Andrew Gilbert, Matthew Trumble, Charles Malleson, Adrian Hilton, and John Col-
lomosse. 2019. Fusing Visual and Inertial Sensors with Semantics for 3D Human
Pose Estimation. International Journal of Computer Vision 127 (04 2019), 1–17.

Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. 2018. Densepose: Dense hu-
man pose estimation in the wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 7297–7306.

Vladimir Guzov, Aymen Mir, Torsten Sattler, and Gerard Pons-Moll. 2021. Human
POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in
Large Scenes from Body-Mounted Sensors. In CVPR.

Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Christian Theobalt. 2013.
Real-Time Body Tracking with One Depth Camera and Inertial Sensors. In 2013
IEEE International Conference on Computer Vision. 1105–1112.

Daniel Holden, OussamaKanoun,MaksymPerepichka, and Tiberiu Popa. 2020. Learned
Motion Matching. ACM Trans. Graph. 39, 4, Article 53 (jul 2020), 13 pages. https:
//doi.org/10.1145/3386569.3392440

Yinghao Huang, Manuel Kaufmann, Emre Aksan, Michael J. Black, Otmar Hilliges,
and Gerard Pons-Moll. 2018. Deep Inertial Poser: Learning to Reconstruct Human
Pose from Sparse Inertial Measurements in Real Time. ACM TOG 37, 6 (12 2018).

Rudolph Emil Kalman et al. 1960. A new approach to linear �ltering and prediction
problems [J]. Journal of basic Engineering 82, 1 (1960), 35–45.

Angjoo Kanazawa, Jason Y. Zhang, Panna Felsen, and Jitendra Malik. 2019. Learning 3D
Human Dynamics from Video. In Computer Vision and Pattern Recognition (CVPR).

Manuel Kaufmann, Yi Zhao, Chengcheng Tang, Lingling Tao, Christopher Twigg,
Jie Song, Robert Wang, and Otmar Hilliges. 2021. EM-POSE: 3D Human Pose
Estimation from Sparse Electromagnetic Trackers. In International Conference on
Computer Vision (ICCV).

Seong Uk Kim, Hanyoung Jang, Hyeonseung Im, and Jongmin Kim. 2021. Human
motion reconstruction using deep transformer networks. Pattern Recognition Letters
150 (2021), 162–169.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Benoît Le Callennec and Ronan Boulic. 2006. Robust kinematic constraint detection for
motion data. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium
on Computer animation. 281–290.

Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa. 2021. AI Choreographer:
Music Conditioned 3D Dance Generation with AIST++.

Huajun Liu, Xiaolin Wei, Jinxiang Chai, Inwoo Ha, and Taehyun Rhee. 2011. Realtime
Human Motion Control with a Small Number of Inertial Sensors. In Symposium on
Interactive 3D Graphics and Games (I3D ’11). 133–140.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM TOG 34, 6 (Oct.
2015), 248:1–248:16.

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983 (2016).

Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani. 2021. Dynamics-Regulated
Kinematic Policy for Egocentric Pose Estimation. In NeurIPS.

NaureenMahmood, NimaGhorbani, Nikolaus F. Troje, Gerard Pons-Moll, andMichael J.
Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. In ICCV. 5442–
5451.

Charles Malleson, Marco Volino, Andrew Gilbert, Matthew Trumble, John Collomosse,
and Adrian Hilton. 2017. Real-time Full-Body Motion Capture from Video and
IMUs. In Int. Conf. 3D Vis.

Deepak Nagaraj, Erik Schake, Patrick Leiner, and Dirk Werth. 2020. An RNN-Ensemble
Approach for Real Time Human Pose Estimation from Sparse IMUs. In Proceedings
of the 3rd International Conference on Applications of Intelligent Systems (Las Palmas
de Gran Canaria, Spain) (APPIS 2020). Article 32, 6 pages.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems 32 (2019), 8026–8037.

Mathis Petrovich, Michael J. Black, and Gül Varol. 2021. Action-Conditioned 3DHuman
Motion Synthesis with Transformer VAE. In International Conference on Computer
Vision (ICCV). 10985–10995.

Gerard Pons-Moll, Andreas Baak, Juergen Gall, Laura Leal-Taixé, MeinardMüller, Hans-
Peter Seidel, and Bodo Rosenhahn. 2011. Outdoor human motion capture using
inverse kinematics and von mises-�sher sampling. In 2011 International Conference
on Computer Vision. 1243–1250.

Gerard Pons-Moll, Andreas Baak, Thomas Helten, Meinard Müller, Hans-Peter Seidel,
and Bodo Rosenhahn. 2010. Multisensor-fusion for 3D full-body human motion
capture. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. 663–670.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving
language understanding by generative pre-training. (2018).

Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and
Leonidas J Guibas. 2021. Humor: 3d human motion model for robust pose es-
timation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 11488–11499.

Rokoko. n d. Rokoko https://www.rokoko.com/. Last visited: 08/26/2022.
Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and Christian Theobalt. 2020.

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time. ACM
TOG 39, 6 (12 2020).

Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Over�tting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.
http://dl.acm.org/citation.cfm?id=2627435.2670313

Jonathan Taylor, Jamie Shotton, Toby Sharp, and Andrew Fitzgibbon. 2012. The
Vitruvian manifold: Inferring dense correspondences for one-shot human pose
estimation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition.
103–110.

Matt Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John Collomosse.
2017. Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors.
In BMVC.

Guillermo Valle-Pérez, Gustav Eje Henter, Jonas Beskow, Andre Holzapfel, Pierre-Yves
Oudeyer, and Simon Alexanderson. 2021. Trans�ower: Probabilistic Autoregressive
Dance Generation with Multimodal Attention. ACM Trans. Graph. 40, 6, Article
195 (dec 2021), 14 pages. https://doi.org/10.1145/3478513.3480570

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In
Advances in Neural Information Processing Systems, Vol. 30.

Vicon. n d. Vicon Motion Systems https://www.vicon.com/. Last visited: 08/26/2022.
Rachel V. Vitali, Ryan S. McGinnis, and Noel C. Perkins. 2021. Robust Error-State

Kalman Filter for Estimating IMU Orientation. IEEE Sensors Journal 21, 3 (2021),
3561–3569.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2111.14824
https://arxiv.org/abs/2111.14824
https://arxiv.org/abs/2111.14824
https://arxiv.org/abs/2005.00341
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1145/3386569.3392440
https://www.rokoko.com/
http://dl.acm.org/citation.cfm?id=2627435.2670313
https://doi.org/10.1145/3478513.3480570
https://www.vicon.com/


Transformer Inertial Poser SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Daniel Vlasic, Rolf Adelsberger, Giovanni Vannucci, John Barnwell, Markus Gross,
Wojciech Matusik, and Jovan Popović. 2007. Practical Motion Capture in Everyday
Surroundings. ACM Trans. Graph. 26, 3 (2007).

Timo von Marcard, Roberto Henschel, Michael Black, Bodo Rosenhahn, and Gerard
Pons-Moll. 2018. Recovering Accurate 3D Human Pose in The Wild Using IMUs
and a Moving Camera. In European Conference on Computer Vision (ECCV).

Timo von Marcard, Gerard Pons-Moll, and Bodo Rosenhahn. 2016. Human Pose
Estimation from Video and IMUs. Transactions on Pattern Analysis and Machine
Intelligence (PAMI) (jan 2016).

Timo von Marcard, Bodo Rosenhahn, Michael Black, and Gerard Pons-Moll. 2017.
Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs.
Computer Graphics Forum 36(2), Proceedings of the 38th Annual Conference of the
European Association for Computer Graphics (Eurographics) (2017), 349–360.

Xiaolin Wei, Peizhao Zhang, and Jinxiang Chai. 2012. Accurate Realtime Full-Body
Motion Capture Using a Single Depth Camera. ACM Trans. Graph. 31, 6, Article
188 (nov 2012).

Xsens. n d. Xsens https://www.xsens.com/. Last visited: 08/26/2022.
Dongseok Yang, Doyeon Kim, and Sung-Hee Lee. 2021. LoBSTr: Real-time Lower-body

Pose Prediction from Sparse Upper-body Tracking Signals. Computer Graphics
Forum (2021). https://doi.org/10.1111/cgf.142631

Xinyu Yi, Yuxiao Zhou,Marc Habermann, Soshi Shimada, Vladislav Golyanik, Christian
Theobalt, and Feng Xu. 2022. Physical Inertial Poser (PIP): Physics-aware Real-time
Human Motion Tracking from Sparse Inertial Sensors. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Xinyu Yi, Yuxiao Zhou, and FengXu. 2021. TransPose: Real-time 3DHuman Translation
and Pose Estimation with Six Inertial Sensors. ACM TOG 40, 4 (8 2021).

Zhe Zhang, Chunyu Wang, Wenhu Qin, and Wenjun Zeng. 2020. Fusing Wearable
IMUs with Multi-View Images for Human Pose Estimation: A Geometric Approach.
In CVPR.

Zerong Zheng, Tao Yu, Hao Li, Kaiwen Guo, Qionghai Dai, Lu Fang, and Yebin Liu.
2018. HybridFusion: Real-Time Performance Capture Using a Single Depth Sensor
and Sparse IMUs. In European Conference on Computer Vision (ECCV), Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). 389–406.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. 2019. On the continuity
of rotation representations in neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 5745–5753.

https://www.xsens.com/
https://doi.org/10.1111/cgf.142631

	Abstract
	1 Introduction
	2 Related Work
	3 Transformer Inertial Poser (TIP)
	3.1 Transformer Motion Estimator
	3.2 Stabilizing Drift with SBPs
	3.3 Plausible Terrain Generation

	4 Evaluations
	4.1 Quantitative Evaluation on Flat Terrain
	4.2 Quality of Simultaneously Generated Terrains
	4.3 Ablation Studies on Root Drifting
	4.4 Qualitative Comparisons of Run-time Joint IK Correction
	4.5 Live Demo

	5 Conclusion
	Acknowledgments
	References
	A Acceleration Readings and Sim-to-Real
	B Model Details
	C Terrain Generation Details
	D Sensor Calibration
	E Additional Analysis
	F Discussions

