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Abstract

In order for conversational AI systems to hold more natural
and broad-ranging conversations, they will require much more
commonsense, including the ability to identify unstated pre-
sumptions of their conversational partners. For example, in
the command “If it snows at night then wake me up early
because I don’t want to be late for work” the speaker relies on
commonsense reasoning of the listener to infer the implicit pre-
sumption that they wish to be woken only if it snows enough
to cause traffic slowdowns. We consider here the problem of
understanding such imprecisely stated natural language com-
mands given in the form of if-(state), then-(action), because-
(goal) statements. More precisely, we consider the problem
of identifying the unstated presumptions of the speaker that
allow the requested action to achieve the desired goal from
the given state (perhaps elaborated by making the implicit pre-
sumptions explicit). We release a benchmark data set for this
task, collected from humans and annotated with commonsense
presumptions. We present a neuro-symbolic theorem prover
that extracts multi-hop reasoning chains, and apply it to this
problem. Furthermore, to accommodate the reality that current
AI commonsense systems lack full coverage, we also present
an interactive conversational framework built on our neuro-
symbolic system, that conversationally evokes commonsense
knowledge from humans to complete its reasoning chains.

Introduction
Despite the remarkable success of artificial intelligence (AI)
and machine learning in the last few decades, commonsense
reasoning remains an unsolved problem at the heart of AI
(Levesque, Davis, and Morgenstern 2012; Davis and Mar-
cus 2015; Sakaguchi et al. 2020). Common sense allows us
humans to engage in conversations with one another and to
convey our thoughts efficiently, without the need to spec-
ify much detail (Grice 1975). For example, if Alice asks
Bob to “wake her up early whenever it snows at night” so
that she can get to work on time, Alice assumes that Bob
will wake her up only if it snows enough to cause traffic
slowdowns, and only if it is a working day. Alice does not
explicitly state these conditions since Bob makes such pre-
sumptions without much effort thanks to his common sense.

*work done when FA and JL were at Carnegie Mellon University.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A study, in which we collected such if(state)-then(action)
commands from human subjects, revealed that humans often
under-specify conditions in their statements; perhaps because
they are used to speaking with other humans who possess the
common sense needed to infer their more specific intent by
making presumptions about their statement.

The inability to make these presumptions makes it chal-
lenging for computers to engage in natural sounding conver-
sations with humans. While conversational AI systems such
as Siri, Alexa, and others are entering our daily lives, their
conversations with us humans remains limited to a set of pre-
programmed tasks. We propose that handling unseen tasks
requires conversational agents to develop common sense.

Therefore, we propose a new commonsense reasoning
benchmark for conversational agents where the task is to
infer commonsense presumptions in commands of the form
“If state holds Then perform action Because I want to
achieve goal .” The if-(state), then-(action) clause arises
when humans instruct new conditional tasks to conversational
agents (Azaria, Krishnamurthy, and Mitchell 2016; Labutov,
Srivastava, and Mitchell 2018). The reason for including the
because-(goal) clause in the commands is that some pre-
sumptions are ambiguous without knowing the user’s pur-
pose, or goal. For instance, if Alice’s goal in the previous
example was to see snow for the first time, Bob would have
presumed that even a snow flurry would be excuse enough to
wake her up. Since humans frequently omit details when stat-
ing such commands, a computer possessing common sense
should be able to infer the hidden presumptions; that is, the
additional unstated conditions on the If and/or Then portion
of the command. Please refer to Tab. 1 for some examples. In
this paper, in addition to the proposal of this novel task and
the release of a new dataset to study it, we propose a novel
initial approach that infers such missing presumptions, by ex-
tracting a chain of reasoning that shows how the commanded
action will achieve the desired goal when the state holds.
Whenever any additional reasoning steps appear in this rea-
soning chain, they are output by our system as assumed
implicit presumptions associated with the command. For our
reasoning method we propose a neuro-symbolic interactive,
conversational approach, in which the computer combines its
own commonsense knowledge with conversationally evoked
knowledge provided by a human user. The reasoning chain



Domain
if

clause
then

clause
because
clause Example

Annotation:
Commonsense Presumptions Count

Restricted domain state action goal
If it’s going to rain in the afternoon ( ·↓)
then remind me to bring an umbrella ( ·↓)
because I want to remain dry

(8, and I am outside)
(15, before I leave the house) 76

Restricted domain state action anti-goal
If I have an upcoming bill payment ( ·↓)
then remind me to pay it ( ·↓)
because I don’t want to pay a late fee

(7, in the next few days)
(13, before the bill payment deadline) 3

Restricted domain state action modifier
If my flight ( ·↓) is from 2am to 4am
then book me a supershuttle ( ·↓)
because it will be difficult to find ubers.

(3, take off time)
(13, for 2 hours before
my flight take off time)

2

Restricted domain state action conjunction

If I receive emails about sales
on basketball shoes ( ·↓)
then let me know ( ·↓)
because I need them and I want to save money.

(9, my size)
(13, there is a sale) 2

SUM 83

Everyday domain state action goal
If there is an upcoming election ( ·↓)
then remind me to register ( ·↓) and vote ( ·↓)
because I want my voice to be heard.

(6, in the next few months)
(6, and I am eligible to vote)

(11, to vote)
(13, in the election)

55

Everyday domain state action anti-goal

If it’s been two weeks
since my last call with my mentee
and I don’t have an upcoming
appointment with her ( ·↓)
then remind me to send her an email ( ·↓)
because we forgot to schedule our next chat

(21, in the next few days)
(29, to schedule our
next appointment)

4

Everyday domain state action modifier
If I have difficulty sleeping ( ·↓)
then play a lullaby
because it soothes me.

(5, at night) 12

Everyday domain state action conjunction

If the power goes out ( ·↓)
then when it comes back on
remind me to restart the house furnace
because it doesn’t come back on by itself
and I want to stay warm

(5, in the Winter) 6

SUM 77

Table 1: Statistics of if-(state), then-(action), because-(goal) commands collected from a pool of human subjects. The table shows
four distinct types of because-clauses we found, the count of commands of each type, examples of each and their corresponding
commonsense presumption annotations. Restricted domain includes commands whose state is limited to checking email,
calendar, maps, alarms, and weather. Everyday domain includes commands concerning more general day-to-day activities.
Annotations are tuples of (index, presumption) where index shows the starting word index of where the missing presumption
should be in the command, highlighted with a red arrow. Index starts at 0 and is calculated for the original command.

is extracted using our neuro-symbolic theorem prover that
learns sub-symbolic representations (embeddings) for logical
statements, making it robust to variations of natural language
encountered in a conversational interaction setting.

Contributions This paper presents three main contribu-
tions. 1) We propose a benchmark task for commonsense
reasoning in conversational agents and release a data set con-
taining if-(state), then-(action), because-(goal) commands,
annotated with commonsense presumptions. 2) We present
CORGI (COmmonsense ReasoninG by Instruction), a system
that performs soft logical inference. CORGI uses our pro-
posed neuro-symbolic theorem prover and applies it to extract
a multi-hop reasoning chain that reveals commonsense pre-
sumptions. 3) We equip CORGI with a conversational inter-
action mechanism that enables it to collect just-in-time com-
monsense knowledge from humans. Our user-study shows (a)
the plausibility of relying on humans to evoke commonsense
knowledge and (b) the effectiveness of our theorem prover,
enabling us to extract reasoning chains for up to 45% of the

studied tasks1.

Related Work
The literature on commonsense reasoning dates back to the
very beginning of the field of AI (Winograd 1972; Mueller
2014; Davis and Marcus 2015) and is studied in several con-
texts. One aspect focuses on building a large knowledge base
(KB) of commonsense facts. Projects like CYC (Lenat et al.
1990), ConceptNet (Liu and Singh 2004; Havasi, Speer, and
Alonso 2007; Speer, Chin, and Havasi 2017) and ATOMIC
(Sap et al. 2019; Rashkin et al. 2018) are examples of such
KBs (see (Davis and Marcus 2015) for a comprehensive list).
Recently, Bosselut et al. (2019) proposed COMET, a neural
knowledge graph that generates knowledge tuples by learning
on examples of structured knowledge. These KBs provide
background knowledge for tasks that require common sense.
However, it is known that knowledge bases are incomplete,

1The code and data are available here:
https://github.com/ForoughA/CORGI



and most have ambiguities and inconsistencies (Davis and
Marcus 2015) that must be clarified for particular reasoning
tasks. Therefore, we argue that reasoning engines can benefit
greatly from a conversational interaction strategy to ask hu-
mans about their missing or inconsistent knowledge. Closest
in nature to this proposal is the work by Hixon, Clark, and Ha-
jishirzi (2015) on relation extraction through conversation for
question answering and Wu et al. (2018)’s system that learns
to form simple concepts through interactive dialogue with a
user. The advent of intelligent agents and advancements in
natural language processing have given learning from con-
versational interactions a good momentum in the last few
years (Azaria, Krishnamurthy, and Mitchell 2016; Labutov,
Srivastava, and Mitchell 2018; Srivastava 2018; Goldwasser
and Roth 2014; Christmann et al. 2019; Guo et al. 2018; Li
et al. 2018, 2017; Li, Azaria, and Myers 2017).

A current challenge in commonsense reasoning is lack
of benchmarks (Davis and Marcus 2015). Benchmark tasks
in commonsense reasoning include the Winograd Schema
Challenge (WSC) (Levesque, Davis, and Morgenstern 2012),
its variations (Kocijan et al. 2020), and its recently scaled up
counterpart, Winogrande (Sakaguchi et al. 2020); ROCSto-
ries (Mostafazadeh et al. 2017), COPA (Roemmele, Bejan,
and Gordon 2011), Triangle COPA (Maslan, Roemmele, and
Gordon 2015), and ART (Bhagavatula et al. 2020), where
the task is to choose a plausible outcome, cause or explana-
tion for an input scenario; and the TimeTravel benchmark
(Qin et al. 2019) where the task to revise a story to make
it compatible with a given counterfactual event. Other than
TimeTravel, most of these benchmarks have a multiple choice
design format. However, in the real world the computer is
usually not given multiple choice questions. None of these
benchmarks targets the extraction of unspoken details in a
natural language statement, which is a challenging task for
computers known since the 1970’s (Grice 1975). Note than
inferring commonsense presumptions is different from in-
tent understanding (Janı́ček 2010; Tur and De Mori 2011)
where the goal is to understand the intent of a speaker when
they say, e.g., “pick up the mug”. It is also different from
implicature and presupposition (Sbisà 1999; Simons 2013;
Sakama and Inoue 2016) which are concerned with what can
be presupposed or implicated by a text.

CORGI has a neuro-symbolic logic theorem prover. Neuro-
symbolic systems are hybrid models that leverage the robust-
ness of connectionist methods and the soundness of sym-
bolic reasoning to effectively integrate learning and reason-
ing (Garcez et al. 2015; Besold et al. 2017). They have shown
promise in different areas of logical reasoning ranging from
classical logic to propositional logic, probabilistic logic, ab-
ductive logic, and inductive logic (Mao et al. 2019; Manhaeve
et al. 2018; Dong et al. 2019; Marra et al. 2019; Zhou 2019;
Evans and Grefenstette 2018). To the best of our knowl-
edge, neuro-symbolic solutions for commonsense reasoning
have not been proposed before. Examples of commonsense
reasoning engines are: AnalogySpace (Speer, Havasi, and
Lieberman 2008; Havasi et al. 2009) that uses dimensionality
reduction and Mueller (2014) that uses the event calculus
formal language. TensorLog (Cohen 2016) converts a first-
order logical database into a factor graph and proposes a

differentiable strategy for belief propagation over the graph.
DeepProbLog (Manhaeve et al. 2018) developed a proba-
bilistic logic programming language that is suitable for ap-
plications containing categorical variables. Contrary to our
approach, both these methods do not learn embeddings for
logical rules that are needed to make CORGI robust to natural
language variations. Therefore, we propose an end-to-end
differentiable solution that uses a Prolog (Colmerauer 1990)
proof trace to learn rule embeddings from data. Our proposal
is closest to the neural programmer interpreter (Reed and
De Freitas 2015) that uses the trace of algorithms such as ad-
dition and sort to learn their execution. The use of Prolog for
performing multi-hop logical reasoning has been studied in
Rocktäschel and Riedel (2017) and Weber et al. (2019). These
methods perform Inductive Logic Programming to learn rules
from data, and are not applicable to our problem. DeepLogic
(Cingillioglu and Russo 2018), Rocktäschel et al. (2014), and
Wang and Cohen (2016) also learn representations for logi-
cal rules using neural networks. Very recently, transformers
were used for temporal logic (Finkbeiner et al. 2020) and
to do multi-hop reasoning (Clark, Tafjord, and Richardson
2020) using logical facts and rules stated in natural language.
A purely connectionist approach to reasoning suffers from
some limitations. For example, the input token size limit of
transformers restricts Clark, Tafjord, and Richardson (2020)
to small knowledge bases. Moreover, generalizing to arbitrary
number of variables or an arbitrary inference depth is not triv-
ial for them. Since symbolic reasoning can inherently handle
all these challenges, a hybrid approach to reasoning takes the
burden of handling them off of the neural component.

Proposed Commonsense Reasoning
Benchmark

The benchmark task that we propose in this work is that of
uncovering hidden commonsense presumptions given com-
mands that follow the general format “if 〈state holds〉 then
〈perform action〉 because 〈I want to achieve goal〉”. We re-
fer to these as if-then-because commands. We refer to the
if -clause as the state , the then-clause as the action and
the because-clause as the goal . These natural language com-
mands were collected from a pool of human subjects (more
details in the Appendix). The data is annotated with unspoken
commonsense presumptions by a team of annotators. Tab. 1
shows the statistics of the data and annotated examples from
the data. We collected two sets of if-then-because commands.
The first set contains 83 commands targeted at a state that
can be observed by a computer/mobile phone (e.g. checking
emails, calendar, maps, alarms, and weather). The second
set contains 77 commands whose state is about day-to-day
events and activities. 81% of the commands over both sets
qualify as “if 〈 state 〉 then 〈 action 〉 because 〈 goal 〉”.
The remaining 19% differ in the categorization of the be-
cause-clause (see Tab. 1); common alternate clause types
included anti-goals (“...because I don’t want to be late”),
modifications of the state or action (“... because it will be dif-
ficult to find an Uber”), or conjunctions including at least one
non-goal type. Note that we did not instruct the subjects to
give us data from these categories, rather we uncovered them



input: If-(state ), then-(action ), because-(goal )

Parse Statement:
S(X)← state
A(Y )← action
G(Z)← goal

Is G in
K?

i > n?

Ask the user for
more information
G′(Z).

i = i+ 1
goalStack.push(G(Z))
G(Z) = G′(Z)

Fail

goalStack
empty?

Neuro-Symbolic
Theorem Prover:
Prove G(Z)

Add a new rule to K

goalStack.top() ` G(Z)
G(Z) = goalStack.pop()

knowledge base update loop

Is there
a proof

for
G(Z)?

discard the rules
added in the knowl-
edge base update
loop

Rule and
Variable

embeddings

Fail

Does the
proof

contain
S(X) and
A(Y )?

Succeed

proof
Y

N

Y

N

user feedback loop

Y

N

Y

N

Y

N

Figure 1: CORGI’s flowchart. The input is an if-then-because command e.g., “if it snows tonight then wake me up early
because I want to get to work on time”. The input is parsed into its logical form representation (for this example, S(X)
= weather(snow, Precipitation)). If CORGI succeeds, it outputs a proof tree for the because-clause or goal (parsed into
G(Z)=get(i,work,on time)). The output proof tree contains commonsense presumptions for the input statement (Fig 2 shows an
example). If the predicate G does not exist in the knowledge base, K, (Is G in K?), we have missing knowledge and cannot find
a proof. Therefore, we extract it from a human in the user feedback loop. At the heart of CORGI is a neuro-symbolic theorem
prover that learns rule and variable embeddings to perform a proof (Appendix). goalStack and the loop variable i are initialized
to empty and 0 respectively, and n = 3. italic text in the figure represents descriptions that are referred to in the main text.

after data collection. Also, commonsense benchmarks such
as the Winograd Schema Challenge (Levesque, Davis, and
Morgenstern 2012) included a similar number of examples
(100) when first introduced (Kocijan et al. 2020).

Lastly, the if-then-because commands given by humans
can be categorized into several different logic templates. The
discovered logic templates are given in the Appendix 2. Our
neuro-symbolic theorem prover uses a general reasoning
strategy that can address all reasoning templates. However,
in an extended discussion in the Appendix, we explain how a
reasoning system, including ours, could potentially benefit
from these logic templates.

Method
Background and notation The system’s commonsense
knowledge is a KB, denoted K, programmed in a Prolog-
like syntax. We have developed a modified version of Prolog,
which has been augmented to support several special fea-
tures (types, soft-matched predicates and atoms, etc). Prolog
(Colmerauer 1990) is a declarative logic programming lan-
guage that consists of a set of predicates whose arguments are
atoms, variables or predicates. A predicate is defined by a set
of rules (Head :− Body.) and facts (Head.), where Head is a
predicate, Body is a conjuction of predicates, and :− is logical
implication. We use the notation S(X), A(Y ) and G(Z) to
represent the logical form of the state , action and goal ,
respectively where S,A andG are predicate names andX,Y
and Z indicate the list of arguments of each predicate. For
example, for goal =“I want to get to work on time”, we have
G(Z) =get(i, work, on time). Prolog can be used to logi-
cally “prove” a query (e.g., to prove G(Z) from S(X), G(Z)

2The appendix is available at https://arxiv.org/abs/2006.10022

and appropriate commonsense knowledge (see the Appendix
- Prolog Background)).

CORGI: COmmonsense Reasoning by Instruction
CORGI takes as input a natural language command of the
form “if 〈state 〉 then 〈action 〉 because 〈goal 〉” and in-
fers commonsense presumptions by extracting a chain of
commonsense knowledge that explains how the commanded
action achieves the goal when the state holds. For exam-
ple from a high level, for the command in Fig. 2 CORGI
outputs (1) if it snows more than two inches, then there will
be traffic, (2) if there is traffic, then my commute time to
work increases, (3) if my commute time to work increases
then I need to leave the house earlier to ensure I get to work
on time (4) if I wake up earlier then I will leave the house
earlier. Formally, this reasoning chain is a proof tree (proof
trace) shown in Fig.2. As shown, the proof tree includes the
commonsense presumptions.

CORGI’s architecture is depicted in Figure 1. In the first
step, the if-then-because command goes through a parser that
extracts the state , action and goal from it and converts
them to their logical form representations S(X), A(Y ) and
G(Z), respectively. For example, the action “wake me up
early” is converted to wake(me, early). The parser is pre-
sented in the Appendix (Sec. Parsing).

The proof trace is obtained by finding a proof for G(Z),
using K and the context of the input if-then-because com-
mand. In other words, S(X) ∩ A(Y ) ∩ K → G(Z). One
challenge is that even the largest knowledge bases gathered to
date are incomplete, making it virtually infeasible to prove an
arbitrary input G(Z). Therefore, CORGI is equipped with a
conversational interaction strategy, which enables it to prove



a query by combining its own commonsense knowledge with
conversationally evoked knowledge provided by a human
user in response to a question from CORGI (user feedback
loop in Fig.1). There are 4 possible scenarios that can occur
when CORGI asks such questions:
A The user understands the question, but does not know the

answer.
B The user misunderstands the question and responds with

an undesired answer.
C The user understands the question and provides a correct

answer, but the system fails to understand the user due to:
C.1 limitations of natural language understanding.
C.2 variations in natural language, which result in misalign-

ment of the data schema in the knowledge base and the
data schema in the user’s mind.

D The user understands the question and provides the correct
answer and the system successfully parses and understands
it.

CORGI’s different components are designed such that they
address the above challenges, as explained below. Since our
benchmark data set deals with day-to-day activities, it is
unlikely for scenario A to occur. If the task required more
specific domain knowledge, A could have been addressed by
choosing a pool of domain experts. Scenario B is addressed
by asking informative questions from users. Scenario C.1 is
addressed by trying to extract small chunks of knowledge
from the users piece-by-piece. Specifically, the choice of
what to ask the user in the user feedback loop is deterministi-
cally computed from the user’s goal . The first step is to ask
how to achieve the user’s stated goal , and CORGI expects
an answer that gives a sub-goal . In the next step, CORGI
asks how to achieve the sub-goal the user just mentioned.
The reason for this piece-by-piece knowledge extraction is
to ensure that the language understanding component can
correctly parse the user’s response. CORGI then adds the
extracted knowledge from the user to K in the knowledge
update loop shown in Fig.1. Missing knowledge outside this
goal /sub-goal path is not handled, although it is an interest-
ing future direction. Moreover, the model is user specific and
the knowledge extracted from different users are not shared
among them. Sharing knowledge raises interesting privacy
issues and requires handling personalized conflicts and falls
out of the scope of our current study.

Scenario C.2, caused by the variations of natural language,
results in semantically similar statements to get mapped into
different logical forms, which is unwanted. For example,
“make sure I am awake early morning” vs. “wake me up
early morning” will be parsed into different logical forms
awake(i,early morning) and wake(me, early morning), re-
spectively although they are semantically similar. This mis-
match prevents a logical proof from succeeding since the
proof strategy relies on exact match in the unification opera-
tion (see Appendix). This is addressed by our neuro-symbolic
theorem prover (Fig.1) that learns vector representations (em-
beddings) for logical rules and variables and uses them to
perform a logical proof through soft unification. If the theo-
rem prover can prove the user’s goal ,G(Z), CORGI outputs

the proof trace (Fig.2) returned by its theorem prover and suc-
ceeds. In the next section, we explain our theorem prover in
detail. We revisit scenarios A−D in detail in the discussion
section and show real examples from our user study.

Neuro-Symbolic Theorem Proving
Our Neuro-Symbolic theorem prover is a neural modification
of backward chaining and uses the vector similarity between
rule and variable embeddings for unification. In order to learn
these embeddings, our theorem prover learns a general prov-
ing strategy by training on proof traces of successful proofs.
From a high level, for a given query our model maximizes
the probability of choosing the correct rule to pick in each
step of the backward chaining algorithm. This proposal is
an adaptation of Reed et al.’s Neural Programmer-Interpreter
(Reed and De Freitas 2015) that learns to execute algorithms
such as addition and sort, by training on their execution trace.

In what follows, we represent scalars with lowercase let-
ters, vectors with bold lowercase letters and matrices with
bold uppercase letters. Mrule ∈ Rn1×m1 denotes the embed-
ding matrix for the rules and facts, where n1 is the num-
ber of rules and facts and m1 is the embedding dimension.
Mvar ∈ Rn2×m2 denotes the variable embedding matrix,
where n2 is the number of all the atoms and variables in
the knowledge base and m2 is the variable embedding di-
mension. Our knowledge base is type coerced, therefore
the variable names are associated with their types (e.g.,
alarm(Person,Time))

Learning The model’s core consists of an LSTM network
whose hidden state indicates the next rule in the proof trace
and a proof termination probability, given a query as input.
The model has a feed forward network that makes variable
binding decisions. The model’s training is fully supervised
by the proof trace of a query given in a depth-first-traversal
order from left to right (Fig. 2). The trace is sequentially
input to the model in the traversal order as explained in what
follows. In step t ∈ [0, T ] of the proof, the model’s input is
εinpt =

(
qt, rt, (v

1
t , . . . ,v

`
t)
)

and T is the total number of
proof steps. qt is the query’s embedding and is computed
by feeding the predicate name of the query into a character
RNN. rt is the concatenated embeddings of the rules in the
parent and the left sister nodes in the proof trace, looked up
from Mrule. For example in Fig.2, q3 represents the node at
proof step t = 3, r3 represents the rule highlighted in green
(parent rule), and r4 represents the fact alarm(i, 8). The
reason for including the left sister node in rt is that the proof
is conducted in a left-to-right depth first order. Therefore, the
decision of what next rule to choose in each node is dependent
on both the left sisters and the parent (e.g. the parent and the
left sisters of the node at step t = 8 in Fig. 2 are the rules at
nodes t = 1, t = 2, and t = 6, respectively). The arguments
of the query are presented in (v1

t , . . . ,v
`
t) where ` is the

arity of the query predicate. For example, v1
3 in Fig 2 is the

embedding of the variable Person. Each vit for i ∈ [0, `],
is looked up from the embedding matrix Mvar. The output
of the model in step t is εoutt =

(
ct, rt+1, (v

1
t+1, . . . ,v

`
t+1))



get(Person, ToPlace, on time)t = 0

arrive(Person, , , ToPlace, ArriveAt)t = 1

ready(Person, LeaveAt, PrepTime)t = 2

alarm(Perosn, Time)t = 3

alarm(i,8)t = 4
LeaveAt = Time + PrepTime.t = 5

commute(Person, FromPlace, ToPlace, With, CommuteTime)t = 6

commute(i, home, work, car, 1)t = 7

traffic(LeaveAt, ToPlace, With, TrTime)t = 8

weather(snow, Precipitation)t = 9 Precipitation >= 2t = 10 TrTime = 1t = 11

ArriveAt = LeaveAt +
CommuteTime + TrTimet = 12

calendarEntry(Person, ToPlace, ArriveAt)t = 13

calendarEntry(i, work, 9)t = 14

Figure 2: Sample proof tree for the because-clause of the statement: “If it snows tonight then wake me up early because
I want to get to work on time”. Proof traversal is depth-first from left to right (t gives the order). Each node in the tree
indicates a rule’s head, and its children indicate the rule’s body. For example, the nodes highlighted in green indicate the
rule ready(Person,LeaveAt,PrepTime) :− alarm(Person, Time) ∧ LeaveAt = Time+PrepTime. The goal we want to prove,
G(Z)=get(Person, ToPlace, on time), is in the tree’s root. If a proof is successful, the variables in G(Z) get grounded (here
Person and ToPlace are grounded to i and work, respectively). The highlighted orange nodes are the uncovered commonsense
presumptions.

and is computed through the following equations

st = fenc(qt, ), ht = flstm(st, rt,ht−1), (1)

ct = fend(ht), rt+1 = frule(ht), vit+1 = fvar(v
i
t), (2)

where vit+1 is a probability vector over all the variables and
atoms for the ith argument, rt+1 is a probability vector over
all the rules and facts and ct is a scalar probability of termi-
nating the proof at step t. fenc, fend, frule and fvar are feed
forward networks with two fully connected layers, and flstm
is an LSTM network. The trainable parameters of the model
are the parameters of the feed forward neural networks, the
LSTM network, the character RNN that embeds qt and the
rule and variable embedding matrices Mrule and Mvar.

Our model is trained end-to-end. In order to train the model
parameters and the embeddings, we maximize the log likeli-
hood probability given below

θ∗ = argmax θ

∑
εout,εin

log(P (εout|εin;θ)), (3)

where the summation is over all the proof traces in the train-
ing set and θ is the trainable parameters of the model. We
have

log(P (εout|εin;θ)) =
T∑
t=1

logP (εoutt |εin1 . . . εint−1;θ), (4)

logP (εoutt |εin1 . . . εint−1;θ) = logP (εoutt |εint−1;θ)
= logP (ct|ht)+
logP (rt+1|ht)+

log
∑
i

P (vit+1|vit). (5)

Where the probabilities in Equation (5) are given in Equa-
tions (2). The inference algorithm for porving is given in the
Appendix, section Inference.

Experiment Design
The knowledge base, K, used for all experiments is a small
handcrafted set of commonsense knowledge that reflects the
incompleteness of SOTA KBs. Some examples of our KB
entries are available in the Appendix. K includes general
information about time, restricted-domains such as setting
alarms and notifications, emails, and so on, as well as com-
monsense knowledge about day-to-day activities. K contains
a total of 228 facts and rules. Among these, there are 189
everyday-domain and 39 restricted domain facts and rules.
We observed that most of the if-then-because commands re-
quire everyday-domain knowledge for reasoning, even if they
are restricted-domain commands (see Table 3 for example).

Our Neuro-Symbolic theorem prover is trained on proof
traces (proof trees similar to Fig. 2) collected by proving
automatically generated queries to K using sPyrolog3. Mrule

and Mvar are initialized randomly and with GloVe embed-
dings (Pennington, Socher, and Manning 2014), respectively,
where m1 = 256 and m2 = 300. Since K is type-coerced
(e.g. Time, Location, . . . ), initializing the variables with pre-
trained word embeddings helps capture their semantics and
improves the performance. The neural components of the
theorem prover are implemented in PyTorch (Paszke et al.
2017) and the prover is built on top of sPyrolog.

User Study
In order to assess CORGI’s performance, we ran a user study.
We selected 10 goal-type if-then-because commands from
the dataset in Table 1 and used each as the prompt for a rea-
soning task. We had 28 participants in the study, 4 of which
were experts closely familiar with CORGI and its capabilities.
The rest were undergraduate and graduate students with the
majority being in engineering or computer science fields and
some that majored in business administration or psychology.

3https://github.com/leonweber/spyrolog



CORGI variations Novice User Expert User

No-feedback 0% 0%
Soft unification 15.61% 35.00%
Oracle unification 21.62% 45.71%

Table 2: percentage of successful reasoning tasks for different
user types. In no-feedback, user responses are not considered
in the proof attempt. in soft unification CORGI uses our pro-
posed neuro-symbolic theorem prover. In the Oracle scenario,
the theorem prover has access to oracle embeddings and soft
unification is 100% accurate.

These users had never interacted with CORGI prior to the
study (novice users). Each person was issued the 10 reason-
ing tasks, taking on average 20 minutes to complete all 10.
Solving a reasoning task consists of participating in a dialog
with CORGI as the system attempts to complete a proof for
the goal of the current task; see sample dialogs in Tab. 3. The
task succeeds if CORGI is able to use the answers provided
by the participant to construct a reasoning chain (proof) lead-
ing from the goal to the state and action . We collected
469 dialogues in our study.

The user study was run with the architecture shown in
Fig. 1. We used the participant responses from the study to
run a few more experiments. We (1) Replace our theorem
prover with an oracle prover that selects the optimal rule at
each proof step in our inference Algorithm (Appendix) and
(2) attempt to prove the goal without using any participant
responses (no-feedback). Tab. 2 shows the success rate in
each setting.

Discussion
In this section, we analyze the results from the study and
provide examples of the 4 scenarios in Section that we en-
countered. As hypothesized, scenario A hardly occurred as
the commands are about day-to-day activities that all users
are familiar with. We did encounter scenario B, however.
The study’s dialogs show that some users provided means
of sensing the goal rather than the cause of the goal . For
example, for the reasoning task “If there are thunderstorms
in the forecast within a few hours then remind me to close the
windows because I want to keep my home dry”, in response
to the system’s prompt “How do I know if ‘I keep my home
dry’?” a user responded “if the floor is not wet” as opposed
to an answer such as “if the windows are closed”. More-
over, some users did not pay attention to the context of the
reasoning task. For example, another user responded to the
above prompt (same reasoning task) with “if the temperature
is above 80”! Overall, we noticed that CORGI’s ability to
successfully reason about an if-then-because statement was
heavily dependent on whether the user knew how to give
the system what it needed, and not necessarily what it asked
for; see Table 3 for an example. As it can be seen in Table
2, expert users are able to more effectively provide answers
that complete CORGI’s reasoning chain, likely because they
know that regardless of what CORGI asks, the object of the
dialog is to connect the because goal back to the knowledge
base in some series of if-then rules (goal /sub-goal path in

Successful task
If it’s going to rain in the afternoon then remind me to bring
an umbrella because I want to remain dry.

How do I know if “I remain dry”?
If I have my umbrella.

How do I know if “I have my umbrella”?
If you remind me to bring an umbrella.

Okay, I will perform “remind me to bring an umbrella”
in order to achieve “I remain dry”.

Failed task
If it’s going to rain in the afternoon then remind me to bring
an umbrella because I want to remain dry.

How do I know if “I remain dry”?
If I have my umbrella.

How do I know if “I have my umbrella”?
If it’s in my office.

How do I know if “it’s in my office”?
...

Table 3: Sample dialogs of 2 novice users in our study.
CORGI’s responses are noted in italics.

Sec.). Therefore, one interesting future direction is to develop
a dynamic context-dependent Natural Language Generation
method for asking more effective questions.

We would like to emphasize that although it seems to
us, humans, that the previous example requires very simple
background knowledge that likely exists in SOTA large com-
monsense knowledge graphs such as ConcepNet4, ATOMIC5

or COMET (Bosselut et al. 2019), this is not the case (ver-
ifiable by querying them online). For example, for queries
such as “the windows are closed”, COMET-ConceptNet gen-
erative model6 returns knowledge about blocking the sun,
and COMET-ATOMIC generative model7 returns knowledge
about keeping the house warm or avoiding to get hot; which
while being correct, is not applicable in this context. For

“my home is dry”, both COMET-ConceptNet and COMET-
ATOMIC generative models return knowledge about house
cleaning or house comfort. On the other hand, the fact that
40% of the novice users in our study were able to help CORGI
reason about this example with responses such as “If I close
the windows” to CORGI’s prompt, is an interesting result.
This tells us that conversational interactions with humans
could pave the way for commonsense reasoning and enable
computers to extract just-in-time commonsense knowledge,
which would likely either not exist in large knowledge bases
or be irrelevant in the context of the particular reasoning
task. Lastly, we re-iterate that as conversational agents (such
as Siri and Alexa) enter people’s lives, leveraging conversa-
tional interactions for learning has become a more realistic
opportunity than ever before.

In order to address scenario C.1, the conversational
4http://conceptnet.io/
5https://mosaickg.apps.allenai.org/kg atomic
6https://mosaickg.apps.allenai.org/comet conceptnet
7https://mosaickg.apps.allenai.org/comet atomic



prompts of CORGI ask for specific small pieces of knowl-
edge that can be easily parsed into a predicate and a set of
arguments. However, some users in our study tried to provide
additional details, which challenged CORGI’s natural lan-
guage understanding. For example, for the reasoning task “If
I receive an email about water shut off then remind me about
it a day before because I want to make sure I have access to
water when I need it.”, in response to the system’s prompt

“How do I know if ‘I have access to water when I need it.’?”
one user responded “If I am reminded about a water shut off
I can fill bottles”. This is a successful knowledge transfer.
However, the parser expected this to be broken down into
two steps. If this user responded to the prompt with “If I fill
bottles” first, CORGI would have asked “How do I know
if ‘I fill bottles’?” and if the user then responded “if I am
reminded about a water shut off” CORGI would have suc-
ceeded. The success from such conversational interactions
are not reflected in the overall performance mainly due to the
limitations of natural language understanding.

Table 2 evaluates the effectiveness of conversational inter-
actions for proving compared to the no-feedback model. The
0% success rate there reflects the incompleteness of K. The
improvement in task success rate between the no-feedback
case and the other rows indicates that when it is possible for
users to contribute useful common-sense knowledge to the
system, performance improves. The users contributed a total
number of 96 rules to our knowledge base, 31 of which were
unique rules. Scenario C.2 occurs when there is variation in
the user’s natural language statement and is addressed with
our neuro-symbolic theorem prover. Rows 2-3 in Table 2
evaluate our theorem prover (soft unification). Having access
to the optimal rule for unification does still better, but the
task success rate is not 100%, mainly due to the limitations
of natural language understanding explained earlier.

Conclusions
In this paper, we introduced a benchmark task for common-
sense reasoning that aims at uncovering unspoken intents that
humans can easily uncover in a given statement by making
presumptions supported by their common sense. In order to
solve this task, we propose CORGI (COmmon-sense Reason-
inG by Instruction), a neuro-symbolic theorem prover that
performs commonsense reasoning by initiating a conversa-
tion with a user. CORGI has access to a small knowledge
base of commonsense facts and completes it as she interacts
with the user. We further conduct a user study that indicates
the possibility of using conversational interactions with hu-
mans for evoking commonsense knowledge and verifies the
effectiveness of our proposed theorem prover.
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