
Memory Aware Synapses
Learning what (not) to forget

Rahaf Aljundi1, Francesca Babiloni1, Mohamed Elhoseiny2,
Marcus Rohrbach2, and Tinne Tuytelaars1

1 KU Leuven, ESAT-PSI, IMEC, Belgium
2 Facebook AI Research

Abstract. Humans can learn in a continuous manner. Old rarely utilized knowl-
edge can be overwritten by new incoming information while important, frequently
used knowledge is prevented from being erased. In artificial learning systems,
lifelong learning so far has focused mainly on accumulating knowledge over tasks
and overcoming catastrophic forgetting. In this paper, we argue that, given the
limited model capacity and the unlimited new information to be learned, knowl-
edge has to be preserved or erased selectively. Inspired by neuroplasticity, we
propose a novel approach for lifelong learning, coined Memory Aware Synapses
(MAS). It computes the importance of the parameters of a neural network in an
unsupervised and online manner. Given a new sample which is fed to the net-
work, MAS accumulates an importance measure for each parameter of the net-
work, based on how sensitive the predicted output function is to a change in
this parameter. When learning a new task, changes to important parameters can
then be penalized, effectively preventing important knowledge related to previous
tasks from being overwritten. Further, we show an interesting connection between
a local version of our method and Hebb’s rule, which is a model for the learning
process in the brain. We test our method on a sequence of object recognition
tasks and on the challenging problem of learning an embedding for predicting
<subject, predicate, object> triplets. We show state-of-the-art performance and,
for the first time, the ability to adapt the importance of the parameters based on
unlabeled data towards what the network needs (not) to forget, which may vary
depending on test conditions.

Keywords: Lifelong learning, Hebbian learning, Incremental learning, Contin-
ual learning, Adaptation Marcus: I would remove keywords to have space for
other things :)

1 Introduction

The (real and digital) world around us evolves continuously. Each day millions of im-
ages with new tags appear on social media. Every minute hundreds of hours of video
are uploaded on Youtube. This new content contains new topics and trends that may be
very different from what one has seen before - think e.g. of new emerging news topics,
fashion trends, social media hypes or technical evolutions. Consequently, to keep up to
speed, our learning systems should be able to evolve as well.

2 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

...

Fig. 1: Our continuous learning setup. As common in the LLL literature, tasks are
learned in sequence, one after the other. If, in between learning tasks, the agent is active
and performs the learned tasks, we can use these unlabeled samples to update impor-
tance weights for the model parameters. Data that appears frequently, will have a bigger
contribution. This way, the agent learns what is important and should not be forgotten.

Yet the dominating paradigm to date, using supervised learning, ignores this issue.
It learns a given task using an existing set of training examples. Once the training is
finished, the trained model is frozen and deployed. From then on, new incoming data
is processed without any further adaptation or customization of the model. Soon, the
model becomes outdated. In that case, the training process has to be repeated, using
both the previous and new data, and with an extended set of category labels. In a world
like ours, such a practice becomes intractable when moving to real scenarios such as
those mentioned earlier, where the data is streaming, might be disappearing after a given
period of time or even can’t be stored at all due to storage constraints or privacy issues.

In this setting, lifelong learning (LLL) [23, 34, 36] comes as a natural solution. LLL
studies continual learning across tasks and data, tackling one task at a time, without
storing data from previous tasks. The goal is to accumulate knowledge across tasks
(typically via model sharing), resulting in a single model that performs well on all the
learned tasks. The question then is how to overcome catastrophic forgetting [8, 9, 19] of
the old knowledge when starting a new learning process using the same model.

So far, LLL methods have mostly (albeit not exclusively) been applied to relatively
short sequences – often consisting of no more than two tasks (e.g. [15, 16, 27]), and
using relatively large networks with plenty of capacity (e.g. [1, 6, 32]). However, in a
true LLL setting with a never ending list of tasks, the capacity of the model sooner
or later reaches its limits and compromises need to be made. Instead of aiming for
no forgetting at all, figuring out what can possibly be forgotten becomes at least as
important. In particular, exploiting context-specific test conditions may pay off in this
case. Consider for instance a surveillance camera. Depending on how or where it is
mounted, it always captures images under particular viewing conditions. Knowing how
to cope with other conditions is no longer relevant and can be forgotten, freeing capacity
for other tasks. This calls for a LLL method that can learn what (not) to forget using
unlabeled test data. We illustrate this setup in Figure 1.

Such adaptation and memory organization is what we also observe in biological
neurosystems. Our ability to preserve what we have learned before is largely dependent
on how frequent we make use of it. Skills that we practice often, appear to be unforget-
table, unlike those that we have not used for a long time. Remarkably, this flexibility
and adaptation occur in the absence of any form of supervision. According to Hebbian
theory [10], the process at the basis of this phenomenon is the strengthening of synapses

Memory Aware Synapses: Learning what (not) to forget 3

connecting neurons that fire synchronously, compared to those connecting neurons with
unrelated firing behavior.

In this work, we propose a new method for LLL, coined Memory Aware Synapses, or
MAS for short, inspired by the model of Hebbian learning in biological systems. Unlike
previous works, our LLL method can learn what parts of the model are important using
unlabelled data. This allows for adaptation to specific test conditions and continuous
updating of importance weights. This is achieved by estimating importance weights for
the network parameters without relying on the loss, but by looking at the sensitivity of
the output function instead. This way, our method not only avoids the need for labeled
data, but importantly it also avoids complications due to the loss being in a local mini-
mum, resulting in gradients being close to zero. This makes our method not only more
versatile, but also simpler, more memory-efficient, and, as it turns out, more effective
in learning what not to forget, compared to other model-based LLL approaches.

Contributions of this paper are threefold: First, we propose a new LLL method
Memory Aware Synapses (MAS). It estimates importance weights for all the network
parameters in an unsupervised and online manner, allowing adaptation to unlabeled
data, e.g. in the actual test environment. Second, we show how a local variant of MAS is
linked to the Hebbian learning scheme. Third, we achieve better performance than state-
of-the-art, both when using the standard LLL setup and when adapting to specific test
conditions, both for object recognition and for predicting <subject, predicate, object>
triplets, where an embedding is used instead of a softmax output.

In the following we discuss related work in section 2 and give some background in-
formation in section 3. Section 4 describes our method and its connection with Hebbian
learning. Experimental results are given in section 5 and section 6 concludes the paper.

2 Related Work
Method Type Constant Problem On Pre- Unlabeled Adap-

Memory agnostic trained data tive
LwF [16] data X X X n/a X
EBLL ?
Encoder [27] data X X X n/a X
EWC [11] model X X X X X
IMM [15] model X X X X X
SI [39] model X X X X X
MAS (our) model X X X X X

Table 1: LLL desired characteristics and the compli-
ance of methods, that treat forgetting without storing
the data, to these characteristics.

While lifelong learning has been
studied since a long time in differ-
ent domains (e.g. robotics [36] or
machine learning [29]) and touches
upon the broader fields of meta-
learning [7] and learning-to-learn
[2], we focus in this section on
more recent work in the context of
computer vision mainly.

The main challenge in LLL is to adapt the learned model continually to new tasks,
be it from a similar or a different environment [24]. However, looking at existing LLL
solutions, we observe that none of them satisfies all the characteristics one would expect
or desire from a lifelong learning approach (see Table 1). First, its memory should be
constant w.r.t. the number of tasks, to avoid a gradual increase in memory consumption
over time. Second, it should not be limited to a specific setting (e.g. only classification).
We refer to this as problem agnostic. Third, given a pretrained model, it should be able
to build on top of it and add new tasks. Fourth, being able to learn from unlabeled data
would increase the method applicability to cases where original training data no longer

4 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

exists. Finally, as argued above, within a fixed capacity network, being able to adapt
what not to forget to a specific user setting would leave more free capacity for future
tasks. In light of these properties, we discuss recently proposed methods. They can be
divided into two main approaches: data-based and model-based approaches. Here, we
don’t consider LLL methods that require storing samples, such as [17, 28].
Data-based approaches [1, 16, 27, 33] use data from the new task to approximate the
performance of the previous tasks. This works best if the data distribution mismatch
between tasks is limited. Data based approaches are mainly designed for a classification
scenario and overall, the need of these approaches to have a preprocessing step before
each new task, to record the targets for the previous tasks is an additional limitation.
Model-based approaches [6, 11, 15, 39], like our method, focus on the parameters of
the network instead of depending on the task data. Most similar to our work are [11,
39]. Like them, we estimate an importance weight for each model parameter and add a
regularizer when training a new task that penalizes any changes to important parame-
ters. The difference lies in the way the importance weights are computed. In the Elastic
Weight Consolidation work [11], this is done based on an approximation of the diagonal
of the Fisher information matrix. Yet this requires extra computations and storing such
a matrix for each task, resulting in memory requirements that grow linearly with the
number of tasks. In the Synaptic Intelligence work [39], importance weights are com-
puted during training in an online manner. To this end, they record how much the loss
would change due to a change in a specific parameter and accumulate this information
over the training trajectory. However, also this method has some drawbacks: 1) Relying
on the weight changes in a batch gradient descent might overestimate the importance of
the weights, as noted by the authors. 2) When starting from a pretrained network, as in
most practical computer vision applications, some weights might be used without much
changes. As a result, their importance will be underestimated. 3) The computation of
the importance is done during training and fixed later. In contrast, we believe the impor-
tance of the weights should be able to adapt to the test data where the system is actually
applied to. In contrast to the above two methods, we propose to look at the sensitivity of
the learned function, rather than the loss. This simplifies the setup considerably since,
unlike the loss, the learned function is not in a local minimum, so complications with
gradients being close to zero are avoided.

In this work, we propose a model-based method that computes the importance of
the network parameters not only in an online manner but also adaptive to the data that
the network is tested on in an unsupervised manner. While previous works [25, 30]
adapt the learning system at prediction time in a transductive setting, our goal here is to
build a continual system that is able to adapt the importance of the weights to what the
system actually needs to remember. Our method requires a constant amount of memory
and enjoys the main desired characteristics of lifelong learning we listed above while
achieving state-of-the-art performance.

3 Background

Standard LLL setup Before introducing our method, we briefly remind the reader of
the standard LLL setup, as used e.g. in [1, 15, 16, 27, 39]. It focuses on image classifi-

Memory Aware Synapses: Learning what (not) to forget 5

F
X

Y

F

X

Y

X

Y

Importance estimation using unlabelled data T2 TrainingT1 Training

F

(a) (b) (c)

Fig. 2: [39, 11] estimate the parameters importance based on the loss, comparing the network
output (light blue) with the ground truth labels (green) using training data (in yellow) (a). In
contrast, we estimate the parameters importance, after convergence, based on the sensitivity of
the learned function to their changes (b). This allows to use additional unlabeled data points (in
orange). When learning a new task, changes to important parameters are penalized, ensuring the
function is preserved over the domain densely sampled in (b), while adjusting non important
parameters to ensure good performance on the new task (c).

cation and consists of a sequence of disjoint tasks, that are learned one after the other.
Tasks may correspond to different datasets, or different splits of a dataset, without over-
lap in category labels. Crucial to this setup is that, when training a task, only the data
related to that task is accessible. Ideally, newer tasks can benefit from the representa-
tions learned by older tasks (forward transfer). Yet in practice, the biggest challenge
is to avoid catastrophic forgetting of the old tasks’ knowledge (i.e., forgetting how to
perform the old tasks well). This is a far more challenging setup than joint learning, as
typically used in the multitask learning literature, where all tasks are trained simultane-
ously.
Notations We train a single, shared neural network over a sequence of tasks. The
parameters {θij} of the model are the weights of the connections between pairs of
neurons ni and nj in two consecutive layers3. As in other model-based approaches,
our goal is then to compute an importance value Ωij for each parameter θij , indicating
its importance with respect to the previous tasks. In a learning sequence, we receive a
sequence of tasks {Tn} to be learned, each with its training data (Xn, Ŷn), with Xn the
input data and Ŷn the corresponding ground truth output data (labels). Each task comes
with a task-specific loss Ln, that will be combined with an extra loss term to avoid
forgetting. When the training procedure converges to a local minimum, the model has
learned an approximation F of the true function F̄ . F maps a new inputX to the outputs
Y1, ..., Yn for tasks T1...Tn learned so far.

4 Our Approach

In the following, we introduce our approach. Like other model-based approaches [11,
39], we estimate an importance weight for each parameter in the network. Yet in our
case, these importance weights approximate the sensitivity of the learned function to
a parameter change rather than a measure of the (inverse of) parameter uncertainty, as
in [11], or the sensitivity of the loss to a parameter change, as in [39] (see Figure 2).

3 In convolutional layers, parameters are shared by multiple pairs of neurons. For sake of clarity,
yet without loss of generality, we focus here on fully connected layers.

6 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

As it does not depend on the ground truth labels, our approach allows to compute the
importance using any available data (unlabeled) which in turn allows for an adaptation
to user specific settings. In a learning sequence, we start with task T1, training the model
to minimize the task loss L1 on the training data (X1, Ŷ1) – or simply using a pretrained
model for that task.

4.1 Estimating parameter importance

After convergence, the model has learned an approximation F of the true function F̄ .
F maps the inputX1 to the output Y1. This mapping F is the target we want to preserve
while learning additional tasks. To this end, we measure how sensitive the function F
output is to changes in the network parameters. For a given data point xk, the output of
the network is F (xk; θ). A small perturbation δ = {δij} in the parameters θ = {θij}
results in a change in the function output that can be approximated by:

F (xk; θ + δ)− F (xk; θ) ≈
∑
i,j

gij(xk)δij (1)

where gij(xk) = ∂(F (xk;θ))
∂θij

is the gradient of the learned function with respect to the
parameter θij evaluated at the data point xk and δij is the change in parameter θij . Our
goal is to preserve the prediction of the network (the learned function) at each observed
data point and prevent changes to parameters that are crucial for this prediction.

Based on equation 1, we can measure the importance of a parameter by the mag-
nitude of the gradient gij , i.e. how much does a small perturbation to that parameter
change the output of the learned function for data point xk. We then accumulate the
gradients over the given data points to obtain importance weight Ωij for parameter θij :

Ωij =
1

N

N∑
k=1

|| gij(xk) || (2)

This equation can be updated in an online fashion whenever a new data point is fed
to the network. N is the total number of data points at a given phase. Parameters with
small importance weights do not affect the output much, and can therefore be changed
to minimize the loss for subsequent tasks, while parameters with large weights should
ideally be left unchanged.

When the output function F is multi-dimensional, as is the case for most neural
networks, equation 2 involves computing the gradients for each output, which requires
as many backward passes as the dimensionality of the output. As a more efficient alter-
native, we propose to use the gradients of the squared `2 norm of the learned function
output4, i.e. gij(xk) =

∂[`22(F (xk;θ))]
∂θij

. The importance of the parameters is then mea-
sured by the sensitivity of the squared `2 norm of the function output to their changes.
This way, we get one scalar value for each sample instead of a vector output. Hence,

4 We square the `2 norm as it simplifies the math and the link with the Hebbian method, see
section 4.3.

Memory Aware Synapses: Learning what (not) to forget 7

we only need to compute one backward pass and can use the resulting gradients for
estimating the parameters importance.

Using our method, for regions in the input space that are sampled densely, the func-
tion will be preserved and catastrophic forgetting is avoided. However, parameters not
affecting those regions will be given low importance weights, and can be used to opti-
mize the function for other tasks, affecting the function over other regions of the input
space.

4.2 Learning a new task

When a new task Tn needs to be learned, we have in addition to the new task loss
Ln(θ), a regularizer that penalizes changes to parameters that are deemed important for
previous tasks:

L(θ) = Ln(θ) +
λ

2

∑
i,j

Ωij(θij − θ∗ij)2 (3)

with λ a hyperparameter for the regularizer and θ∗ij the “old” network parameters (as
determined by the optimization for the previous task in the sequence, Tn−1). As such
we allow the new task to change parameters that are not important for the previous task
(low Ωij). The important parameters (high Ωij) can also be reused, via model sharing,
but with a penalty when changing them.

Finally, the importance matrix Ω is to be updated after training a new task, by accu-
mulating over the previously computed Ω. Since we don’t use the loss function, Ω can
be computed on any available data considered most representative for test conditions,
be it on the last training epoch, during the validation phase or at test time. In the exper-
imental section 5, we show how this allows our method to adapt and specialize to any
set, be it from the training or from the test.

4.3 Connection to Hebbian learning

F
2

F
1

F
3

F

Fig. 3: Gradients flow for computing
the importance weight. Local consid-
ers the gradients of each layer indepen-
dently.

In this section, we propose a local version of our
method, by applying it to a single layer of the net-
work rather than to the network as a whole. Next,
we show an interesting connection between this
local version and Hebbian learning [10].
A local version of our method Instead of con-
sidering the function F that is learned by the net-
work as a whole, we decompose it in a sequence
of functions Fl each corresponding to one layer of
the network, i.e. F (x) = FL(FL−1(...(F1(x)))),
with L the total number of layers. By locally preserving the output of each layer given
its input, we can preserve the global function F . This is further illustrated in Figure 3.
Note how “local” and “global” in this context relate to the number of layers over which
the gradients are computed.

We use yki to denote the activation of neuron ni for a given input xk. Analogous to
the procedure followed previously, we consider the squared `2 norm of each layer after

8 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

the activation function. An infinitesimal change δl = {δij} in the parameters θl = {θij}
of layer l results in a change to the squared `2 norm of the local function Fl for a given
input to that layer yk = {yki } = Fl−1(...(F1(xk))) given by:

`22(Fl(y
k; θl + δl))− `22(Fl(y

k; θl)) ≈
∑
i,j

gij(xk)δij (4)

where gij(xk) =
∂[`22(Fl(y

k;θl))]
∂θij

. In the case of a ReLU activation function, it can be
shown that (see supplemental material):

gij(xk) = 2 ∗ yki ∗ ykj (5)

Again we consider the accumulation of the gradients evaluated at different data points
{xk} as a measure for the importance of the parameter θij :

Ωij =
1

N

N∑
k=1

gij(xk) = 2 ∗ 1

N

N∑
k=1

yki ∗ ykj (6)

Link with Hebbian theory In neuroscience, Hebbian learning theory [10] provides
an explanation for the phenomenon of synaptic plasticity. It postulates that “cells that
fire together, wire together”: the synapses (connections) between neurons that fire syn-
chronously for a given input are strengthened over time to maintain and possibly im-
prove the corresponding outputs. Here we reconsider this theory from the perspective
of an artificial neural network after it has been trained successfully with backpropa-
gation. Following Hebb’s rule, parameters connecting neurons that often fire together
(high activations for both, i.e. highly correlated outputs) are more important for the
given task than those that fire asynchronously or with low activations. As such, the im-
portance weight Ωij for the parameter θij can be measured purely locally in terms of
the correlation between the neurons’ activations, i.e.

Ωij =
1

N

N∑
k=1

yki ∗ ykj (7)

The similarity with equation 6 is striking. We can conclude that applying Hebb’s rule
to measure the importance of the parameters in a neural network can be seen as a local
variant of our method that considers only one layer at a time instead of the global func-
tion learned by the network. Since only the relative importance weights really matter,
the scale factor 2 can be ignored.

4.4 Discussion

Both our global and local method have the advantage of computing the importance of
the parameters on any given data point without the need to access the labels or the
condition of being computed while training the model. The global version needs to
compute the gradients of the output function while the local variant (Hebbian based) can

Memory Aware Synapses: Learning what (not) to forget 9

be computed locally by multiplying the input with the output of the connecting neurons.
Our proposed method (both the local and global version) resembles an implicit memory
included for each parameter of the network. We therefore refer to it as Memory Aware
Synapses. It keeps updating its value based on the activations of the network when
applied to new data points. It can adapt and specialize to a given subset of data points
rather than preserving every functionality in the network. Further, the method can be
added after the network is trained. It can be applied on top of any pretrained network
and compute the importance on any set of data without the need to have the labels. This
is an important criterion that differentiates our work from methods that rely on the loss
function to compute the importance of the parameters.

5 Experiments

We start by comparing our method to different existing LLL methods in the standard se-
quential learning setup of object recognition tasks. We further analyze the behavior and
some design choices of our method. Next, we move to the more challenging problem
of continual learning of <subject, predicate, object> triplets in an embedding space
(section 5.2).

5.1 Object Recognition

We follow the standard setup commonly used in computer vision to evaluate LLL meth-
ods [1, 16, 37]. It consists of a sequence of supervised classification tasks each from a
particular dataset. Note that this supposes having different classification layers for each
task (different “heads”) that remain unshared. Moreover, an oracle is used at test time
to decide on the task (i.e. which classification layer to use).
Compared Methods - Finetuning (FineTune). After learning the first task and when
receiving a new task to learn, the parameters of the network are finetuned on the new
task data. This baseline is expected to suffer from forgetting the old tasks while being
advantageous for the new task.
- Learning without Forgetting [16] (LwF). Given a new task data, the method records
the probabilities obtained from the previous tasks heads and uses them as targets when
learning a new task in a surrogate loss function. To further control the forgetting, the
method relies on first training the new task head while freezing the shared parameters
as a warmup phase and then training all the parameters until convergence.
- Incremental Moment Matching [15] (IMM). A new task is learned with an L2 penalty
equally applied to the changes to the shared parameters. At the end of the sequence, the
obtained models are merged through a first or second moment matching. In our exper-
iments, mean IMM gives better results on the two tasks experiments while mode IMM
wins on the longer sequence. Thus, we report the best alternative in each experiment.
- Synaptic Intelligence [39] (SI). This method shows state-of-the-art performance and
comes closest to our approach. It estimates the importance weights in an online manner
while training for a new task. Similar to our method changes to parameters important
for previous tasks are penalized during training of later tasks.

10 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

Method Birds → Scenes Scenes → Birds Flower → Birds Flower → Scenes
FineTune 45.20 (-8.0) 57.8 49.7 (-9.3) 52.8 64.87 (-13.2) 53.8 70.17 (-7.9) 57.31
LwF [16] 51.65 (-2.0) 55.59 55.89 (-3.1) 49.46 73.97 (-4.1) 53.64 76.20 (-1.2) 58.05
EBLL [37] 52.79 (-0.8) 55.67 56.34 (-2.7) 49.41 75.45 (-2.6) 50.51 76.20 (-1.2) 58.35
IMM [15] 51.15 (-2.1) 52.62 54.76 (-4.2) 52.20 75.68 (-2.4) 48.32 76.28 (-1.8) 55.64
EWC [11] 52.19 (-1.4) 55.74 58.28 (-0.8) 49.65 76.46 (-1.6) 50.7 77.0 (-1.1) 57.53
SI [39] 52.64 (-1.0) 55.89 57.46 (-1.5) 49.70 75.19 (-2.9) 51.20 76.61 (-1.5) 57.53
MAS (ours) 53.24 (-0.4) 55.0 57.61 (-1.4) 49.62 77.33 (-0.7) 50.39 77.24 (-0.8) 57.38
MAS-GaB 53.40 (-0.2) 63.13 58.64 (-0.4) 50.34 77.16 (-0.9) 51.49 77.41 (-0.7) 59.10

Table 2: Classification accuracy (%), drop in first task (%)for various sequences of 2 tasks using
the object recognition setup.

- Memory Aware Synapses (MAS). Unless stated otherwise, we use the global version
of our method and with the importance weights estimated only on training data. We use
a regularization parameter λ of 1; note that no tuning of λ was performed as we assume
no access to previous task data.
Experimental setup We use the AlexNet [14] architecture pretrained on Imagenet [31]
from [13]5. All the training of the different tasks have been done with stochastic gra-
dient descent for 100 epochs and a batch size of 200 using the same learning rate as
in [1]. Performance is measured in terms of classification accuracy.

Two tasks experiments We first consider sequences of two tasks based on three
datasets: MIT Scenes [26] for indoor scene classification (5,360 samples), Caltech-
UCSD Birds [38] for fine-grained bird classification (5,994 samples), and Oxford Flow-
ers [22] for fine-grained flower classification (2,040 samples). We consider: Scene →
Birds, Birds→ Scenes, Flower→Scenes and Flower→ Birds, as used previously in [1,
16, 37]. We didn’t consider Imagenet as a task in the sequence as this would require
retraining the network from scratch to get the importance weights for SI. As shown in
Table 2, FineTune clearly suffers from catastrophic forgetting with a drop in perfor-
mance from 8% to 13%. All the considered methods manage to reduce the forgetting
over fine-tuning significantly while having performance close to fine-tuning on the new
task. On average, our method followed by SI has the least forgetting (around 1%) while
performance on the new task is almost similar (0− 3% lower).
Local vs. global MAS on training/test data Next we analyze the performance of
our method when preserving the global function learned by the network after each task
(MAS) and its local Hebbian-inspired variant described in section 4.3 (l-MAS). We also
evaluate our methods, MAS and l-MAS, when using unlabeled test data and/or labeled
training data. Table 3 shows, independent from the set used for computing the impor-
tance of the weights, for both l-MAS and MAS the preservation of the previous task and
the performance on the current task are quite similar. This illustrates our method ability
to estimate the parameters importance of a given task given any set of points, with-
out the need of labeled data. Further, computing the gradients locally at each layer for
l-MAS allows for faster computations but less accurate estimations. As such, l-MAS
shows an average forgetting of 3% compared to 1% by MAS.

5 We use the pretrained model available in Pytorch. Note that it differs slightly from other im-
plementations used e.g. in [16].

Memory Aware Synapses: Learning what (not) to forget 11

Method Ωij computed on Birds → Scenes Scenes → Birds Flower → Bird Flower → Scenes
MAS Train 53.24 55.0 57.61 49.62 77.33 50.39 77.24 57.38
MAS Test 53.43 55.07 57.31 49.01 77.62 50.29 77.45 57.45
MAS Train and Test 53.29 56.04 57.83 49.56 77.52 49.70 77.54 57.39
l-MAS Train 51.36 55.67 57.61 49.86 73.96 50.5 76.20 56.68
l-MAS Test 51.62 53.95 55.74 50.43 74.48 50.32 76.56 57.83
l-MAS Train and Test 52.15 54.40 56.79 48.92 73.73 50.5 76.41 57.91
Table 3: Classification accuracies (%) for the object recognition setup - comparison between
using Train and Test data (unlabeled) to compute the parameter importance Ωij .

`22 vs. vector output We explained in section 4 that considering the gradients of the
learned function to estimate the parameters importance would require as many back-
ward passes as the length of the output vector. To avoid this complexity, we suggest to
use the square of the `2 norm of the function in order to get a scalar output. We run two
experiments, Flower→Scenes and Flower→ Birds once with computing the gradients
with respect to the vector output and once with respect to the `22 norm. We observe no
significant difference on forgetting over 3 random trials where we get a mean, over 6
numbers, of (0.51%± 0.19) for the drop on the first task in the vector output case com-
pared to (0.47%± 0.12) for the `22 norm case. No significant difference is observed on
the second task either. As such, using `22 is n times faster (where n is the length of the
output vector) without loss in performance.
Longer Sequence

Flower Scenes Birds Cars Aircraft Actions Letters SVHN avg
0

20

40

60

80

Ac
cu

ra
cy

 %

MAS (52.69)
SI (50.49)
LwF (49.49)
IMM (43.41)
Finetune (32.67)

(a)

Flower Scenes Birds Cars Aircraft ActionsLetters SVHN avg
20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Pe
rfo

rm
an

ce
 d

ro
p

%

MAS (-0.49)
SI (-1.27)
LwF (-8.47)
IMM (-13.89)
Finetune (-26.29)

(b)
Fig. 4: 4a performance on each task, in accuracy, at the end of 8 tasks object recognition se-
quence. 4b drop in each task relative to the performance achieved after training each task.

FlowerScenes Birds Cars AircraftActionsLetters SVHN

500

1000

1500

2000

2500

3000

3500

To
ta

l M
em

or
y

Re
qu

ire
m

en
t (

M
b)

 MAS
SI
LwF
IMM
Finetune

Fig. 5: Overall memory requirement
for each method at each step of the se-
quence.

While the two tasks setup gives a detailed look at
the average expected forgetting when learning a
new task, it remains easy. Thus, we next consider
a sequence of 8 tasks. To do so, we add five more
datasets: Stanford Cars [12] for fine-grained car
classification; FGVC-Aircraft [18] for fine-
grained aircraft classification; VOC Actions,
the human action classification subset of the VOC
challenge 2012 [5]; Letters, the Chars74K
dataset [3] for character recognition in natural im-

12 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

ages; and the Google Street View House Numbers
SVHN dataset [21] for digit recognition.
Those datasets were also used in [1]. We run the different methods on the following
sequence: Flower→Scenes→Birds→Cars→Aircraft→Actions→Letters→SVHN.
While Figure 4a shows the performance on each task at the end of the sequence, 4b
shows the observed forgetting on each task at the end of the sequence (relative to the
performance right after training that task). The differences between the compared meth-
ods become more outspoken. Finetuning suffers from a severe forgetting on the
previous tasks while being advantageous for the last task, as expected. LwF [16] suffers
from a buildup of errors when facing a long sequence. IMM [15] merges the models
at the end of the sequence and the drop in performance differs between tasks. More
importantly, the method performance on the last task is highly affected by the moment
matching. SI [39] has the least forgetting among our methods competitors. MAS, our
method, shows a minimal or no forgetting on the different tasks in the sequence with an
average forgetting of 0.49%. It is worth noting that our method’s absolute performance
on average including the last task is 2% better than SI which indicates our method
ability to accurately estimate the importance weights and the new tasks to adjust ac-
cordingly. Apart from evaluating forgetting, we analyze the memory requirements of
each of the compared methods. Figure 5 illustrates the memory usage of each method
at each learning step in the sequence. After Finetune that doesn’t treat forgetting, our
method has the least amount of memory consumption. Note that IMM grows linearly in
storage but at inference time it only uses the obtained model. More details on memory
requirements and absolute performances, in numbers, achieved by each method can be
found in the supplemental material.
Adaptation Test As we have previously explained, MAS has the ability to adapt
the importance weights to a specific subset that has been encountered at test
time in an unsupervised and online manner.To test this claim, we have selected
one class from the Flower dataset, Krishna Kamal flower. We learn the 8
tasks sequence as above while assuming Krishna Kamal as the only encoun-
tered class. Hence, importance weights are computed on that subset only. At the
end of the sequence, we observe a minimal forgetting on that subset of 2% com-
pared to 8% forgetting on the Flower dataset as a whole. We also observe higher
accuracies on later tasks as only changes to important parameters for that class
are penalized, leaving more free capacity for remaining tasks (e.g. accuracy of
84% on the last task, instead of 69% without adaptation). We repeat the experi-
ment with two other classes and obtain similar results. This clearly indicates our
method ability to adapt to user specific settings and to learn what (not) to forget.

0.0 0.5 1.0 1.5
89

90

91

92

93

94

95

96

97

av
er

ag
e

ac
cu

ra
cy

%

MAS
Finetune

0.0 0.5 1.0 1.5
0

2

4

6

8

10

av
er

ag
e

fo
rg

et
tin

g%

MAS
Finetune

Fig. 6: avg. performance, left, and
avg. forgetting, right, on permuted
mnist sequence.

Single domain / No use of oracle (R1). Here we
also test a sequence of 5 permuted MNIST tasks
with a 2 layer perceptron (512 units) where the
head is shared among the different tasks, i.e. with-
out an oracle. Figure 6 shows the avg. perfor-
mance and avg. forgetting at the end of the se-
quence for different values of λ. Alternatively,

Memory Aware Synapses: Learning what (not) to forget 13

methods like Expert Gate [1] could be used at test
time to infer which head to use.

Sensitivity of λ in Eqn. 3. Lambda is a tradeoff
between the allowed forgetting and the new task loss. We set λ to the largest value that
allows an acceptable performance on the new task. For MAS, we used λ = 1 in all
object recognition experiments while for SI and EWC we had to vary λ. Figure 6 shows
the effect of λ on the avg. performance and the avg. forgetting in a permuted MNIST
sequence. We see the sensitivity around λ = 1 is very low with low forgetting, although
further improvements could be achieved.

5.2 Facts Learning

Next, we move to a more challenging setup where all the layers of the network are
shared, including the last layer. Instead of learning a classifier, we learn an embedding
space. For this setup, we pick the problem of Fact Learning from natural images [4].
For example, a fact could be “person eating pizza”. We design different experimental
settings to show the ability of our method to learn what (not) to forget.
Experimental setup We use the 6DS mid scale dataset presented in [4]. It consists of
28, 624 images, divided equally in training and test samples belonging to 186 unique
facts. Facts are structured into 3 units: Subject (S), Object (O) and Predicate (P).We
use a CNN model based on the VGG-16 architecture [35] pretrained on ImageNet. The
last fully connected layer forks in three final layers enabling the model to have three
separated and structured outputs for Subject, Predicate and Object as in [4]. The loss
minimizes the pairwise distance between the visual and the language embedding. For
the language embedding, the Word2vec [20] representation of the fact units is used. To
study fact learning from a lifelong perspective, we divided the dataset in tasks belonging
to different groups of facts. SGD optimizer is used with a mini-batch of size 35 for
300 epochs and we use a λ = 5 for our method. For evaluation, we report the fact to
image retrieval scenario. We follow the evaluation protocol proposed in [4] and report
the mean average precision (MAP). For each task, we consider retrieving the images
belonging to facts from this task only. We also report the mean average precision on the
whole dataset which differs from the average of the performance achieved on each task.
More details can be found in the supplemental materials. We focus on the comparison
between the local l-MAS and global MAS variants of our method and SI [39], the best
performing method among the different competitors as shown in sec 5.1. Also, to the
best of our knowledge, it is the only LLL method that can be easily integrated in such a
continual learning scenario.
Two tasks experiments We start by randomly splitting the facts into two groups result-
ing in two tasks, T1 and T2. Our simple sequence is then: T1 → T2. Table 4 shows the
performance of each task at the end of the sequence. For the two variants of our method,
we show the performance achieved while using training data for computingΩ (i.e. sim-
ilar setup as in SI). It is clear that this is a much harder task where Finetuning suffers
badly from forgetting. The LLL methods manage to control the forgetting but the per-
formance on the second task is lower than with Finetuning. l-MAS achieves 0.264 on

14 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

Method evaluated on
Method T1 T2 all
FineTune 0.199 0.57 0.279
SI [39] 0.279 0.462 0.285
l-MAS 0.264 0.466 0.278
MAS 0.306 0.504 0.290

Table 4: MAP for the fact learning on
the two tasks scenario of a 6DS dataset
random split, at the end of the sequence.

Ωij Method evaluated on
Method comp. on T1 T2 T3 T4 all
Finetune – 0.19 0.19 0.28 0.71 0.18
SI[39] Train 0.36 0.32 0.38 0.68 0.25
MAS Train 0.42 0.37 0.41 0.65 0.29
MAS Train&Test 0.43 0.37 0.46 0.66 0.30
Table 5: MAP for the fact learning on the 4 tasks
random split, from the 6DS dataset, at the end of the
sequence.

the first task, which is slightly lower than the 0.279 obtained by SI. MAS scores the best
on T1 with 0.306.

Longer sequence of tasks Next, we consider a sequence of 4 tasks obtained of ran-
domly splitting the facts of the same dataset into 4 groups. Table 5 presents the achieved
performance on each set of the 4 tasks at the end of the learned sequence. Similar to pre-
vious experiments, Finetune is only advantageous on the last task while drastically
suffering on the previous tasks. However, here, our method differentiates itself clearly,
showing 6% better MAP on the first two tasks compared to SI. Overall, MAS achieves
a MAP of 0.29 compared to 0.25 by SI and only 0.18 by Finetune. When MAS im-
portance weights are computed on both training and test data, a further improvement is
achieved with 0.30 overall performance. This highlights our method ability to benefit
from extra unlabeled data to further enhance the importance estimation.
Adaptation Test

T1 T2 T3 T4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
or

ts
 su

bs
et

 M
AP

MAS
Finetune
SI
Joint Training

Fig. 7: MAP on the sport subset of
the 6DS dataset after each task in a 4
tasks sequence. MAS managed to learn
that the sport subset is important to
preserve and prevents significantly the
forgetting on this subset.

Finally we want to test the ability of our method
in learning not to forget a specific subset of a task.
When learning a new task, we care about the per-
formance on that specific set more than the rest.
For that reason, we clustered the dataset into 4
disjoint groups of facts, representing 4 tasks, and
then selected a specialized subset of T1, namely
7 facts of person playing sports. More details on
the split can be found in the supplemental mate-
rial. We run our method with the importance pa-
rameters computed only over the examples from
this set along the 4 tasks sequence. Figure 7 shows
the achieved performance on this sport subset by
each method at each step of the learning sequence.
Joint Training (black dashed) is shown as reference. It violates the LLL setting as it
trains on all data jointly. Note that SI can only learn importance weights during train-
ing, and therefore cannot adapt to a particular subset. Our MAS (pink) succeeds to learn
that this set is important to preserve and achieves a performance of 0.50 at the end of
the sequence, while the performance of finetuning and SI on this set was close to 0.20.

Memory Aware Synapses: Learning what (not) to forget 15

6 Conclusion

In this paper we argued that, given a limited model capacity and unlimited evolving
tasks, it is not possible to preserve all the previous knowledge. Instead, agents should
learn what (not) to forget. Forgetting should relate to the rate in which a specific piece
of knowledge is used. This is similar to how biological systems are learning. In the
absence of error signals, synapses connecting biological neurons strengthen or weaken
based on the concurrence of the connected neurons activations. In this work and inspired
by the synaptic plasticity, we proposed a method that is able to learn the importance of
network parameters from the input data that the system is active on, in an unsupervised
manner. We showed that a local variant of our method can be seen as an application of
Hebb’s rule in learning the importance of parameters. We first tested our method on a
sequence of object recognition problems in a traditional LLL setting. We then moved to
a more challenging test case where we learn facts from images in a continuous manner.
We showed i) the ability of our method to better learn the importance of the parameters
using training data, test data or both; ii) state-of-the-art performance on all the designed
experiments and iii) the ability of our method to adapt the importance of the parameters
towards a frequent set of data. We believe that this is a step forward in developing
systems that can always learn and adapt in a flexible manner.

References

1. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: Lifelong learning with a network of
experts. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

2. Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M.W., Pfau, D., Schaul, T., de Freitas,
N.: Learning to learn by gradient descent by gradient descent. In: Lee, D.D., Sugiyama,
M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 29, pp. 3981–3989. Curran Associates, Inc. (2016)

3. de Campos, T.E., Babu, B.R., Varma, M.: Character recognition in natural images. In: Pro-
ceedings of the International Conference on Computer Vision Theory and Applications, Lis-
bon, Portugal (February 2009)

4. Elhoseiny, M., Cohen, S., Chang, W., Price, B.L., Elgammal, A.M.: Sherlock: Scalable fact
learning in images. In: AAAI. pp. 4016–4024 (2017)

5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html

6. Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A.A., Pritzel, A., Wierstra,
D.: Pathnet: Evolution channels gradient descent in super neural networks. arXiv preprint
arXiv:1701.08734 (2017)

7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep
networks. In: Proceedings of the International Conference on Machine Learning (ICML)
(2017)

8. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cognitive sci-
ences 3(4), 128–135 (1999)

9. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211
(2013)

16 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

10. Hebb, D.: The organization of behavior. 1949. New York Wiely (2002)
11. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan,

K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting
in neural networks. arXiv preprint arXiv:1612.00796 (2016)

12. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-grained catego-
rization. In: Proceedings of the IEEE International Conference on Computer Vision Work-
shops. pp. 554–561 (2013)

13. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997 (2014)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Ad-
vances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates,
Inc. (2012)

15. Lee, S.W., Kim, J.H., Ha, J.W., Zhang, B.T.: Overcoming catastrophic forgetting by incre-
mental moment matching. arXiv preprint arXiv:1703.08475 (2017)

16. Li, Z., Hoiem, D.: Learning without forgetting. In: European Conference on Computer Vi-
sion. pp. 614–629. Springer (2016)

17. Lopez-Paz, D., et al.: Gradient episodic memory for continual learning. In: Advances in
Neural Information Processing Systems. pp. 6470–6479 (2017)

18. Maji, S., Kannala, J., Rahtu, E., Blaschko, M., Vedaldi, A.: Fine-grained visual classification
of aircraft. Tech. rep. (2013)

19. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The se-
quential learning problem. Psychology of learning and motivation 24, 109–165 (1989)

20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

21. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural
images with unsupervised feature learning (2011)

22. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of
classes. In: Proceedings of the Indian Conference on Computer Vision, Graphics and Im-
age Processing (Dec 2008)

23. Pentina, A., Lampert, C.H.: Lifelong learning with non-i.i.d. tasks. In: Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems 28, pp. 1540–1548 (2015)

24. Pentina, A., Lampert, C.H.: Lifelong learning with non-iid tasks. In: Advances in Neural
Information Processing Systems. pp. 1540–1548 (2015)

25. Quadrianto, N., Petterson, J., Smola, A.J.: Distribution matching for transduction. In: Ad-
vances in Neural Information Processing Systems. pp. 1500–1508 (2009)

26. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 413–420. IEEE (2009)

27. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
1320–1328 (2017)

28. Rebuffi, S.A., Kolesnikov, A., Lampert, C.H.: icarl: Incremental classifier and representation
learning. arXiv preprint arXiv:1611.07725 (2016)

29. Ring, M.B.: Child: A first step towards continual learning. Machine Learning 28(1), 77–104
(1997)

30. Royer, A., Lampert, C.H.: Classifier adaptation at prediction time. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 1401–1409 (2015)

Memory Aware Synapses: Learning what (not) to forget 17

31. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision (IJCV) 115(3), 211–252 (2015).
https://doi.org/10.1007/s11263-015-0816-y

32. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K.,
Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv preprint arXiv:1606.04671
(2016)

33. Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors without
catastrophic forgetting. In: The IEEE International Conference on Computer Vision (ICCV)
(2017)

34. Silver, D.L., Yang, Q., Li, L.: Lifelong machine learning systems: Beyond learning al-
gorithms. In: AAAI Spring Symposium: Lifelong Machine Learning. pp. 49–55. Citeseer
(2013)

35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556 (2014)

36. Thrun, S., Mitchell, T.M.: Lifelong robot learning. Robotics and autonomous systems 15(1-
2), 25–46 (1995)

37. Triki, A.R., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning.
arXiv preprint arXiv:1704.01920 (2017)

38. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-
UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of Technology (2010)

39. Zenke, F., Poole, B., Ganguli, S.: Improved multitask learning through synaptic intelligence.
In: Proceedings of the International Conference on Machine Learning (ICML) (2017)

