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Abstract

This paper considers the problem of inferring image la-
bels from images when only a few annotated examples are
available at training time. This setup is often referred to
as low-shot learning, where a standard approach is to re-
train the last few layers of a convolutional neural network
learned on separate classes for which training examples are
abundant. We consider a semi-supervised setting based on
a large collection of images to support label propagation.
This is possible by leveraging the recent advances on large-
scale similarity graph construction.

We show that despite its conceptual simplicity, scaling
label propagation up to hundred millions of images leads to
state of the art accuracy in the low-shot learning regime.

1. Introduction

Large, diverse collections of images are now common-
place; these often contain a “long tail” of visual concepts.
Some concepts like “person” or “cat” appear in many im-
ages, but the vast majority of the visual classes do not occur
frequently. Even though the total number of images may
be large, it is hard to collect enough labeled data for most
of the visual concepts. Thus if we want to learn them, we
must do so with few labeled examples. This task is named
low-shot learning in the literature.

In order to learn new classes with little supervision, a
standard approach is to leverage classifiers already learned
for the most frequent classes, employing a so-called trans-
fer learning strategy. For instance, for new classes with few
labels, only the few last layers of a convolutional neural net-
work are re-trained. This limits the number of parameters
that need to be learned and limits over-fitting.

In this paper, we consider the low-shot learning prob-
lem described above, where the goal is to learn to detect
new visual classes with only a few annotated images per
class, but we also assume that we have many unlabelled im-
ages. This is called semi-supervised learning [39, 37] (con-
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Figure 1. The diffusion setup. The arrows indicate the direction
of diffusion. There is no diffusion performed from the test im-
ages. For the rest of the graph, the edges are bidirectional (i.e., the
graph matrix is symmetric). Except when mentioned otherwise,
the edges have no weights.

sidered, e.g., for face annotation [14]). The motivation of
this work is threefold. First we want to show that with mod-
ern computational tools, classical semi-supervised learning
methods scale gracefully to hundreds of millions of unla-
beled points. A limiting factor in previous evaluations was
that constructing the similarity graph supporting the diffu-
sion was slow. This is no longer a bottleneck: thanks to
advances both in computing architectures and algorithms,
one can routinely compute the similarity graph for 100 mil-
lions images in a few hours [21]. Second, we want to an-
swer the question: Does a very large number of images help
for semi-supervised learning? Finally, by comparing the
results of these methods on Imagenet and the YFCC100M
dataset [33], we highlight how these methods exhibit some
artificial aspects of Imagenet that can influence the perfor-
mance of low shot learning algorithms.

In summary, the contribution of our paper is a study of
semi-supervised learning in the scenario where we have a
very large number of unlabeled images. Our main results
are that in this setting, semi-supervised learning leads to
state of the art low-shot learning performance. In more de-
tail, we make the following contributions:

• We carry out a large-scale evaluation for diffusion
methods for semi-supervised learning and compare
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it to recent low-shot learning papers. Our experi-
ments are all carried out on the public benchmark Im-
agenet [11] and the YFC100M dataset [33].

• We show that our approach is efficient and that the dif-
fusion process scales up to hundreds of millions of im-
ages, which is order(s) of magnitude larger than what
we are aware in the literature on image-based diffu-
sion [19, 18]. This is made possible by leveraging the
recent state of the art for efficient k-nearest neighbor
graph construction [21].

• We evaluate several variants and hypotheses involved
in diffusion methods, such as using class frequency
priors [38]. This scenario is realistic in situations
where this statistic is known a priori. We propose a
simple way to estimate it without this prior knowl-
edge, and extend this assumption to a multiclass set-
ting by introducing a probabilistic projection step de-
rived from Sinkhorn-Knopp algorithm.

• Our experimental study shows that a simple propaga-
tion process significantly outperforms some state-of-
the-art approaches in low-shot visual learning when (i)
the number of annotated images per class is small and
when (ii) the number of unlabeled images is large or
the unlabeled images come form the same domain as
the test images.

This paper is organized as follows. Section 2 reviews
related works and Section 3 describes the label propagation
methods. The experimental study is presented in Section 4.
Our conclusion in section 5 summarizes our findings.

2. Related work

Low-shot learning Recently there has been a renewed in-
terest for low-shot learning, i.e., learning with few exam-
ples thanks to prior statistics on other classes. Such works
include metric learning [26], learning kNN [35], regular-
ization and feature hallucination [16] or predicting param-
eters of the network [5]. Ravi and Larochelle introduce a
meta-learner to learn the optimization parameters invovled
in the low-shot learning regime [30]. Most of the works
consider small datasets like Omniglot, CIFAR, or a small
subset of Imagenet. In our paper we will focus solely on
large datasets, in particular the Imagenet collection [31] as-
sociated with the ILSVRC challenge.

Diffusion methods We refer the reader to [3, 12] for a
review of diffusion processes and matrix normalization op-
tions. Such methods are an efficient way of clustering im-
ages given a matrix of input similarity, or a kNN graph, and
have been successfully used in a semi-supervised discovery

setup [14]. They share some connections with spectral clus-
tering [6]. In [29], a kNN graph is clustered with spectral
clustering, which amounts to computing the k eigenvectors
associated with the k largest eigenvalues of the graph, and
clustering these eigenvectors. Since the eigenvalues are ob-
tained via Lanczos iterations [15, Chapter 10], the basic op-
eration is similar to a diffusion process. This is also related
to power iteration clustering [25], as in the work of Cho et
al. [8] to find clusters.

Semi-supervised learning The kNN graph can be used
for transductive and semi-supervised learning (see e.g.[3,
39] for an introduction). In transductive learning, a rela-
tively small number of labels are used to augment a large
set of unlabeled data and the goal is to extend the labeling
to the unlabeled data (which is given at train time). Semi-
supervised learning is similar, except there may be a sepa-
rate set of test points that are not seen at train time. In our
work, we consider the simple proposal of Zhu et al. [38],
where powers of the (normalized) kNN graph are used to
find smooth functions on the kNN graph with desired val-
ues at the labeled points. There exist many variations on the
algorithms, e.g., Zhou et al. [37] weight the edges based on
distances and introduce a loss trading a classification fitting
constraint and a smoothness term enforcing consistency of
neighboring nodes.

Label propagation is a transductive method. In order to
evaluate on new data, we need to extend the smooth func-
tions out of the training data. While deep networks have
been used before for out of sample extension, e.g., in [7]
and [20], in the speech domain, in this work, we use a
weighted sum of nearest neighbors from the (perhaps un-
labeled) training data [4].

Efficient kNN-graph construction The diffusion meth-
ods use a matrix as input containing the similarity between
all images of the dataset. Considering N images, e.g.,
N = 108, it is not possible to store a matrix of size N2.
However most of the image pairs are not related and have a
similarity close to 0. Therefore diffusion methods are usu-
ally implemented with sparse matrices. This means that we
compute a graph connecting each image to its neighbors, as
determined by the similarity metric between image repre-
sentations. In particular, we consider the k-nearest neigh-
bor graph (kNN-graph) over a set of vectors. Several ap-
proximate algorithms [10, 23, 1, 17] have been proposed to
efficiently produce the kNN graph used as input of itera-
tive/diffusion methods, since this operation is of quadratic
complexity in the number of images. In this paper, we em-
ploy the Faiss library,which was shown capable to construct
a graph connecting up to 1 billion vectors [21].



3. Propagating labels

This section describes the initial stage of our proposal,
which estimates the class of the unlabelled images with a
diffusion process. It includes an image description step, the
construction of a kNN graph connecting similar images, and
a label diffusion algorithm.

3.1. Image description

A meaningful semantic image representation and an as-
sociated metric is required to match instances of classes that
have not been seen beforehand. While early works on semi-
supervised labelling [14] were using ad-hoc semantic global
descriptors like GIST [27], we extract activation maps from
a CNN trained on images from a set of base classes that are
independent from the novel classes on which the evaluation
is performed. See the experimental section for more details
about the training process for descriptors.

The mean class classifier introduced for low-shot learn-
ing [26] is another way to perform dimensionality reduc-
tion while improving accuracy thanks to a better compari-
son metric. We do not consider this approach since it can
be seen as part of the descriptor learning.

3.2. Affinity matrix: approximate kNN graph

As discussed in the related work, most diffusion pro-
cesses use as input the kNN graph representing the N ×N
sparse similarity matrix, denoted by W, which connects
the N images of the collection. We build this graph us-
ing approximate k-nearest neighbor search. Thanks to re-
cent advances in efficient similarity search [10, 21], trading
some accuracy against efficiency drastically improves the
graph construction time. As an example, with the FAISS
library [21], building the graph associated with 600k im-
ages takes 2 minutes on 1 GPU. In our preliminary experi-
ments, the approximation in the knn-graph does not induce
any sub-optimality, possibly because the diffusion process
compensates the artifacts induced by the approximation.

Different strategies exist to set the weights of the affin-
ity matrix W. We choose to search the k nearest neighbors
of each image, and set a 1 for each of the neighbors in the
corresponding row of a sparse matrix W0. Then we sym-
metrize the matrix by adding it to its transpose. We subse-
quently `1-normalize the rows to produce a sparse stochas-
tic matrix: W = D−1(W>

0 + W0), with D the diagonal
matrix of row sums.

The handling for the test points is different: test points
do not participate in label propagation because we classify
each of them independently of the others. Therefore, there
are no outgoing edges on test points; they only get incoming
edges from their k nearest neighbors.

3.3. Label propagation

We now give details about the diffusion process itself,
which is summarized in Figure 1. We build on the straight-
forward label propagation algorithm of [38]. The set of
images on which we perform diffusion is composed of nL
labelled seed images and nB unlabelled background images
(N = nL+nB). Define theN×C matrix L, whereC is the
number of classes for which we want to diffuse the labels,
i.e., the new classes not seen in the training set. Each row
li in L is associated with a given image, and represents the
probabilities of each class for that image. A given column
corresponds to a given class, and gives its probabilities for
each image. The method initializes li to a one-hot vector for
the seeds. Background images are initialized with 0 proba-
bilities for all classes. Diffusing from the known labels, the
method iterates as Lt+1 = WLt.

We can optionally reset the L rows corresponding to
seeds to their 1-hot ground-truth at each iteration. When
iterating to convergence, all li would eventually converge
to the eigenvector of W with largest eigenvalue (when not
resetting), or to the harmonic function with respect to W
with boundary conditions given by the seeds (when reset-
ting). Empirically, for low-shot learning, we observe that
resetting is detrimental to accuracy. Early stopping per-
forms better in both cases, so we cross-validate the number
of diffusion iterations.

Classification decision & combination with logistic re-
gression We predict the class of a test example i as the
the column that maximizes the score li. Similar to Zhou
et al. [37], we have also optimized a loss balancing the fit-
ting constraint with the diffusion smoothing term. However
we found that a simple late fusion (weighted mean of log-
probabilities, parametrized by a single cross-validated co-
efficient) of the scores produced by diffusion and logistic
regression achieves better results.

3.4. Variations

Using priors The label propagation can take into account
several priors depending on the assumptions of the problem,
which are integrated by defining a normalization operator η
and by modifying the update equation as

Lt+1 = η(WLt). (1)

Multiclass assumption. For instance, in the ILSVRC chal-
lenge built upon the Imagenet dataset [31], there is only one
label per class, therefore we can define η as a function that
`1-normalizes each row to provide a distribution over la-
bels (by convention the normalization leaves all-0 vectors
unchanged).

Class frequency priors. Additionally, we point out that la-
bels are evenly distributed in Imagenet. If we translate this



setup to our semi-unsupervised setting, it would mean that
we may assume that the distribution of the unlabelled im-
ages is uniform over labels. This assumption can be taken
into account by defining η as the function performing a `1
normalization of columns of L.

While one could argue that this is not realistic in gen-
eral, a more realistic scenario is to consider that we know
the marginal distribution of the labels, as proposed by Zhu
et al. [38], who show that the prior can be simply enforced
(i.e., apply column-wise normalization to L and multiply
each column by the prior class probability). This arises in
situations such as tag prediction, if we can empirically mea-
sure the relative probabilities of tags, possibly regularized
for lowest values.

Combined Multiclass assumption and class frequency pri-
ors. We propose a variant way to use both a multiclass
setting and prior class probabilities by enforcing the matrix
L to jointly satisfy the following properties:

L1C = 1N 1>NL ∝ pC (2)

where pC is the prior distribution over labels. For this pur-
pose, we adopt a strategy similar to that of Cuturi [9] in
his work on optimal transport, in which he shows that the
Sinkhorn-Knopp algorithm [32] provides an efficient and
theoretically grounded way to project a matrix so that it sat-
isfies such marginals. The Sinkhorn-Knopp algorithm iter-
ates by alternately enforcing the marginal conditions, as

L← L diag(L1C)−1diag(pC) (3)

L← diag(1>NL)−1L (4)

until convergence. Here we assume that the algorithm only
operates on rows and columns whose sum is strictly posi-
tive. As discussed by Knight [24], the convergence of this
algorithm is fast. Therefore we stop after 5 iterations. This
projection is performed after each update by Eqn. 1. Note
that Zhu et al. [38] solely considered the second constraint
in Eqn. 2, which can be obtained by enforcing the prior, as
discussed by Bengio et al.[3]. We evaluate both variants in
the experimental section 4.

Non-linear updates. The Markov Clustering (MCL) [13]
is another diffusion algorithm with nonlinear updates orig-
inally proposed for clustering. In contrast to the previous
algorithm, MCL iterates directly over the similarity matrix
as

W′
t ←Wt ·Wt Wt+1 ← Γr(W

′
t), (5)

where Γr is an element-wise raising to power r of the ma-
trix, followed by a column-wise normalization [13]. The
power r ∈ (1, 2] is a bandwidth parameter: when r is high,
small edges quickly vanish along the iterations. A smaller

r preserves the edges longer. The clustering is performed
by extracting connected components from the final matrix.
In Section 4 we evaluate the role of the non-linear update
of MCL by introducing the Γr non-linearity in the diffu-
sion procedure. More precisely, we modify Equation 1 as
Lt+1 = Γr (η(WLt)) .

3.5. Complexity

For the complexity evaluation, we distinguish two
stages. In the off-line stage, (i) the CNN is trained on
the base classes, (ii) descriptors are extracted for the back-
ground images, and (iii) a knn-graph is computed for the
background images. In the on-line stage, we receive train-
ing and test images from novel classes, (i) compute features
for them, (ii) complement the knn-graph matrix to include
the training and test images, and (iii) perform the diffusion
iterations. Here we assume that the N × N graph matrix
W0 is decomposed in four blocks

W0 =

[
WLL WLB

WBL WBB

]
∈ {0, 1}(nL+nB)×(nL+nB) (6)

The largest matrix WBB ∈ {0, 1}nB×nB is computed off-
line. On-line we compute the three other matrices. We com-
bine WBL and WBB by merging similarity search result
lists, hence each row of W0 contains exactly k non-zero
values, requiring to store the distances along with WBB.

We are mostly interested in the complexity of the on-
line phase. Therefore we exclude the descriptor extraction,
which is independent of the classification complexity, and
the complexity of handling the test images, which is negli-
gible compared to the training operations. We consider the
logistic regression as a baseline for the complexity compar-
ison:

Logistic regression the SGD training entails O(Ilogreg ×
B×C× d) multiply-adds, with d denotes the descrip-
tor dimensionality and C the number of classes. The
number of iterations and batch size are Ilogreg and B.

Diffusion the complexity is decomposed into: comput-
ing the matrices WLL, WLB and WBL, which in-
volves O(d × nL × nB) multiply-adds using brute-
force distance computations; and performing Idif it-
erations of sparse-dense matrix multiplications, which
incursO(k×N×C×Idif) multiply-adds (note, sparse
matrix operations are more limited by irregular mem-
ory access patterns than arithmetic operations). There-
fore the diffusion complexity is linear in the number
of background images nB. See the supplemental for
more details.

Memory usage. One important bottleneck of the algo-
rithm is its memory usage. The sparse matrix W0 occu-
pies 8Nk bytes in RAM, and W almost twice this amount,



because most nearest neighbors are not reciprocal; the L
matrix is 4CN bytes. Fortunately, the iterations can be per-
formed one column of L at a time, reducing this to 2× 4N
bytes for Lt and Lt+1 (in practice, when memory is an is-
sue, we group columns by batches of size C ′ < C).

4. Experiments
4.1. Datasets and evaluation protocol

We use Imagenet 2012 [11] and follow a recent
setup [16] previously introduced for low-shot learning. The
1000 Imagenet classes are split randomly into two groups,
each containing base and novel classes. Group 1 (193 base
and 300 novel classes) is used for hyper-parameter tuning
and group 2 (196+311 classes) for testing with fixed hyper-
parameters. We assume the full Imagenet training data is
available for the base classes. For the novel classes, only n
images per class are available for training. Similar to [16]
the subset of n images is drawn randomly and the random
selection is performed 5 times with different random seeds.

As a large source of unlabelled images, we use the
YFCC100M dataset [33]. It consists of 99 million repre-
sentative images from the Flickr photo sharing site1. Note
that some works have used this dataset with tags or GPS
metadata as weak supervision [22].

Learning the image descriptors. We use the 50-layer
Resnet trained by Hariharan et al. [16] on all base classes
(group 1 + group 2), to ensure that the description calcu-
lation has never seen any image of the novel classes. We
run the CNN on all images, and extract a 2048-dim vec-
tor from the 49th layer, just before the last fully connected
layer. This descriptor is used directly as input for the logis-
tic regression. For the diffusion, we PCA-reduce the fea-
ture vector to 256 dimensions and L2-normalize it, which
is standard in prior works on unsupervised image matching
with pre-learned image representations [2, 34].

Performance measure and baseline In a given group (1
or 2), we classify the Imagenet validation images from both
the base and novel classes, and measure the top-5 accu-
racy. Therefore the class distribution is heavily unbalanced.
Since the seed images are drawn randomly, we repeat the
random draws 5 times with different random seeds and av-
erage the obtained top-5 accuracy (the ±xx notation gives
the standard deviation).

The baseline is a logistic regression applied on the la-
belled points. We employ a per-class image sampling strat-
egy to circumvent the unbalanced number of examples per
class. We optimize the learning rate, batch size and L2 reg-
ularization factor of the logistic regression on the group 1

1Of the 100M original files, some are videos and some are not available
anymore. We replace them with uniform white images.

background none F1M Imagenet
edge weighting

constant 62.7±0.68 65.4±0.55 73.3±0.72
Gaussian weighting* 62.7±0.66 65.4±0.58 73.6±0.71
meaningful neighbors* 62.7±0.68 40.0±0.20 73.6±0.62

η operator
none 40.6±0.18 41.1±0.10 42.3±0.19
Sinkhorn 61.1±0.69 56.8±0.50 72.3±0.72
column-wise 62.7±0.68 65.4±0.55 73.3±0.72
non-linear transform* Γr 62.7±0.68 65.4±0.55 73.3±0.72
class frequency prior* 62.7±0.66 65.4±0.60 73.3±0.65

Table 1. Variations on weighting for edges and normalization
steps on iterates of L. The tests are performed for n = 2 and
k = 30, with 5 runs on the group 1 validation images. Variants
that require a parameter (e.g., the σ of the Gaussian weighting) are
indicated with a “*”. In this case we report only the best result,
see the supplementary material for full results. In the rest of the
paper, we use the variants indicated in bold, since they are simple
and do not add any parameter.

images. It is worth noticing that our baseline outperforms
the reported state of the art in this setting.

Background images for diffusion We consider the fol-
lowing sets of background images:

1. None: the diffusion is directly from the seed images to
the test images;

2. In-domain setting: the background images are the Im-
agenet training image from the novel classes, but with-
out labels. This corresponds to a use case where all
images are known to belong to a set of classes, but
only a subset of them have been labelled;

3. Out-of-domain setting: the nB background images are
taken from YFCC100M. We denote this setting by
F100k, F1M, F10M or F100M, depending on the num-
ber of images we use (e.g., we note F1M for nB =
106). This corresponds to a more challenging setting
where we have no prior knowledge about the image
used in the diffusion.

4.2. Parameters of diffusion

We compare a few settings of the diffusion algorithm as
discussed in section 3.4. In all cases, we set the number of
nearest neighbors to k = 30 and evaluate with n = 2. The
nearest neighbors are computed with Faiss [21], using the
IVFFlat index. It computes exact distances but occasionally
misses a few neighbors.

Graph edge weighting. We experimented with different
weightings for W0, that were proposed in the literature. We
compared a constant weight, a Gaussian weighting [25, 3],
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Figure 2. Classification performance with n = 2, with various
settings of k and nB, ordered by total number of edges (average of
5 test runs, with cross-validated number of iterations).

Hariharan logistic in-domain diffusion
n et al. [16] regression diffusion + logistic
1 63.6 60.4±0.78 69.7±0.86 69.76±0.88
2 71.5 68.8±0.82 75.4±0.64 75.60±0.69
5 80.0 79.1±0.35 79.9±0.17 81.35±0.22

10 83.3 83.4±0.16 82.1±0.14 84.56±0.12
20 85.2 86.0±0.15 83.6±0.12 86.72±0.09

Table 2. In-domain diffusion on Imagenet: We compare against
logistic regression and a recent low-shot learning technique [16]
on this benchmark. Results are reported with k = 30 for diffusion.

(with σ a hyper-parameter), and a weighting based on the
“meaningful neighbors” proposal [28].

Table 1 shows that results are remarkably independent of
the weighting choice, which is why we set it to 12. The best
normalization that can be applied to the L matrix is a simple
column-wise L1 normalization. Thanks to the linear itera-
tion formula, it can be applied at the end of the iterations.

4.3. Large-scale diffusion

Figure 2 reports experiments by varying the number of
background images nB and the number k of neighbors, for
n = 2. All the curves have an optimal point in terms of ac-
curacy vs computational cost at k=30. This may be a intrin-
sic property of the descriptor manifold. An additional num-
ber: before starting the diffusion iterations, with k=1000
and no background images (the best setting) we obtain an
accuracy of 60.5%. This is a knn-classifier and this is the
fastest setting because the knn-graph does not need to be
constructed nor stored.

4.4. Comparison with low-shot classifiers

We compare the performance of diffusion against the lo-
gistic baseline classifiers and a recent method of the state of
the art [16], using the same features.

In-domain scenario. For low-shot learning (n ≤ 5), the
in-domain diffusion outperforms the other methods by a
large margin, see Table 2. The combination with logistic
regression is not very effective.

Out-of-domain diffusion. Table 3 shows that the perfor-
mance of diffusion is competitive only when 1 or 2 images
are available per class. As stated in Section 3.2, we do not
include the test points in the diffusion, which is standard
for a classification setting. However, if we allow this, as
in a fully transductive setting, we obtain a top-5 accuracy
of 69.6%±0.68 with n = 2 with diffusion over F1M, i.e., on
par with diffusion over F100M.

Classifier combination. We experimented with a very
simple late fusion: to combine the scores of the two clas-
sifiers, we simply take a weighted average of their predic-
tions (log-probabilities), and cross validate the weight fac-
tor. Both in the in-domain (Table 2) and out-of-domain (Ta-
ble 3) cases, the results are significantly above the best of
the two input classifiers. This shows that the logistic re-
gression classifier and the diffusion classifier access dif-
ferent aspects of image collection. We also experimented
with more complicated combination methods, like using the
graph edges as a regularizer during the logistic regression,
which did not improve this result.

Comparison with the state of the art. With the in-
domain diffusion, we notice that our method outperforms
the state-of-the-art result of [16] and which, itself, outper-
forms or is closely competitive with [35, 36] in this setting.
In the out-of-domain setting, out results are better only for
n=1. However, their method is a complementary combi-
nation of a specific loss and a learned data augmentation
procedure that is specifically tailored to the experimental
setup with base and novel classes. In contrast, our diffusion
procedure is generic and has only two parameters (nB and
k). Note that the out-of-domain setting is comparable with
the standard low-shot setting, because the unlabeled images
from F100M are generic, and have nothing to do with Ima-
genet; and because the neighbor construction and diffusion
are efficient enough to be run on a single workstation.

2Note that our parametric experiments use the set of baseline image
descriptors used in the arXiv version of [16], and the table compares all
methods using those underlying features, so the results are not directly
comparable with the rest of the paper.



out-of-domain diffusion logistic diffusion+logistic Hariharan
n none F1M F10M F100M regression +F10M + F100M et al. [16]
1 58.5±0.52 61.4±0.61 62.7±0.76 63.6±0.61 60.4±0.78 63.3±0.73 64.0±0.70 63.6
2 63.6±0.60 66.8±0.71 68.4±0.74 69.5±0.60 68.8±0.82 70.6±0.80 71.1±0.82 71.5
5 69.0±0.46 72.5±0.27 74.0±0.35 75.2±0.40 79.1±0.35 79.4±0.34 79.7±0.38 80.0

10 73.9±0.15 76.2±0.19 77.4±0.31 78.5±0.34 83.4±0.16 83.6±0.13 83.9±0.10 83.3
20 78.0±0.15 79.1±0.23 80.0±0.27 80.8±0.18 86.0±0.15 86.2±0.12 86.3±0.17 85.2

Table 3. Out-of-domain diffusion: Comparison of classifiers for different values of n, with k = 30 for the diffusion results. The “none”
column indicates that the diffusion solely relies on the labelled images. The results of the rightmost column [16] are state-of-the-art on this
benchmark to our knowledge, generally outperforming the results of matching networks and model regression [35, 36] in this setting.

background none F1M F10M F100M
optimal iteration 2 3 4 5
timing: graph completion 2m57s 8m36s 40m41s 4h08m
timing: diffusion 4.4s 19s 3m44s 54m

Table 4. Timings for the different steps on a 24-core 2.5GHz
machine, for a varying number of unlabelled images from
YFCC100M. Note, the timing of 4h08m for graph completion over
F100M takes only 23m when executed on 8 GPUs.

4.5. Complexity: Runtime and memory

We measured the run-times of the different steps in-
volved in diffusion process and report them in Table 4. The
graph construction time is linear in nB, thanks to the pre-
computation of the graph matrix for the background images
(see Section 3.5). For comparison, training the logistic re-
gression takes between 2m27s and 12m, depending on the
cross-validated parameters.

In terms of memory usage, the biggest F100M experi-
ments need to simultaneously keep in RAM a W matrix
of 5.3 billion non-zero values (39.5 GiB), and Lt and Lt+1

(35.8 GiB, using slices of C ′ = 96 columns). This is the
main drawback of using diffusion. However Table 3 shows
that restricting the diffusion to 10 million images already
provides most of the gain, while dividing by an order of
magnitude memory and computational complexity.

4.6. Analysis of the diffusion process

We discuss how fast L “fills up” (it is dense after a few
iterations). We consider the rate of nodes reached by the
diffusion process: we consider very large graphs, few seeds
and a relatively small graph degree. Figure 3 measures the
sparsity of the matrix L (on one run of validation), which in-
dicates the rate of (label, image) tuples that have not been at-
tained by the diffusion process at each diffusion step. While
the graph is not necessarily fully connected, we observe that
most images can be reached by all labels in practice.

The fraction of nodes reached by all labeled points grows
rapidly and converges to a value close to 1 in a few iter-
ations when k ≥ 10. In order to relate this observation
with the performance attained along iterations, it is interest-
ing to compare what happens in this plot to the one on the
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Figure 3. Statistics over iterations, for n = 2. Top: Rate of non-
zero element in the matrix L. Bottom: corresponding accuracy.

right. The plot on the right shows that the iteration number
at which the matrix close to 1 is similar to the iteration at
which accuracy is maximal, as selected by cross-validation.
The maximum occurs later if nB is larger and when k is
smaller. Note also that early stopping is important.

4.7. Qualitative results

Figure 4 shows paths between a seed image and test im-
ages, which gives a partial view of the diffusion. Given a
class, we backtrack the path: for a given node (image) and
iteration i, we look up the preceding node that contributed
most to the weight in Li that node at that iteration. At it-
eration 0, the backtracking process always ends in a source
node. Each row of the figure is one such paths. For a test
image (right), we show the path for the ground-truth class
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Figure 4. Images visited during the diffusion process from a seed (left) to the test image (right). We give ground-truth class for Imagenet
images (test images marked by parentheses). The first two rows are classified correctly. The two bottom ones are failure cases. Imagenet
images are not shown for copyright reasons, but the labels are shown. For YFCC100M images, we provide the Flickr id of their creators.

and that for the found class, or a single row for both when
the image is classified correctly. Note that the preceding
node can be the image itself, since the diagonal of the W
matrix is not set to 0. Thanks to the size of the dataset, the
paths are “smooth”: they evolve through similar images.

5. Conclusion
We experimented on large-scale label propagation for

low-shot learning. Unsurprisingly, we have found that per-
forming diffusion over images from the same domain works
much better than images from a different domain. We
clearly observe that, as the number of images over which
we diffuse grows, the accuracy steadily improve. The main
performance factor is the total number of edges, which also
reasonably reflects the complexity. We also report neutral
results for most sophisticated variants, for instance we show
that edge weights are not useful. Furthermore, labeled im-
ages should be included in the diffusion process and not just
used as sources, i.e., not enforced to keep their label.

The main outcome of our study is to show that diffusion
over a large image set is superior to state-of-the-art methods
for low-shot learning when very few labels are available.
Interestingly, late-fusion with a standard classifier’s result is
effective. This shows the complementary of the approaches,
and suggests that it could be combined with forthcoming
methods for low-short learning.

When more labels are available, simple logistic regres-
sion becomes superior to the methods we describe (and to
other state of the art low-shot learning methods). However,
we note that there are many circumstances where even a
few labels per class are more difficult to get than building
(and then keeping) a graph over unlabeled data. For exam-
ple, if there are a large number of “tail” classes which we
will need to classify, a few examples per class can multi-
ply to many labels. In these cases diffusion combined with
logistic regression is the best method.
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Appendix
We present several additional results and details to com-

plement the paper. Section A reports another evaluation
protocol, which restricts the evaluation to novel classes.
Sections B and C are parametric evaluations. Section D
gives some details about the graph computation.

A. Evaluation results on novel classes
In the main paper, we evaluated the search performance

on all the test images from group 2. The performance re-
stricted to only the novel classes is also reported in prior
work [16] using a combination of classifiers. Table 5 shows
the results in this setting.

As to be expected, the results reported in these tables are
inferior to those obtained in the setup where all test images
are classified. This is because the novel classes are harder
to classify than the base classes. Otherwise the ordering
of the methods is preserved and the conclusions identical.
The diffusion is effective in the low-shot regime and is, by
itself, better than the state of the art by a large margin when
only one example is available. The combination with late
fusion significantly outperforms the state of the art, even in
the out-of-domain setup.

B. Details of the parametric evaluation
In the paper we reported results for the edge weighting

and graph normalization with the best parameter setting.
Here, we report results for all parameters3. We evaluate the
following edge weightings (Figure 5, first row):

• Gaussian weighting. The edge weight is e−x
2/σ2

with
x the distance between the edge nodes. Note that σ →
∞ corresponds to a constant weighting;

• Weighting based on the “meaningful neighbors” pro-
posal [28]. It relies on an exponential fit of neighbor
distances. For a given graph node, for the neighbor i of
its list of results, the weight is s(1−e−λs)k, where s is
the distance, remapped linearly to [0, 1] so that the first
neighbor has s = 1 and the kth neighbor has s = 0.
We vary parameter λ in the plot.

3Note that our parametric experiments use the set of baseline image
descriptors used in the arXiv version of the paper by Barath et al. [16], and
the figure compares all methods using those underlying features. Therefore
the results are not directly comparable with the rest of the paper.

We also report results for different normalizations of the
matrix L. In Figure 5 (second row), we compare:

• The non-linear Γr normalization, all elements of L are
raised to a power r. We vary the parameter r, and r =
1 corresponds to the identity transform;

• We classify all images in a graph with a logistic re-
gression classifier. We use the predicted frequency of
each class over the whole graph, and raise it to some
power (the parameter) to reduce or increase its peaki-
ness. This choice is inspired by the Markov Clustering
Algorithm [13]. This gives a normalization factor that
we enforce for each column of L, instead of the default
uniform distribution.

The conclusion of these experiments is that these vari-
ants do not improve over constant weights and a standard
diffusion, most of them having a neutral effect. Therefore,
we conclude that the diffusion process mostly depends on
the topology of the graph.

C. Late fusion weights

Let denote by llogregi and ldifi ∈ [0, 1]C the distributions
over classes returned by the two classifiers for image i. We
fuse the loglikehood by a weighted average, which amounts
to retrieving the top-5 class prediction as those maximizing

an log(llogregic ) + (1− an) log(ldific ), (7)

where an is the optimal mixing coefficient for n seed points,
as found by cross-validation.

Figure 6 shows these optimal mixing factors. Since the
logistic regression is better at classifying with many training
examples, the parameter an increases with n.

D. Computation of the W0 blocks
As stated in the paper, we need to compute the 4 blocks

of the matrix W0:

W0 =

[
WLL WLB

WBL WBB

]
∈ {0, 1}(nL+nB)×(nL+nB),

(8)
where, usually, nL � nB. Each block requires to perform
a k-nearest neighbor search. We employ the Faiss library4

optimized for this task [21], and use it as follows:

• WBB ∈ {0, 1}nB×nB : we use a Faiss index referred
to as “IVFFlat”. The accuracy-speed compromise is
controlled by a parameter giving the number of in-
verted lists visited at search time. We adopted a rel-
atively high probe setting (256) to guarantee that most

4http://github.com/facebookresearch/faiss

http://github.com/facebookresearch/faiss


out-of-domain diffusion in-domain logistic combined best reported
n none F1M F10M F100M (Imagenet) regression +F10M + F100M results [16]
1 39.4±0.85 43.9±0.96 46.3±1.28 47.6±1.09 57.7±1.28 42.6±1.31 46.5±1.23 47.9±1.18 45.1
2 47.8±0.94 52.7±1.14 55.2±1.21 57.0±1.05 66.9±1.06 54.4±1.29 57.5±1.34 58.4±1.29 58.8
5 56.8±0.73 62.2±0.44 64.6±0.57 66.3±0.68 73.8±0.29 71.4±0.54 71.9±0.55 72.3±0.58 72.7

10 64.9±0.28 68.0±0.33 69.9±0.47 71.7±0.54 77.6±0.23 78.6±0.27 78.7±0.21 79.2±0.14 79.1
20 71.4±0.26 72.7±0.40 74.1±0.38 75.3±0.29 80.0±0.21 82.9±0.20 83.0±0.15 83.2±0.22 82.6
Table 5. Comparison of classifiers for different values of n, with k = 30 for the diffusion results, evaluating only on novel classes using
the two different sets of features that we consider.
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Figure 5. Evaluation of edge weighting (top) and matrix normalizations (bottom) used in the diffusion. The common settings are: k = 30,
n = 2, evaluation is averaged over 5 runs on the validation set (group 1), and we select the best iteration.

of the actual neighbors are retrieved. With the recom-
mended settings of Faiss, the complexity of one search
is proportional to d

√
nB, so the total complexity is

O(dn1.5B ). This is super-linear with respect to nB, but
it is still relatively efficient (see our timings) and per-
formed off-line;

• WLB ∈ {0, 1}nL×nB : we re-use the same index to do
nL similarity search operations, this time using only
O(dnL

√
nB);

• WBL ∈ {0, 1}nB×nL : we need to index on the seed
image descriptors. We found that in practice, con-

structing an index on these images is at best 1.4× faster
than brute-force search. Therefore, we use brute-force
search in this case, which if of order O(dnBnL);

• WBB ∈ {0, 1}nL×nL : it has a negligible complexity.

The fusion of the result lists [WLL WLB] and
[WBL WBB] to get k results per row of W0 is done in
a single pass and in a negligible amount of time. Therefore
the dominant complexity is O(dnBnL). A typical break-
down of the timings for F100M is (in seconds):
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Figure 6. Performance as a function of the late fusion weight
an on the validation (group 1) images, averaged over 5 runs. A
weight of 0 is pure diffusion, 1 is pure logistic regression. The
mixing factors that are selected for test are indicacted with circles.

Timings (s) WBB WLB WBL WLL

on CPU — 65+2783 12003 32
on 8 GPUs 25929 732+64 533 1

For WLB we decompose the timing into: loading of the
precomputed IVFFlat index (and moving it to GPU if ap-
propriate) and the actual computation of the neighbors.


