MonoClothCap: Towards Temporally Coherent Clothing Capture
from Monocular RGB Video (Supplementary Material)

1. Further Ablation Studies

In this section, we conduct more ablation studies on var-
ious loss terms we use in the energy optimization for cloth-
ing capture and body shape estimation.

1.1. Loss Terms for Clothing Capture

We first study the loss terms used for clothing capture in
Section 5.2 (Eq. 12). In the experiments below, we compare
the results of the batch optimization stage with different loss
terms, initialized from the same body capture and sequential
tracking results.

Clothing segmentation term (Eq. 13). In order to study
the effect of the clothing segmentation term, we run an abla-
tive experiment where the weight for the segmentation term
is set to 0, while all other terms remain the same. To better
visualize the effect, we render the output meshes in three
colors: grey for skin, yellow for upper clothing and green
for lower clothing. We consider a vertex j as a skin vertex
if the length of the clothing offset for this vertex is below a
certain threshold ¢, or

1D;]l <,

where D; is defined in Eq. 4 in the main paper. We consider
a vertex as belonging to the upper clothing if

IDY|| > |Di|| and ||D; > e,
or, similarly, as belong to the lower clothing if
IDL| > DY and [|Dy > e.

The result of this experiment is shown in Fig. 1. In
each frame, we observe that the boundary between the up-
per and lower clothing is more consistent with the original
image in the result with segmentation term than the result
without segmentation term. Our method adopts a combi-
nation of upper clothing and lower clothing models, which
might both have non-zero offsets around the body waist. It
is important for our method to produce both offsets with
correct relative length to realistically reconstruct the spatial
arrangement of the T-shirt and trousers in the original im-
ages. This result proves the effectiveness and necessity of
the clothing segmentation term.

Photometric tracking term (Eq. 14). Similarly, we run
an ablative experiment where the weight for the photometric

tracking term is set to 0 and other terms remain the same. To
visualize its effect, we render the output tracked mesh with
the final texture extracted in the sequential tracking stage
(see Section 5.2 of the main paper for detail), and compare
the results with and without the photometric tracking term
with the original images.

The result of this experiment is shown in Fig. 2. Notice
that the same final texture image is used to render all the
results. In order to assist visual comparison of the rendered
pattern, we draw several auxiliary horizontal dashed lines in
red. We can observe that the results with photometric track-
ing term is more consistent with the original image than the
result without photometric tracking term, in terms of the
location of the white strip on the T-shirt and the boundary
between the T-shirt and trousers. This demonstrates that our
photometric tracking loss can help to obtain better temporal
correspondence across different frames in the video.

Silhouette matching term. We now compare the results
with and without the silhouette matching term. We render
both results and align them with the original images to vi-
sualize how well the silhouette matches.

The result of this experiment is shown in Fig. 3. We ob-
serve that the result with silhouette matching term achieves
a better alignment of silhouette with the original image.
This suggests that the silhouette matching term can help to
reconstruct the accurate shape of the clothing in the video.

1.2. Losses Terms for Body Shape Estimation

Although body pose and shape estimation is not a focus
of this paper, we conduct ablative studies on the loss terms
used in body shape estimation in Section 5.1. (Eq. 9). In
each of the experiment in this section, the weight for the
loss term under study is set to 0, and all other terms stay
the same as the full results. We render the estimated body
shapes and compare them with the full results.

Silhouette term. The result of this experiment is shown
in Fig. 4. We can observe in the result that silhouette pro-
vides critical information for the estimation of body shape
and pose in the following two ways. First, the projection of
human body should always lie in the interior of the overall
silhouette in the image, which includes the region of body
and clothes. Second, in the top-right and bottom-left exam-
ples, an arm of the subject is occluded by the torso. There is
no available information to reason about the location of the
arm from the 2D keypoints or DensePose results. In this sit-



Ours Temporal HMR [2] SPIN [4] VIBE [3]
77.3 94.7 89.5 87.2

Table 1: Quantitative comparison with recent SMPL-based
3D body pose estimation approaches on the Pablo sequence.
All numbers are in mm.

uation, only the silhouette can constrain the position of the
arm to be behind the torso in the camera view. This proves
the importance of the silhouette term for accurate estimation
of human body and shape.

DensePose term. The result of this experiment is shown
in Fig. 5. The use of DensePose together with SMPL model
for accurate body estimation was first proposed in [1]. In
our work, we find that the DensePose term helps to estimate
the hand orientation more accurately, as fingers are usually
not included in the hierarchy of 2D body pose output.

POF term. The result of this experiment is shown in
Fig. 6. The use of POF together with deformable human
body model was first proposed in [6]. We find that the POF
term can help to eliminate the ambiguity of 3D body pose
given only 2D keypoints in the front view, and therefore
help to estimate more accurate body pose in 3D.

2. Quantitative Comparison with Monocular
3D Pose Estimation Methods

In the first stage of our pipeline, we use a standard
model-fitting method to estimate 3D body pose from the
video. Although we do not claim any contribution or nov-
elty in this aspect, we still provide a quantitative compari-
son with recent state-of-the-art approaches that estimate 3D
body pose with SMPL model from a monocular view. In
particular, we evaluate all methods on the Pablo sequence
using the same protocol as Section 6.1 in the main paper.
The evaluation results are shown in Table 1. As a part of
our pipeline, our estimation of 3D body pose is highly ac-
curate even when compared with recent state-of-the-art ap-
proaches that focus on 3D body pose only. This lays a solid
foundation for the following clothing capture stages.

3. Runtime Analysis

In this section, we present the runtime information of our
approach. Our method runs on a Linux server with 40 CPU
cores and 4 GTX TITAN X GPUs. Our approach requires
the memory of 4 GPUs in order to run the batch optimiza-
tion on a video of around 250 frames together. For opti-
mization, we use the L-BFGS solver implemented in Py-
Torch [5]. We measure the average time consumed for each
frame in every stage, and the results are shown in Table 2.

Stage Runtime (s)

Body Estimation (Sec. 5.1) 6
Sequential Tracking (Sec. 5.2) 62
Batch Optimization (Sec. 5.2) 27
Wrinkle Extraction (Sec. 5.3) 232

Total 327

Table 2: Average per-frame runtime of each stage in our
pipeline. The numbers are in seconds.

4. Complete Quantitative Evaluation Results

In this section, we present the figures for complete per-
frame results of the quantitative experiments conducted in
Section 6 of the main paper.

4.1. Evaluation on MonoPerfCap Dataset

Evaluation of Clothing Surface Reconstruction. The
complete per-frame results corresponding to the surface er-
ror in Table 1 in the main paper are shown in Fig. 7.

Evaluation of 3D Pose Estimation. The complete per-
frame results corresponding to the joint error in Table 1 in
the main paper are shown in Fig. 8.

4.2. Evaluation on BUFF Dataset

The complete per-frame results corresponding to Table 2
in the main paper are shown in Fig. 9.
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Figure 1: Comparison between results with and without clothing segmentation loss. The vertices for skin, upper clothing and

lower clothing are rendered in grey, yellow and green respectively. A horizontal red dashed line is drawn in the bottom left
example to help visually check the location of the boundary between upper and lower clothing.




w/0 photometric term original image w/ photometric term  w/o photometric term

w/ photometric term

original image

w/o photometric term original image w/ photometric term  w/o photometric term

original image w/ photometric term

Figure 2: Comparison between results with and without photometric tracking loss. Horizontal dashed lines are drawn in red
to help visually compare the location of rendered texture pattern.
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Figure 3: Comparison between results with and without silhouette matching loss. In each example, we show the original
image, the result with and without silhouette matching loss from left to right.



Figure 4: Comparison between results with and without silhouette loss. In each example, we show the original image, the
result with and without silhouette loss from left to right.

Figure 5: Comparison between results with and without DensePose loss. In each example, we show the original image, the
result with and without DensePose loss from left to right.
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Figure 6: Comparison between results with and without POF loss. In each example, we show the original image, the result
with and without POF loss from both the front view and the side view.
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Figure 7: Per-frame results of the quantitative comparison with previous work on Pablo sequence using mean point-to-surface
error. Notice that the method annotated with “*’ uses a pre-scanned personalized template that provides strong shape prior.
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Figure 8: Per-frame results of the quantitative comparison with previous work on Pablo sequence using mean joint error.
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Figure 9: Per-frame results of the quantitative ablation study for different stages of our method on rendered BUFF dataset
using mean point-to-surface error.



