
Interpretable Personalized Experimentation
Han Wu†∗

hanwu71@stanford.edu
Stanford University
Stanford, CA, USA

Sarah Tan†
sarahtan@fb.com

Meta
Menlo Park, CA, USA

Weiwei Li
weiweili90@fb.com

Meta
Menlo Park, CA, USA

Mia Garrard
mgarrard@fb.com

Meta
Menlo Park, CA, USA

Adam Obeng‡
adam@adamobeng.com
San Francisco, CA, USA

Drew Dimmery‡
drew.dimmery@gmail.com

University of Vienna
Vienna, Austria

Shaun Singh‡
shaundsingh@gmail.com
San Francisco, CA, USA

Hanson Wang‡
hanson.wng@gmail.com
San Francisco, CA, USA

Daniel Jiang
drjiang@fb.com

Meta
Menlo Park, CA, USA

Eytan Bakshy
ebakshy@fb.com

Meta
Menlo Park, CA, USA

ABSTRACT
Black-box heterogeneous treatment effect (HTE) models are in-
creasingly being used to create personalized policies that assign
individuals to their optimal treatments. However, they are difficult
to understand, and can be burdensome to maintain in a production
environment. In this paper, we present a scalable, interpretable
personalized experimentation system, implemented and deployed
in production at Meta. The system works in a multiple treatment,
multiple outcome setting typical at Meta to: (1) learn explanations
for black-box HTE models; (2) generate interpretable personalized
policies. We evaluate the methods used in the system on publicly
available data and Meta use cases, and discuss lessons learnt during
the development of the system.

CCS CONCEPTS
• Information systems→ Personalization.

KEYWORDS
heterogeneous treatment effects, personalization, interpretability

∗Work conducted during an internship at Meta.
† Equal contribution.
‡ Work done while employed by Meta.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539175

ACM Reference Format:
HanWu†, Sarah Tan†,Weiwei Li, Mia Garrard, AdamObeng‡, DrewDimmery‡,
Shaun Singh‡, Hanson Wang‡, Daniel Jiang, and Eytan Bakshy. 2022. In-
terpretable Personalized Experimentation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22), Au-
gust 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3534678.3539175

1 INTRODUCTION
In conventional A/B testing, individuals are randomly assigned to
treatment groups, with the goal of selecting a single best treatment
(on average) for the entire population. Increasingly, internet com-
panies are taking a personalized approach, making use of heteroge-
neous treatment effects models (HTE) that predict individual-level
treatment effects for each individual, and personalized policies that
aim to deliver the best treatment to each individual [16, 17].

Current state-of-the-art HTE models used for personalization
frequently leverage black-box, un-interpretable base learners such
as gradient boosted trees and neural networks [29, 52]. Some sys-
tems even generate HTE predictions by combining outputs from
multiple models via ensembling or meta-learning (e.g., stacking,
weighting) [31, 39, 42]. Moreover, the complete end-to-end person-
alization system (from individual features to treatment decisions)
sometimes uses these treatment effect predictions as inputs to addi-
tional black-box policy learning models [24].

There are several challenges with deploying these black-box
approaches at internet companies. First, black-box HTE models
and resulting policies are difficult to interpret, which can deter
their uptake. Second, as dataset size and the number of features
increases, which is common in internet companies, the burden of
maintaining such models in production increases [45]. Although
there exists work that addresses these challenges via optimal in-
terpretable policy learning methods [1, 57], we have found these
methods computationally intractable on large-scale datasets.

https://doi.org/10.1145/3534678.3539175
https://doi.org/10.1145/3534678.3539175

KDD ’22, August 14–18, 2022, Washington, DC, USA Han Wu et al.

Treatment
A

Treatment
B

Control
group

Treatment
C

Best Treatment
SelectionRandom

Assignment

Experimentation Phase

Deployment Phase

Treatment
Best

Single
Treatment

Policy

Treatment
A

Treatment
B

Control
group

Treatment
C

. . .

HTE Estimation
&

Black-box
Policy

Generation

Interpretable
Policy

Generation

Random
Assignment

Experimentation Phase

Deployment Phase
Treatment

A

Treatment
B

Treatment
C

Personalized
 Policy

Policy
Selection

Black-box HTE
Model

Understanding

If views_7d = 0
assign Treatment A

else if (
likes_7d < 10
or views_7d < 100

)
assign Treatment B

else
 assign Treatment C

Personalized ExperimentRandomized Experiment

Predicted treatment effect
[treatment A vs Control]

S
eg

m
en

ts

. . .

Figure 1: Left: Standard randomized experiment. During the experimentation phase, individuals are randomly assigned to
treatments and control, and the best treatment is selected. At the deployment phase, that treatment is applied to all individuals.
Right: Personalized experiment. At experimentation time we generate a policy that will decide, at deployment time, what
treatment to use for each individual. Our contributions are depicted in the dashed red box: i) an approach to understand existing
black-box HTE policies, to empower product teams to decide whether they can be trusted, and ii) an approach to generate
interpretable policies, that can be used instead of the black-box policies.

In this paper we present a scalable, interpretable personalized
experimentation system, implemented and deployed in production
at Meta. The system is divided into a HTE model interpretation
stage and an interpretable policy generation stage. Our HTE model
interpretation approach is responsible for helping product teams
understand how black-box HTE models are performing personal-
ization (deciding which treatment group to assign to each user).
After that, our interpretable policy generation approach generates
segments of individuals to recommend different treatment groups
to, to capture potential gains from personalization. A product team
then has the choice of deploying a black-box policy (implied by the
black-box HTE model) or an interpretable policy generated by our
methods. Figure 1 shows the system.

2 RELATEDWORK
Large-scale HTE personalization. Many different types of HTE
models have been proposed (see previous section), and different
aspects of utilizing them for personalization in industry have been
considered. For example, Lada et al. combined experimental and
observational data to estimate individuals’ heterogeneous response
to page recommendations to personalize Facebook News Feed [32].
Xie et al. tackled the problem of false discovery, the chances of
which increases with large-scale data [55]. The focus of this paper
is on increasing understanding of black-box HTE models, an area
that has received less attention, and deployment of interpretable
policies in lieu of black-box policies.

Segment discovery. Our work surfacing segments with HTE
produces a representation analogous to segment discovery methods.
These methods are divided into: (1) statistical tests to confirm or
deny a set of pre-defined hypotheses about segments [2, 48]; (2)

methods that aim to discover segments directly from data [9, 23, 40,
53]; (3) methods that act on predicted individual-level treatment
effects to discover segments [12, 14, 34]. However, the comparison
of segment finding algorithms is still an open question. Loh et al.
empirically compared 13 different segment-finding algorithms [36],
finding that no one algorithm satisfied all the desired properties of
such algorithms. Closest to Distill-HTE, the method we use in our
system, are [14, 34]; we compare these three methods in Sec. 5.1.

Policy learning.Many methods have been proposed to learn
policies from experimental or observational data. However, most
methods produce black-box policies [28, 30, 43, 49, 56]. Several
existing works [1, 4, 25, 57] construct interpretable policies with
similar representations (segments) as the methods we use in this
paper, but do so by constructing exact optimal trees, which is NP-
hard [33]. Other works relax this by constructing approximate
solutions to the exact optimal trees [5, 11]. In practice, we found
these exact or approximately exact methods prohibitively slow on
large-scale data and unsuitable for a production environment (see
Section 4.3.1 for runtime results when we tried these methods at
Meta).With a focus on scalability, in this paper we considermethods
using greedy heuristics to approximate optimal trees, similar to [5,
11, 19], methods using distillation techniques to approximate black-
box HTE models, similar to [6, 37], and methods that directly learn
policies from data, similar to [27]. We do not propose novel policy
learning methods in this paper, instead focusing on describing the
system we built that evaluates different methods on Meta use cases.

3 PROBLEM SETTING AND NOTATION
Our setting is that of large-scale randomized experiments, also
called A/B tests, commonly conducted at internet companies to

Interpretable Personalized Experimentation KDD ’22, August 14–18, 2022, Washington, DC, USA

0

GBDT model predicting engagement
for Treatment A users

GBDT model predicting engagement
for Control users

GBDT model predicting latency
for Treatment A users

GBDT model predicting latency
for Control users

Black-Box HTE Model

Distillation Top segments with heterogeneity for
Treatment A vs. Control

Distill-HTE
MTDT for Treatment A vs. Control

Predicted engagement Δ

engagement Δ -0.0014
latency Δ - 0.021

engagement Δ 0.003
latency Δ 0.012

engagement Δ 0.001
latency Δ -0.005

Unroll

Se
gm

en
ts

… …

Distill-HTE
Output

0

Top segments with heterogeneity for
Treatment A vs. Control

Predicted latency Δ

Se
gm

en
ts

…

Figure 2: Distill-HTE: Multitask decision tree (MTDT) learned by distilling treatment effect predictions from a black-box HTE
model. After an MTDT is learned (bottom left), we “unroll” the tree such that each terminal node is a bar (segment) in the
barplot (bottom right). Red and green bars are respectively segments with negative or positive predicted treatment effects; gray
segments are not statistically significant. In our system, feature splits defining each segment (e.g. clicks_7d > 10 and views_7d
> 100) are overlaid on top of each red/gray/green bar and also appear when a product team user hovers over the bar.

decide if a new product feature demonstrates gains over the existing
product feature. An experiment is conducted by randomly assigning
individuals to either the new product feature (treatment group A)
or existing product feature (treatment group B), and computing
changes in outcome values. It is common in our setting to have
more than two treatment groups andmore than one outcome.
For example, a new product feature may increase engagement (one
outcome) but use more resources (another outcome), so launching
a policy requires weighing trade-offs between these outcomes.

Concretely, denote the dataset collected from the experiment
as D, consisting of 𝑁 individuals randomly assigned to one of 𝐾
treatment groups or a control group, and 𝐽 outcomes of interest.
Let 𝑋𝑖 ∈ R𝑃 be 𝑃 features of individual 𝑖 ,𝑊𝑖 ∈ {0, 1, . . . , 𝐾} be the
individual’s treatment group assignment (𝑊𝑖 = 0 means control
group), and (𝑌𝑖1, . . . , 𝑌𝑖 𝐽) be the individual’s 𝐽 observed outcomes.
Following the potential outcomes framework [41, 44], we assume
for each individual 𝑖 and outcome 𝑗 that there are 𝐾 + 1 potential
outcomes, (𝑌 (0)

𝑖 𝑗
, . . . , 𝑌

(𝐾)
𝑖 𝑗

). However, for each individual, we only
observe one set of potential outcomes – that of the treatment group
that the individual was assigned to – out of these 𝐾 + 1 potential
outcomes. In other words, (𝑌𝑖1, . . . , 𝑌𝑖 𝐽) = (𝑌 (𝑊𝑖)

𝑖1 , . . . , 𝑌
(𝑊𝑖)
𝑖 𝐽

).
Average Treatment Effects (ATE). Let G𝑘 denote the set of

individuals in the 𝑘-th treatment group, 𝑘 = 0, 1, . . . , 𝐾 . The ATE
of treatment 𝑘 compared to control on outcome 𝑗 , computed using
observed outcomes 𝑌 (𝑘)

𝑖 𝑗
, is:

𝐴
(𝑘)
𝑗

=

𝑁∑︁
𝑖=1;𝑖∈G𝑘

𝑌
(𝑘)
𝑖 𝑗

|G𝑘 |
−

𝑁∑︁
𝑖=1;𝑖∈G0

𝑌
(0)
𝑖 𝑗

|G0 |
(1)

Heterogeneous Treatment Effects (HTE). Product teams are
not solely interested in average treatment effects, but also HTE,

i.e. effects of new product features on particular groupings of indi-
viduals that are significantly different from the average individual.
Reasons include ensuring that new product features are not show-
ing gains on certain individuals at the expense of other individuals,
delivering the best product feature to each individual, etc. For each
individual 𝑖 , outcome 𝑗 , and treatment group 𝑘 compared to control,
individual-level treatment effects are defined as𝑇 (𝑘)

𝑖 𝑗
= 𝑌

(𝑘)
𝑖 𝑗

−𝑌 (0)
𝑖 𝑗

where 𝑇 (0)
𝑖 𝑗

= 0. T-Learners [3, 31], a type of HTE model, replace

𝑌
(𝑘)
𝑖 𝑗

by 𝑌 (𝑘)
𝑖 𝑗

, the plugin estimators of individual potential outcome
surfaces. Throughout this paper, we use𝑇𝑖 𝑗 to refer to any black-box
estimate of treatment effects, and 𝑌𝑖 𝑗 to refer to any black-box esti-
mate of potential outcomes. Our system is agnostic to the specific
choice of HTE model, as long as it outputs 𝑇𝑖 𝑗 and 𝑌𝑖 𝑗 .

Certain HTE models produce predictions not at the individual-
level, but rather at the segment-level, i.e. a grouping of individuals.
Denote a segment, 𝑆 , to be a set of indices representing a group of
individuals. In our system, the segments learnt do not overlap (i.e.
each individual belongs to exactly one segment).

Deterministic policies. Policy Π : R𝑃 → {0, 1, .., 𝐾} decides,
for individual 𝑖 with features𝑋𝑖 , which of the𝐾+1 treatment groups
to assign to the individual. In our system, we learn deterministic
policies rather than random policies to ensure a more consistent
UX experience for individuals. We evaluate different policies using
offline policy evaluation (OPE). Concretely, let GΠ denote the
set of individuals in the dataset whose treatment group matches
that prescribed by policy Π. We compute:

1
𝑁

𝑁∑︁
𝑖=1;𝑖∈GΠ

𝑌𝑖

𝑝𝑖
, (2)

where 𝑝𝑖 is the propensity score for individual 𝑖 (𝑝𝑖 = 1
𝐾+1 in a

randomized experiment with 𝐾 + 1 groups).

KDD ’22, August 14–18, 2022, Washington, DC, USA Han Wu et al.

4 INTERPRETABLE PERSONALIZED
EXPERIMENTATION

Our system performs interpretable personalized experimentation in
two independent stages: black-box HTE model understanding, and
interpretable policy generation. We now describe the two stages.

4.1 Understanding Black-Box Heterogeneous
Treatment Effect Models

4.1.1 Considerations when designing the system. In developing a
black-box HTE model understanding method for Meta, we had
several considerations:
• The method should be a post-hoc method that can be applied to
any type of HTE model, as the HTE models may be refreshed
and retrained frequently.

• The method should handle multiple treatment groups and multi-
ple outcomes, as is typical in industry settings.

• Since the outputs of the method will be placed in front of product
teams to aid their understanding of the black-box HTE models,
they should be understandable by engineers, data scientists, and
product managers, with little training.

4.1.2 Method. We usemulti-task decision trees (MTDT), which
extend single-task decision trees by combining the prediction loss
on each outcome, across multiple outcomes, into a single scalar
loss function. This simple representation is effective and suitable
for locating segments where individuals have heterogeneity across
multiple outcomes. In the MTDT, each task (label) is the predicted
treatment effect for an outcome, and each node is a segment identi-
fied to have elevated or depressed treatment effects across multiple
outcomes. Since we learn these trees using distillation techniques,
we call the method Distill-HTE. Figure 2 illustrates the method.

Learning objective. We suppose we have access to pairwise
predicted treatment effects 𝑇𝑖 𝑗 from the black-box HTE model. We
will learn one MTDT model for each treatment group compared to
control. To learn an MTDT model in a HTE model-agnostic fashion,
we leverage model distillation techniques, taking the HTE model as
teacher and the MTDT model as student [7, 22]. Let F̂ be the predic-
tion function of an MTDT model for treatment group 𝑘 compared
to control, using the following distillation training objective that
minimizes the loss between predicted treatment effects 𝑇𝑖 𝑗 and F̂:

𝐿 =
1
𝑁

𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑐 𝑗 · l(F̂[𝑗] (𝑋𝑖),𝑇
(𝑘)
𝑖 𝑗

) (3)

F̂[𝑗] is the MTDT model’s prediction for outcome 𝑗 . 𝑐 𝑗 is a weight
that encodes how much outcome 𝑗 contributes to the overall loss,
and l is the loss function used to train model 𝐹 (mean squared error
in this case).When 𝑐 𝑗 = 1, as our system assumes by default, the loss
of each outcome contributes equally to the overall distillation loss.
However, all outcomes still affect jointly the training of the model
in a way that training one model for each outcome independently
would not [8].

Improving robustness.Wedo the following: (1) Terminal nodes
without sufficient overlap (i.e. enough treatment AND control
points) are post-pruned from the tree, and predictions are regen-
erated; (2) Confidence intervals are provided for treatment effects

within each node; (3) Honesty criterion [3]: splits and predictions
are determined on different data splits.

Interpretable output.AnMTDT can be visualized as a tree with
each node having 𝐽 predicted treatment effects, one per outcome,
and edges being feature splits (Figure 2 bottom left). We interviewed
product teams at Meta to determine the best way to present this
(see Section 6.3 for interview findings), which led us to design the
barplot-style output (Figure 2 bottom right) for product teams.

4.2 From Treatment Effects to Policies
When there are only two treatment groups and one outcome, it
is easy to derive a policy from treatment effect predictions. For
example, a policy derived from one of the two barplots in Fig. 2
bottom right could be: For the red segment where predicted treatment
effect on engagement is negative for Treatment A vs. Control, assign
to Control. For the green segment, assign to Treatment A. However, it
is not as easy to derive policies from treatment effect predictions
when there are > 2 treatment groups or > 1 outcome.

Multiple outcomes. If another outcome is added (e.g. latency
in Figure 2), both outcomes have to be considered together to de-
rive a policy. One way to tradeoff between multiple outcomes is
to modify the weights (𝑐1, . . . , 𝑐 𝐽) used. This technique, from the
multi-objective optimization literature [18] and commonly used for
rankingmodels in industry [10, 15, 50, 51], weighs and addsmultiple
outcomes to form a single outcome:𝑌 (𝑊𝑖)

𝑖
= 𝑐1𝑌

(𝑊𝑖)
𝑖1 +· · ·+𝑐 𝐽 𝑌 (𝑊𝑖)

𝑖 𝐽

In the second stage of our system, we combine predicted multiple
outcomes from HTE models this way to generate policies. The
weights (𝑐1, . . . , 𝑐 𝐽) can be the same weights used when training
MTDT (Equation (3)), or provided by product teams, reflecting their
preferences for tradeoffs (e.g. no more than 𝑥 loss in latency to
achieve 𝑦 gain in the engagement). They could also be assumed to
be 1 by default (equally weighted), or tuned online [35].

Multiple treatment groups. 𝐾 + 1 treatment groups and 𝐽
outcomes yields 𝐾 MTDT models, with each model predicting 𝐽
outcome treatment effects for each treatment group compared to
control. Generating a single policy would require combining multi-
ple MTDT, and it is not obvious the best way to do. Hence, while
sufficient for understanding treatment effect predictions, MTDT
is not suited for policy generation when there are more than two
treatment groups. This motivates the second stage of our system:
directly learning a single policy that can assign more than two
treatment groups.

4.3 Interpretable Policy Generation
4.3.1 Considerations when designing the system. In developing in-
terpretable policy generation methods for Meta, we had several
considerations:
• Like the HTE model understanding method described in the pre-
vious section, the interpretable policy generation method should
handle multiple treatment groups and multiple outcomes, and
moreover, do so in one single model (the learned policy). Achiev-
ing this allows us to deploy only one policy in production, rather
thanmultiple policies and then having to reconcile between them,
which adds tech debt.

• Unlike the HTEmodel understanding method which is run imme-
diately after the black-box HTE model is trained, product teams

Interpretable Personalized Experimentation KDD ’22, August 14–18, 2022, Washington, DC, USA

would like to repeatedly interact with and tune the number of
segments, size of each segment, weights to trade off multiple
outcomes, etc.

• The method must be able to handle large-scale datasets with
millions of individuals and hundreds of features.

We first considered optimal tree-based policy learning methods,
as reviewed in Section 2. However, in our initial experiments on a
small sample of 100 thousand data points with 12 features and three
treatment groups, [57] that solves an exact tree search problem took
2.5 hours to run. With a quadratic runtime in the number of data
points, it was impossible to run on our datasets that sometimes ex-
ceed 100 million data points. Other methods that find approximate
solutions to exact optimal trees using coordinate ascent should be
faster but their software is proprietary [1, 5].

In the end, we implemented different methods in our system:
(1) a method that approximates optimal tree finding methods with
greedy heuristics (GreedyTreeSearch-HTE); (2) a method using dis-
tillation techniques to approximate black-box HTE models (Distill-
Policy); (3) a method that directly learns policies from data (No-
HTE); (4) a method that ensembles different interpretable policies
while remaining interpretable (GUIDE). All methods produced per-
sonalized policies that we visualize as a sequence of rules (Figure 3
top). All of these methods were inspired by close counterparts in
literature, but we implemented them in slightly different ways to
better suit our setting. We review this in detail in the next section.

4.3.2 Methods that take HTE model predictions as input. The meth-
ods proposed in this section need an already trained HTE model
from which predicted outcomes 𝑌𝑖 can be obtained.

GreedyTreeSearch-HTE directly solves the following optimiza-
tion problem in the space of trees with pre-determined maximum
tree depth: Π∗ = argmaxΠ

1
𝑁

∑𝑁
𝑖=1 𝑌

(Π (𝑋𝑖))
𝑖

. assuming without loss
of generality that higher outcomes are better. This can be treated
as a cost-sensitive classification problem (NP-hard), where the cost
of assigning a point to a group is the negative value of the pre-
dicted outcome [13]. To achieve a scalable implementation, we
solve the optimization problem greedily instead of resorting to ex-
act tree search over the whole space of possible trees, and obtain
personalized policy Π. See Algorithm 1 in the Appendix for the im-
plementation. Other methods have been proposed to approximately
solve this problem, for example those used in [11]. However, the
greedy heuristic we chose offers the most simplicity and scalability.

Distill-Policy starts from the naive policy Π implied by the out-
come predictions 𝑌 (0)

𝑖
, . . . , 𝑌

(𝐾)
𝑖

, i.e. Π𝐻𝑇𝐸 (𝑋𝑖) = argmax𝑊 𝑌
(𝑊)
𝑖

.
Then, we train a decision tree classifier to predict Π𝐻𝑇𝐸 (𝑋𝑖) given
𝑋𝑖 . We create a personalized policy from this tree by assigning all
individuals in the same terminal node (segment) to the majority
treatment group of individuals in that segment.

4.3.3 Methods that learn directly from data. The methods proposed
in this section, No-HTE, are useful when we are not able to train
accurate HTE models to predict individual-level treatment effects,
a scenario we sometimes see at Meta with extremely large datasets.
These methods are inspired by prior efforts in the literature that
segment feature space using conditional ATE [12] or impurity [27],
and then generate policies directly.

Concretely, for each segment S, segment ATE, comparing treat-
ment 𝑘 to control, can be computed by replacing G𝑘 in Equation (3)
with G𝑘 ∩S. Our goal is to search over different possible segments
S, by defining a splitting criterion 𝐴(S) = max𝑘=0,1,...,𝐾 𝐴(𝑘) (S).
This splitting criterion considers only the most responsive treat-
ment in that segment. In practice, we implement this search using
a tree with splitting criterion 𝐴(S), splitting greedily or iteratively.

In the greedy implementation (Algorithm 2 in the Appendix),
a split is only considered if both the left and right child segments
improve over the parent segment. In the iterative implementa-
tion (Algorithm 3 in the Appendix), we run several iterations of
splitting. In each iteration we keep the best segment, excluding it
in the next run. A split is considered as long as one of the child
segments improves the outcome compared to the parent node. One
pitfall with this iterative implementation is that segments are not
necessarily disjoint in feature space, so one individual could ap-
pear in several segments. We resolve this by always assigning the
individual to the first found segment; other ways can be explored.

Reject option. For both implementations, if no segments are
found because no eligible split exists, the policy defaults to assigning
all individuals to the treatment group with highest ATE. In other
words, this reduces to the standard randomized setting without
personalization, and is in line with our interpretability goals of
preferring simple policies if personalization does not bring benefits.

4.3.4 Ensemble methods. We can already generate interpretable
tree-based policies using the methods described above. However,
different policies may exhibit different strengths in different fea-
ture regions, and simply training trees with deeper depth does not
necessarily improve the resulting policy. We leverage ensemble
learning to identify such regions, with the hope of generating a
better policy. Our motivation of combining different policies while
remaining interpretable is shared by [51], but we do not use their
method, because their method, being an intersection of segments
from different trees, yields many more segments than suitable for
our setting. While there exists other ways to ensemble policies,
such as SuperLearner [39], they result in non-interpretable policies.

We ended up designing short trees, which we call guidance tree,
that ensemble two policies with just one more feature split (see
Figure 4 in the Appendix for an example). GUIDE-OPE finds this
feature split using exhaustive search on the OPE criterion (Equation
(2)) to find one optimal feature split that becomes the top of the guid-
ance tree. GUIDE-ExploreExploit treats individual interpretable
policies as “arms", as in the contextual bandits literature [47], and
uses explore-exploit to learn another policy on top of it that selects
the candidate policy. See the Appendix for implementation details.

5 RESULTS ON PUBLICLY AVAILABLE DATA
In this section, we evaluate the methods behind the interpretable
personalized experimentation system on publicly available data.

5.1 Comparing Explanations of HTE Models
We compare the Distill-HTEmethod proposed in Section 4.1 against
several other segment finding methods that take HTE model pre-
dictions as input: (1) Virtual Twins (VT) [14]; (2) R2P [34], a re-
cent, state-of-the-art method. We also compare to a black-box HTE
model: a T-Learner that does not find segments but rather provides

KDD ’22, August 14–18, 2022, Washington, DC, USA Han Wu et al.

Data Method PEHE Between-segment Within-segment
var var

COVID
[34]

Virtual Twins RF 0.94 ± 0.29 0.85 ± 0.31 2.88 ± 3.97
Virtual Twins GBDT 0.58 ± 0.20 0.07 ± 0.05 13.12 ± 1.20
Distill-HTE 0.20 ± 0.02 0.14 ± 0.05 11.03 ± 1.57
R2P 1.00 ± 0.21 1.00 ± 0.05 1.00 ± 1.03
T-Learner GBDT 0.58 ± 0.20 – –
T-Learner DT 1.46 ± 0.33 – –

Synthetic A
[3]

Virtual Twins RF 0.60 ± 0.07 0.24 ± 0.04 4.83 ± 0.64
Virtual Twins GBDT 0.21 ± 0.02 0.05 ± 0.00 7.08 ± 0.75
Distill-HTE 0.26 ± 0.05 0.18 ± 0.04 6.69 ± 1.17
R2P 1.00 ± 0.28 1.00 ± 0.36 1.00 ± 1.97
T-Learner GBDT 0.21 ± 0.02 – –
T-Learner DT 0.86 ± 0.09 – –

Table 1: Test-set performance of segment finding methods
on publicly available datasets. For PEHE and within-segment
variance, lower is better. For between-segment variance,
higher is better. Best method for each column in bold. Re-
sults are normalized w.r.t the state-of-the-art method R2P: a
PEHE score of e.g. 0.2 (20%) has 5 times less PEHE than R2P,
while a score of 1.5 (150%) has 50% more.

one prediction per individual. We train T-Learners using gradient
boosted decision trees (GBDT) and decision tree (DT) base learners.

Setup: The COVID dataset was used in [34] and uses patient
features as in an initial clinical trial for the Remdesivir drug, but
generates synthetic outcomes where the drug reduces the time to
improvement for patients with a shorter period of time between
symptom onset to starting the trial. We chose this dataset because
it has a specific finding of heterogeneity. The second dataset, Syn-
thetic A, was used in [3]. For R2P we used the implementation of
R2P provided by the authors1. For VT we used our own implemen-
tation, first training a black-box model (we use random forest (RF)
and GBDT) to predict potential outcomes, then training a tree to
explain the difference in potential outcomes.

Evaluation: Since these datasets have synthetically injected
ground truth treatment effects, we canmeasure the accuracy of each
method.We use the Precision in Estimation of Heterogeneous Effect

(PEHE)metric [20]:
√︂

1
𝑁

∑𝑁
𝑖=1

(
(𝑌 (1)
𝑖

− 𝑌 (0)
𝑖

) − (𝑌 (1)
𝑖

− 𝑌 (0)
𝑖

)
)2
. Un-

like bias and RMSE computed relative to ground truth treatment
effects, PEHE requires accurate estimation of both counterfactual
and factual outcomes [26]. We also compute between- and within-
segment variance. For each dataset we generate ten train-test splits,
on which we compute the mean and standard deviation of estimates.

Hypothesis: The best segmentation methods should have low
PEHE and produce segments with low within-segment variance,
and high between-segment variance.

Results: Table 1 presents the results. We make a few observa-
tions: (1) Black-box vs. white-box: As expected, GBDT T-Learners
perform well as they do not have interpretability constraints, unlike
all the other methods (VT, Distill-HTE, R2P), all of which modify
standard decision trees while still remaining visualize-able as a
tree. Yet, Distill-HTE tends to be far more accurate than R2P, in
terms of PEHE. (2) Optimization criterion: R2P, the only method of
those presented here, that considers not only homogeneity within
segments but also heterogeneity between segments, has the highest
between-segment variance. Other methods that do not try to in-
crease heterogeneity between segments do not fare so well on this
1https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/r2p-hte

metric. However, R2P does this at the expense of PEHE. (3) Impact
of distillation: While the T-Learner DT model did not perform well,
being worst in terms of PEHE on all datasets, Virtual Twins RF,
Virtual Twins GBDT and Distill-HTE that train modified decision
trees have a marked improvement over T-Learner DT, suggesting
that distilling a complex GBDT or RF teacher rather than learning
a tree directly is beneficial, which agrees with the existing distil-
lation literature. (4) HTE model class: The choice of HTE model
matters, with Virtual Twins not performing as well when using an
RF HTE model compared to a GBDT HTE model. Similarly, GBDT
T-Learners perform better than DT T-Learners.

Learnings: Black-box HTE models are not always the most
accurate on all datasets, and interpretable segmentation methods
such as VT, Distill-HTE, and R2P can be as or more accurate on
some datasets. We applied this lesson at the deployment phase of
our system where black-box methods and interpretable methods
are considered side-by-side.

5.2 Comparing Policy Learning Methods
We compare the methods described in Section 4.3 to (1) a black-
box policy: training a T-Learner HTE model, then assigning each
individual to the treatment group with best predicted treatment
effects; (2) a random policy: choosing the treatment for each unit
uniformly at random. (3) On small datasets, we also compared to
the PolicyTree [57] method that uses exact tree search.

Setup: Besides the Synthetic A dataset described in 5.1, we use
other publicly-available datasets. The IHDP dataset [20], commonly
used in the causal inference literature (e.g [26, 46] and many others),
studied the impact of specialized home visits on infant cognition
using mother and child features. A multiple-outcome dataset, Email
Marketing [21] has 64k points, and visits, conversions, and money
spent outcomes (see Appendix for details on how we constructed
potential outcomes on this real dataset). We combine multiple out-
comes as explained in Section 4.2. The ensemble policies (GUIDE-
ExploreExploit, GUIDE-OPE) are based on GreedyTreeSearch-HTE
and Distill-Policy – selected because of their individual perfor-
mance. For the optimal tree search method, we used the implemen-
tation provided by the authors2.

Evaluation: Since these datasets have synthetically injected
potential outcomes Y(𝑘)

𝑖
, for each individual we know the optimal

treatment group. We then evaluate different policies Π using regret
(against the optimal treatment): R(Π) = ∑𝑛

𝑖=1max𝑘Y
(𝑘)
𝑖

−Y(Π (𝑋𝑖))
𝑖

where Π(𝑋𝑖) is the treatment group ∈ {𝑘 = 0, . . . , 𝐾} prescribed by
policy Π for individual 𝑖 .

Hypothesis: The best policy generation methods should have
low regret. Additionally, the more simple (less tree depth, and hence
less segments) the policy, the easier it is to deploy, hence we study
regret at a fixed level of complexity.

Results: Table 2 presents the results.
Is personalization needed? Interestingly, the majority of individu-

als in IHDP have positive treatment effects. Hence, there is limited
benefit from personalization, where assigning all points to treat-
ment 1 already yields the lowest relative regret of 0.36. Methods

2https://cran.r-project.org/web/packages/policytree/index.html

Interpretable Personalized Experimentation KDD ’22, August 14–18, 2022, Washington, DC, USA

Data Method Test-Set Regret

IHDP
[20]

Assign all to treatment 0 1.88 ± 0.17
Assign all to treatment 1 0.36 ± 0.06
BlackBox 1.00 ± 0.08
OptimalTreeSearch [57] 0.87 ± 0.09
GreedyTreeSearch-HTE 0.77 ± 0.15
Distill-Policy 1.00 ± 0.19
No-HTE (Greedy and Iterative)* 0.36 ± 0.06
GUIDE-UniformExplore (guide depth=1) 1.05 ± 0.19
GUIDE-UniformExplore (guide depth=2) 0.96 ± 0.05
GUIDE-OPE (guide depth=1) 1.11 ± 0.16

Synthetic A
[3]

Assign all to treatment 0 49.37 ± 1.77
Assign all to treatment 1 46.88 ± 1.73
BlackBox 1.00 ± 0.32
OptimalTreeSearch [57] 1.45 ± 0.28
GreedyTreeSearch-HTE 0.03 ± 0.02
Distill-Policy 0.05 ± 0.04
No-HTE (Greedy and Iterative)* 46.88 ± 1.73
GUIDE-UniformExplore (guide depth=1) 0.01 ± 0.01
GUIDE-UniformExplore (guide depth=2) 0.02 ± 0.01
GUIDE-OPE (guide depth=1) 0.01 ± 0.01

Email Marketing
[21]

Assign all to treatment 0 1.50 ± 0.06
Assign all to treatment 1 1.26 ± 0.10
Assign all to treatment 2 1.04 ± 0.02
BlackBox 1.00 ± 0.02
GreedyTreeSearch-HTE 1.04 ± 0.02
Distill-Policy 1.04 ± 0.02
No-HTE (Greedy) 1.05 ± 0.03
No-HTE (Iterative) 1.30 ± 0.05
GUIDE (UniformExplore and OPE) 1.04 ± 0.02

* denotes no segments were found, and the resulting policy assigned all individuals to one treatment
group.

Table 2: Regret (lower is better) of policy-generationmethods
on synthetic and semi-synthetic datasets. Methods colored
in red do not personalize. Methods colored in black are black-
box policies, blue denotes interpretable policies, and green
are ensembles that still remain interpretable. Best method’s
regret in bold. If the best policy is no personalization, the next
best policy is also bolded. If the best policy is an ensemble
policy, the constituent policies are also bolded. Results are
normalized w.r.t. the BlackBox regret: a regret score of e.g.
0.2 (20%) has 5 times less regret than the BlackBox, while a
regret of 1.5 (150%) has 50% more.

with a reject option (No-HTE-Greedy, No-HTE-Iterative) also per-
formed well as they were able to pick up on this best policy and as-
sign all points to a single treatment. In contrast, Synthetic A exhibits
some heterogeneity, with non-personalized policies (assigning all to
treatment 0 or 1) having very large regret compared to BlackBox. In-
terpretable policies like GUIDE that ensembled GreedyTreeSearch-
HTE and Distill-Policy achieved the lowest regret at 0.01, with the
constituent policies themselves being not far off as well at 0.03 and
0.05 respectively. On this particular dataset, interpretable policies
outperformed BlackBox policy. On Email Marketing, a real dataset,
with more complicated heterogeneity, BlackBox performed the best.

Exact search.We ran PolicyTree [57] on IHDP and Synthetic A,
two small datasets where the method did not face scalability issues.
Despite performing exact search, the method does not necessarily
have the smallest regret, as it is not an oracle and still has to estimate
potential outcomes (only after which exact search happens).

Learnings: The performance of policy learning methods is de-
pendent on the amount and type of heterogeneity in the dataset; no
one policy whether interpretable, black-box, or non-personalized,
consistently performed well. Since we do not a priori know how
heterogeneous real datasets are, this impacted our system design,
and we designed our policy generation stage to be highly modular
(able to quickly add or remove different policy generation methods)
as well as setup offline and online evaluation pipelines to rapidly

Figure 3: Segments found by Distill-HTE method on COVID
data. Best seen in digital format.

test many different policies, thus allowing our system to adapt to
the complexities of industry applications.

5.3 Bridging Explanations and Policies
HTE model understanding: Fig. 3 presents segments found by
Distill-HTE on the COVID data. The segment with the most nega-
tive predicted treatment effect (first segment in red), at -0.03 +- 0.001,
covers individuals who started taking the drug between 4.5 and 10.5
days after the onset of symptoms and had Aspartete Aminotrans-
ferase and Lactate Dehydrogenase levels within normal ranges [38],
suggesting that they were not extremely sick. It is unsurprising
that they were not predicted to benefit as much from the drug.

On the other hand, the segment with the most positive predicted
treatment effect (last segment; green color) covers individuals who
started taking the drug soon (<= 4.5 days) after exhibiting COVID
symptoms. These individuals were predicted to benefit the most
from the drug, with treatment effect 0.018 +- 0.0006. This agrees
with the finding that the Remdesivir drug results in a faster time
to clinical improvement for the patients with shorter time from
symptom onset to starting trial [54].

Policy generation: A simple policy can be derived from the
Distill-HTE segments, with all red segments assigned to not receiv-
ing the drug (as they are predicted to not benefit from it) and all
green segments assigned to receiving the drug. This policy is dif-
ferent from the interpretable policies learned directly (Table 2). For
example, the GreedyTreeSearch-HTE policy is extremely simple:
assigning to receive the drug only if days from symptoms onset to
starting trial < 11. Another example is No-HTE-Greedy and No-
HTE-Iterative whose rather stringent splitting criteria did not find
enough heterogeneity worth assigning different treatment groups
to, and assigned all individuals to receive the drug.

6 DEPLOYMENT AT META
6.1 Personalizing UX Layout Using

Interpretable Policies
We tested the performance of the interpretable policy generation
system on a UX design problem atMeta.With these newUX designs,
individuals can see more media content per page. The hope is
that this change will lead to more engagement. There are two

KDD ’22, August 14–18, 2022, Washington, DC, USA Han Wu et al.

UX designs (i.e. treatments) under consideration. There is one goal
metric (larger is better) and one guardrail metric (must not decrease).
The initial A/B test showed that Treatment 1 increases the goal
metric on certain cohorts, and kept the guardrail metric neutral;
Treatment 2 significantly increases the goal metric, but prohibitively
decreases the guardrail metric. Our goal is to find a better tradeoff
that preserves the goal metric gains seen in Treatment 2, but with
the neutral guardrail metrics under Treatment 1.

To generate the interpretable policies, we trained black-box HTE
models (X-learners) for each treatment, and applied our policy gen-
eration algorithms on them. These policies show that individuals
who seldom view or engage with this type of media content should
receive Treatment 1, while individuals with a history of consuming
this content should receive Treatment 2. Based on the OPE results
(see Table 3 for details), two interpretable policies were selected
for online tests. With these particular metrics, even small improve-
ments were of practical significance, and one interpretable policy
was launched to the product. The launch realized more than 80%
of the organization’s goal on the goal metric without adversely
impacting the guardrail metric.

Method Test-Set OPE: Test-Set OPE:
Goal Metric Guardrail Metric

Assign all to control 100.0 ± 0.7 100.0 ± 0.6
Assign all to treatment 1 99.2 ± 0.7 100.0 ± 0.6
Assign all to treatment 2 100.8 ± 0.7 99.8 ± 0.6

Distill-Policy 100.9 ± 0.7 99.9 ± 0.6
No-HTE (Greedy) 100.8 ± 0.7 100.0 ± 0.6

Table 3: Offline policy evaluation (OPE) results on the
UX design use case. The numbers are the estimated
mean goal/guardrail metric values, larger is better. Non-
personalized policies were colored in red, the two candidate
personalized policies generated fromourmethods are in blue.
The policy that delivers the best goal metric improvement is
bolded. Results are normalized w.r.t. the OPE of “Assign all
to control” method.

6.2 Understanding Black-Box Personalization
of Login Experience

We used our HTEmodel understanding method on an account login
flow problem at Meta. When a person is not automatically logged
into their account after clicking on a notification, they could be
directed to one of three experiences: (1) a traditional login screen, (2)
a one-click login flow where a code is sent via email or text message
to authenticate the user, or (3) a secondary login screen to allow the
user to select between one-click login or a secondary identification
flow. The product team wanted to increase login success while
keeping guardrail metrics neutral.

The product team employed black-box HTE modeling to person-
alize this login experience. When deciding to ship the black-box
personalized policy, the team used our Distill-HTE method to re-
view heterogeneity present in the user base. The analysis revealed
individuals with a recent password failure, who are using a device
they don’t own, or who haven’t logged in recently respond most
positively to the secondary login screen, and that the secondary
login screen is the best treatment for individuals sharing a device.
Users who are primarily active on the web browser site prefer the

traditional login screen, while active app users respond best to the
one-click login treatment. Furthermore, the analysis surfaced an
issue in the team’s experiment setup where a feature value was
being incorrectly recorded. The team leveraged these findings to
unblock shipping the personalized policy, fix the surfaced issue,
and better understand the user base for future product changes.

6.3 Product Team Interviews
During development of this work, we conducted formal interviews
with six potential internal customers from different product teams
at Meta. The roles of the interviewees included: software engineer,
data scientist, project manager, and marketer. With these back-
grounds, interviewees exhibited a wide range of comfort interacting
with and analyzing data. While data scientists were more comfort-
able with raw text output than other interviewees, all intervieews
preferred small trees and the unrolled segments output shown in
Figure 3 to raw text. Furthermore, those with less data analysis
experience, such as marketers and project managers, preferred out-
put like Figure 3 to small trees because interpreting trees was not
immediately obvious to them. Overall, all potential customers be-
lieved the proposed interpretability analysis would benefit their
understanding of HTE models and increase confidence in what the
black-box models were doing for their product features at Meta.

6.4 Deployment
The Distill-HTE method is deployed within Meta, at scale on all
experiments using black-box model personalization. Models for
black-box personalized experiments are retrained recurrently, and
the Distill-HTE method is reran after each retraining. We display
the most recent analysis results, as shown in Figure 3, within the
experimentation system UI, thus allowing for an intuitive user
experience. Additionally, we have deployed interpretable policies
for multiple products at Meta. To deploy these policies, we use a
modified version of the framework that deploys the black-box poli-
cies. Since interpretable policies are inherently simple to maintain
interpretability, we can replace the black-box policy call with a
few basic if-else statements. In practice, we implement the if-else
blocks with comparison operators (less than, greater than, etc).
Product teams frequently consider interpretable policies alongside
black-box policies.

The choice between black-box policies derived from HTEmodels
and interpretable policies often depends on the ability of product
teams utilizing such policies to maintain HTE models in production
and the need to explain how exactly personalization is happening.
While HTE models are resource and maintenance intensive, the
ability to continuously retrain the model allows for adjustment to
a dynamic user base. Conversely, interpretable policies are easy
to implement and maintain, but may not perform best over the
long-term without policy regeneration as the user base changes.
Additionally, we have found that interpretable policies can be a
better fit when app startup time is a constraint.

7 CONCLUSION
The motivation for this work was three-fold. (1) HTE models some-
times overfit on extremely large datasets, and can be hard to in-
terpret; (2) Interpretable policies can avoid some of the tech debt
that black-box policies incur [45]. (3) Scalability constraints exclude

Interpretable Personalized Experimentation KDD ’22, August 14–18, 2022, Washington, DC, USA

optimal tree-based policy learning algorithms from deployment in
production environments. Our two-stage system that understands
black-box HTE models and generates interpretable personalized
policies is deployed at Meta and runs on all personalized experi-
ments. We hope that the practical experience and lessons shared
in this paper can help other organizations wishing to incorporate
interpretability techniques into their experimentation systems.

Acknowledgements: The authors would like to thank Rishav
Rajendra, Zheng Yan, Chad Zhou, Sam Howie, Norm Zhou, and
Ariel Evnine for valuable discussion and collaboration.

REFERENCES
[1] Maxime Amram, Jack Dunn, and Ying Daisy Zhuo. 2020. Optimal Policy Trees.

arXiv:2012.02279 (2020).
[2] Susan F Assmann, Stuart J Pocock, Laura E Enos, and Linda E Kasten. 2000.

Subgroup analysis and other (mis) uses of baseline data in clinical trials. The
Lancet 355, 9209 (2000).

[3] Susan Athey and Guido Imbens. 2016. Recursive partitioning for heterogeneous
causal effects. PNAS 113, 27 (2016).

[4] Susan Athey and Stefan Wager. 2021. Policy learning with observational data.
Econometrica 89, 1 (2021), 133–161.

[5] Dimitris Bertsimas, Jack Dunn, and Nishanth Mundru. 2019. Optimal prescriptive
trees. INFORMS Journal on Optimization 1, 2 (2019), 164–183.

[6] Max Biggs, Wei Sun, and Markus Ettl. 2021. Model Distillation for Revenue
Optimization: Interpretable Personalized Pricing. In ICML.

[7] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model
compression. In KDD.

[8] Rich Caruana. 1997. Multitask learning. Machine Learning 28, 1 (1997), 41–75.
[9] Gong Chen, Hua Zhong, Anton Belousov, and Viswanath Devanarayan. 2015. A

PRIM approach to predictive-signature development for patient stratification.
Stat Med 34, 2 (2015), 317–342.

[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for
YouTube Recommendations. In RecSys.

[11] Miroslav Dudík, John Langford, and Lihong Li. 2011. Doubly Robust Policy
Evaluation and Learning. In ICML.

[12] Raaz Dwivedi, Yan Shuo Tan, Briton Park, Mian Wei, Kevin Horgan, David
Madigan, and Bin Yu. 2020. Stable discovery of interpretable subgroups via
calibration in causal studies. International Statistical Review 88 (2020).

[13] Charles Elkan. 2001. The Foundations of Cost-Sensitive Learning. In IJCAI.
[14] Jared C Foster, Jeremy MG Taylor, and Stephen J Ruberg. 2011. Subgroup identi-

fication from randomized clinical trial data. Stat Med 30, 24 (2011).
[15] Antonino Freno. 2017. Practical Lessons from Developing a Large-Scale Recom-

mender System at Zalando. In RecSys.
[16] Florent Garcin, Christos Dimitrakakis, and Boi Faltings. 2013. Personalized News

Recommendation with Context Trees. In RecSys.
[17] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time personalization using em-

beddings for search ranking at airbnb. In KDD.
[18] Nyoman Gunantara. 2018. A review of multi-objective optimization: Methods

and its applications. Cogent Engineering 5, 1 (2018).
[19] Tamir Hazan, Joseph Keshet, and David McAllester. 2010. Direct Loss Minimiza-

tion for Structured Prediction. In NeurIPS.
[20] Jennifer L Hill. 2011. Bayesian nonparametric modeling for causal inference.

Journal of Computational and Graphical Statistics 20, 1 (2011), 217–240.
[21] Kevin Hillstrom. 2008. MineThatData E-Mail Analytics And Data Mining Chal-

lenge. https://www.uplift-modeling.com/en/v0.3.1/api/datasets/fetch_hillstrom.
html. Accessed October 19, 2021.

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014. Distilling the Knowledge in
a Neural Network. In NeurIPS Deep Learning Workshop.

[23] Kosuke Imai and Marc Ratkovic. 2013. Estimating treatment effect heterogeneity
in randomized program evaluation. The Annals of Applied Statistics 7, 1 (2013).

[24] Kosuke Imai and Aaron Strauss. 2011. Estimation of heterogeneous treatment
effects from randomized experiments, with application to the optimal planning
of the get-out-the-vote campaign. Political Analysis 19, 1 (2011), 1–19.

[25] Nathanael Jo, Sina Aghaei, Andrés Gómez, and Phebe Vayanos. 2021. Learning
Optimal Prescriptive Trees from Observational Data. arXiv:2108.13628 (2021).

[26] Fredrik Johansson, Uri Shalit, and David Sontag. 2016. Learning representations
for counterfactual inference. In ICML.

[27] Nathan Kallus. 2017. Recursive partitioning for personalization using observa-
tional data. In ICML.

[28] Nathan Kallus and Angela Zhou. 2018. Policy evaluation and optimization with
continuous treatments. In AISTATS.

[29] Edward H. Kennedy. 2020. Optimal doubly robust estimation of heterogeneous
causal effects. arXiv:2004.14497 (2020).

[30] Toru Kitagawa and Aleksey Tetenov. 2018. Who should be treated? empirical
welfare maximization methods for treatment choice. Econometrica 86, 2 (2018).

[31] Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. 2019. Metalearners
for estimating heterogeneous treatment effects using machine learning. PNAS
116, 10 (2019), 4156–4165.

[32] Akos Lada, Alexander Peysakhovich, Diego Aparicio, and Michael Bailey. 2019.
Observational data for heterogeneous treatment effects with application to rec-
ommender systems. In EC.

[33] Hyafil Laurent and Ronald L Rivest. 1976. Constructing optimal binary decision
trees is NP-complete. Inform. Process. Lett. 5, 1 (1976), 15–17.

[34] Hyun-Suk Lee, Yao Zhang,William Zame, Cong Shen, Jang-Won Lee, andMihaela
van der Schaar. 2020. Robust recursive partitioning for heterogeneous treatment
effects with uncertainty quantification. In NeurIPS.

[35] Benjamin Letham and Eytan Bakshy. 2019. Bayesian Optimization for Policy
Search via Online-Offline Experimentation. JMLR 20 (2019), 145–1.

[36] Wei-Yin Loh, Luxi Cao, and Peigen Zhou. 2019. Subgroup identification for
precision medicine: A comparative review of 13 methods. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 9, 5 (2019), e1326.

[37] Maggie Makar, Adith Swaminathan, and Emre Kıcıman. 2019. A distillation
approach to data efficient individual treatment effect estimation. In AAAI.

[38] MedicineNet. 2021. Liver Function Tests (Normal, Low, and High Ranges &
Results). https://www.medicinenet.com/liver_blood_tests/article.htm. Accessed
October 19, 2021.

[39] Lina Montoya, Mark van der Laan, Alexander Luedtke, Jennifer Skeem, Jeremy
Coyle, and Maya Petersen. 2021. The Optimal Dynamic Treatment Rule Su-
perLearner: Considerations, Performance, and Application. arXiv:2101.12326
(2021).

[40] Chirag Nagpal, Dennis Wei, Bhanukiran Vinzamuri, Monica Shekhar, Sara E
Berger, Subhro Das, and Kush R Varshney. 2020. Interpretable subgroup discovery
in treatment effect estimation with application to opioid prescribing guidelines.
In ACM Conference on Health, Inference, and Learning.

[41] Jersey Neyman. 1923. Sur les applications de la théorie des probabilités aux
experiences agricoles: Essai des principes. Roczniki Nauk Rolniczych 10 (1923).

[42] Xinkun Nie and Stefan Wager. 2021. Quasi-oracle estimation of heterogeneous
treatment effects. Biometrika 108, 2 (2021), 299–319.

[43] Min Qian and Susan A Murphy. 2011. Performance guarantees for individualized
treatment rules. Annals of Statistics 39, 2 (2011), 1180.

[44] Donald B Rubin. 1974. Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology 66, 5 (1974), 688.

[45] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Denni-
son. 2015. Hidden Technical Debt in Machine Learning Systems. In NeurIPS.

[46] Paras Sheth, Ujun Jeong, Ruocheng Guo, Huan Liu, and K Selçuk Candan. 2021.
CauseBox: A Causal Inference Toolbox for Benchmarking Treatment Effect Esti-
mators with Machine Learning Methods. In CIKM.

[47] Aleksandrs Slivkins. 2019. Introduction to Multi-Armed Bandits. Foundations
and Trends in Machine Learning 12, 1-2 (2019), 1–286.

[48] Yang Song andGeorge YHChi. 2007. Amethod for testing a prespecified subgroup
in clinical trials. Stat Med 26, 19 (2007), 3535–3549.

[49] Adith Swaminathan and Thorsten Joachims. 2015. Counterfactual risk minimiza-
tion: Learning from logged bandit feedback. In ICML. 814–823.

[50] Xiaocheng Tang, Fan Zhang, Zhiwei Qin, Yansheng Wang, Dingyuan Shi,
Bingchen Song, Yongxin Tong, Hongtu Zhu, and Jieping Ye. 2021. Value Function
is All You Need: A Unified Learning Framework for Ride Hailing Platforms. In
KDD.

[51] Ye Tu, Kinjal Basu, Cyrus DiCiccio, Romil Bansal, Preetam Nandy, Padmini
Jaikumar, and Shaunak Chatterjee. 2021. Personalized Treatment Selection Using
Causal Heterogeneity. In WWW.

[52] S.Wager and S. Athey. 2018. Estimation and inference of heterogeneous treatment
effects using random forests. J. Amer. Statist. Assoc. 113, 523 (2018), 1228–1242.

[53] Tong Wang and Cynthia Rudin. 2021. Causal rule sets for identifying subgroups
with enhanced treatment effect. INFORMS Journal on Computing (2021).

[54] Yeming Wang, Dingyu Zhang, Guanhua Du, Ronghui Du, Jianping Zhao, Yang
Jin, Shouzhi Fu, Ling Gao, Zhenshun Cheng, Qiaofa Lu, et al. 2020. Remdesivir
in adults with severe COVID-19: a randomised, double-blind, placebo-controlled,
multicentre trial. The Lancet 395, 10236 (2020), 1569–1578.

[55] Yuxiang Xie, Nanyu Chen, and Xiaolin Shi. 2018. False discovery rate controlled
heterogeneous treatment effect detection for online controlled experiments. In
KDD.

[56] Yingqi Zhao, Donglin Zeng, A John Rush, and Michael R Kosorok. 2012. Estimat-
ing individualized treatment rules using outcome weighted learning. J. Amer.
Statist. Assoc. 107, 499 (2012), 1106–1118.

[57] Zhengyuan Zhou, Susan Athey, and Stefan Wager. 2018. Offline multi-action
policy learning: Generalization and optimization. arXiv:1810.04778 (2018).

https://www.uplift-modeling.com/en/v0.3.1/api/datasets/fetch_hillstrom.html
https://www.uplift-modeling.com/en/v0.3.1/api/datasets/fetch_hillstrom.html
https://www.medicinenet.com/liver_blood_tests/article.htm

KDD ’22, August 14–18, 2022, Washington, DC, USA Han Wu et al.

8 APPENDIX
8.1 Algorithm Details
In this section we provide more details of algorithms described in
Section 4.3. Define �̂�𝑗 (S) =

∑
𝑖∈S 𝑌

(𝑗)
𝑖

and �̂� (S) = max𝑗 �̂�𝑗 (S).

Algorithm 1: GreedyTreeSearch-HTE
Input :Maximal tree depth 𝑑 , dataset D, predictions from

HTE model {(𝑌 (0)
𝑖

,, 𝑌
(𝐾)
𝑖

)}𝑁
𝑖=1

Output :A list of segments: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 .
1. Set 𝑑𝑒𝑝𝑡ℎ := 0 and 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = {D}.
2. Add segments to 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 using greedy search:
while 𝑑𝑒𝑝𝑡ℎ ≤ 𝑚 do

Set 𝑛𝑜𝑑𝑒𝑠 := {}
for S ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do

Split S into S∗
𝑙
and S∗

𝑟 such that:

(S∗
𝑙
,S∗
𝑟) = argmax

�̂� (S𝑙)+�̂� (S𝑟)>�̂� (S) (�̂� (S𝑙) + �̂� (S𝑟)).

If such S∗
𝑙
and S∗

𝑟 exist, we add them to 𝑛𝑜𝑑𝑒𝑠;
otherwise we add S to 𝑛𝑜𝑑𝑒𝑠 .

end
Let 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 := 𝑛𝑜𝑑𝑒𝑠 and 𝑑𝑒𝑝𝑡ℎ := 𝑑𝑒𝑝𝑡ℎ + 1.

end

Algorithm 2: No-HTE-Greedy
Input :Maximal tree depth 𝑑 , dataset D.
Output : segments
1. Set depth = 0, segments = {D}.
2. Split the segments:
while depth ≤ 𝑑 do

Set nodes := {}
for S ∈ segments do

Consider splits that satisfy
min(𝐴(S𝑙), 𝐴(S𝑟)) > 𝐴(S), find the optimal split
defined as follows:

(S∗
𝑙
,S∗
𝑟) = argmaxS𝑙 ,S𝑟

min(𝐴(S𝑙), 𝐴(S𝑟)).
If such S∗

𝑙
and S∗

𝑟 exist, add them to nodes;
otherwise add S to nodes.

end
Let segments := nodes and depth := depth + 1.

end

8.2 Ensemble Algorithm Details
In this section we provide more details of algorithms described in
Section 4.3.4. Suppose we have access to 𝑄 policies Π1,Π2, . . . ,Π𝑄 .
We wish to train an ensemble policy Π̃ that uses all or a subset of
the policies Π1,Π2, . . . ,Π𝑄 while still remaining interpretable. For
ease of notation, we assume the trained policies Π1, . . . ,Π𝑄 were
obtained from another split of the dataset and we can safely use D
as the validation set on which we learn the ensemble policy.

GUIDE-ExploreExploit is inspired by the explore-exploit para-
digm in the contextual bandits literature [47]. To perform this of-
fline, we use HTE outcome predictions when the observed outcome

Algorithm 3: No-HTE-Iterative
Input :Maximal tree depth 𝑑 , number of iterations 𝑡 ,

dataset D.
Output : segments
1. Set iterations := 0 and segments = {}.
2. Add to segments iteratively
while iterations ≤ 𝑡 do

Step 1 to 2 in Algorithm 2, but change all min to max.
Denote the resulting list of segments as 𝐶 .

Add to segments the S in 𝐶 that maximizes 𝐴(S) and
remove the data points in S from D.
Set iterations := iterations + 1.

end

Algorithm 4: GUIDE-ExploreExploit
Input :Maximal tree depth 𝑑 , dataset D, predictions

{(𝑌 (0)
𝑖

,, 𝑌
(𝐾)
𝑖

)}𝑁
𝑖=1, 𝑄 trained interpretable

policies Π1, . . . ,Π𝑄 .
Output :A list of segments: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 .
1. Generate a dataset with randomly selected policies on
individuals
for 𝑖 = 1 to 𝑁 do

Randomly select a policy from Π1, . . . ,Π𝑄 . Let 𝐴𝑖 be the
index of this policy, 𝐴𝑖 ∈ 1, . . . , 𝑄 . Apply this policy to
individual 𝑖 , assume the policy assigns treatment group
𝑘 ∈ {0, 1, . . . , 𝐾}. Initialize 𝑂𝑖 = [0, . . . , 0] ∈ R𝐾+1. Let
𝑊𝑖 be the treatment received by individual 𝑖 in the
dataset.
If 𝑘 ==𝑊𝑖 , set 𝑂

(𝑘)
𝑖

:= 𝑌𝑖 . Otherwise, set 𝑂
(𝑘)
𝑖

:= 𝑌 (𝑘)
𝑖

.
end
We now have a new dataset of the form
(𝑋𝑖 , 𝐴𝑖 ∈ {1, 2, . . . , 𝑄},𝑂𝑖).

2. Apply Algorithm 1 to the new dataset, using
(𝑂 (0)
𝑖
, . . . ,𝑂

(𝐾)
𝑖

) in place of (𝑌 (0)
𝑖

, . . . , 𝑌
(𝐾)
𝑖

).

is not available in the dataset. See Algorithm 4 for the implementa-
tion. The ensemble policy Π̃ is generated using Algorithm 1 but with
the HTE predictions (𝑌 (0)

𝑖
, . . . , 𝑌

(𝐾)
𝑖

) replaced by (𝑂 (0)
𝑖
, . . . ,𝑂

(𝐾)
𝑖

).
GUIDE-OPE generates a policy ensemble by maximizing off-

policy evaluation (Equation (2)) at each split. Here, we aim to find
one feature split such that the left and right children uses a differ-
ent candidate policy. Concretely, suppose we split dataset D into
D𝑙 and D𝑟 , let Π̃ be the ensemble policy that applies Π𝑘 to D𝑙

and Π𝑞 to D𝑟 . To create Π̃, we use exhaustive search to find the
optimal feature split and candidate policies (D∗

𝑙
,D∗

𝑟 ,Π
∗
𝑘
,Π∗
𝑞) that

solvesmaxD𝑙 ,D𝑟
max1≤𝑘≠𝑞≤𝑄 OPE(D, Π̃). We assign to individual

𝑖 policy Π∗
𝑘
if individual 𝑖 ∈ D∗

𝑙
and Π∗

𝑞 otherwise.

Interpretable Personalized Experimentation KDD ’22, August 14–18, 2022, Washington, DC, USA

Figure 4: Top: Personalized policies. Bottom: Guidance tree
learned using GUIDE-ExploreExploit or GUIDE-OPE, to en-
semble two interpretable policies while remaining inter-
pretable.

8.3 Data Generation Details
The Email Marketing dataset [21], first introduced in the public
MineThatData3 Data Mining challenge, is a real dataset from an ex-
periment where customers were randomized into receiving one of
three treatments. To generate potential outcomes, for each individ-
ual 𝑖 in treatment group 𝑘 , we searched for the 5-nearest-neighbors
in treatment group 𝑘 ′, averaging their outcomes to get the poten-
tial outcome for individual 𝑖 for treatment group 𝑘 ′. To compute
distance between individuals, we used Euclidean distance in feature
space.

8.4 Training Details
Unless otherwisementioned, theHTEmodels we train are T-learners
consisting of GBDT base learners. In general, we use 40% of the
data as the test set on which we report results, and 30% of the
remaining 60% as the validation set. We learn individual policies
on the training set. When learning ensemble policies, we learn the
ensemble on the validation set.
3https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-
data.html

https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting and Notation
	4 Interpretable Personalized Experimentation
	4.1 Understanding Black-Box Heterogeneous Treatment Effect Models
	4.2 From Treatment Effects to Policies
	4.3 Interpretable Policy Generation

	5 Results on Publicly Available Data
	5.1 Comparing Explanations of HTE Models
	5.2 Comparing Policy Learning Methods
	5.3 Bridging Explanations and Policies

	6 Deployment at Meta
	6.1 Personalizing UX Layout Using Interpretable Policies
	6.2 Understanding Black-Box Personalization of Login Experience
	6.3 Product Team Interviews
	6.4 Deployment

	7 Conclusion
	References
	8 Appendix
	8.1 Algorithm Details
	8.2 Ensemble Algorithm Details
	8.3 Data Generation Details
	8.4 Training Details

