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Abstract

Fisher markets are those where buyers with budgets compete
for scarce items, a natural model for many real world markets
including online advertising. We show how market designers
can use taxes or subsidies in Fisher markets to ensure that
market equilibrium outcomes fall within certain constraints.
We adapt various types of fairness constraints proposed in
existing literature to the market case and show who benefits
and who loses from these constraints, as well as the extent
to which properties of markets including Pareto optimality,
envy-freeness, and incentive compatibility are preserved. We
find that several prior proposed constraints applied to markets
can hurt the groups they are intended to help.

1 Introduction
A market solves the economic problem of “who gets
what and why” (Roth 2015). Market mechanisms are
in place in many ‘platform businesses’ such as online
advertising, ride-sharing, and others. Unfortunately,
there is no guarantee that market outcomes will al-
ways align with other objectives of the market designer
such as business needs or legal constraints. Recent
work proposes the addition of ‘fairness constraints’ into
allocation mechanisms (Celis, Mehrotra, and Vishnoi
2019; Ilvento, Jagadeesan, and Chawla 2020;
Chawla and Jagadeesan 2022; Celli et al. 2022;
Balseiro, Lu, and Mirrokni 2021). Our contribution to
this problem two-fold. The first is technical: we show how
market designers can use price interventions in a Fisher
market to implement constraints on market outcomes. The
second is conceptual, we show the importance of studying
second-order effects of making these interventions as who
wins and who loses from interventions may not follow the
intentions of the intervention.

We focus on Fisher markets where budget constrained
buyers compete for items that are in limited supply
(Eisenberg and Gale 1959). Given prices for items, demand
is the result of buyers maximizing their utilities. An equilib-
rium in Fisher markets are prices and allocations such that
supply equals demand.

The Fisher model allows us to abstract away from the de-
tails of how a market works and study equilibria as prop-
erties of demand and supply directly. For example, even
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though individual impressions in many real world advertis-
ing markets are allocated via paced auctions, the aggregate
outcome across all advertisers and impressions is that prices
make supply meets demand - in other words, a Fisher market
equilibrium (Conitzer et al. 2019, 2022).

From the perspectives of buyers and market designers,
Fisher equilibria are well understood. The allocations are
Pareto-optimal and envy-free up to budgets (no buyer strictly
prefers another buyer’s bundle to their own bundle when bud-
gets are equal) (Varian 1974; Budish and Cantillon 2012).
When markets are ‘large’ buyers have no incentives to lie
about their valuations of items (Azevedo and Budish 2018;
Peysakhovich and Kroer 2019).

However, equilibrium-based allocations can have unde-
sirable distributive properties from the point of view of
group-level fairness. For example, recent work argues ad-
vertising markets may result in outcomes which may be
‘unfair’ in various senses (Ali et al. 2019; Zhang 2021;
Imana, Korolova, and Heidemann 2021).

We ask how market designers can ‘adjust’ market out-
comes to fix these undesirable distributional properties.

A common tool for market designers is price intervention
(Pigou 1924) and our main technical contribution is to give
designers a way to target these in Fisher markets. Given a
family of linear constraints, we show how to use convex op-
timization construct a set of price interventions - taxes and
subsidies for some purchases - such that there are allocations
which satisfy the constraints and are also market equilibria.

Many constraint families proposed in the literature can be
written as linear constraints. For each of these proposed con-
straint families we ask: who wins and who loses when these
interventions are made? The results are not always intuitive
and, because second-order effects abound in markets, do not
always achieve the stated goals of the constraints.

Motivated by recent literature (Ali et al.
2019; Celis, Mehrotra, and Vishnoi 2019;
Ilvento, Jagadeesan, and Chawla 2020;
Chawla and Jagadeesan 2022; Celli et al. 2022) we first
consider buyer parity constraints where items are split into
groups A and B and each buyer in a set is required to
have parity in allocation with respect to these groups. This
constraint guarantees parity in exposure between the A and
B groups, however it does not guarantee Pareto optimality
even when item group welfare is taken into account. In
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addition, this intervention can lead to the previously dis-
advantaged group receiving less aggregate exposure than
before.

Motivated by the work on fairness in applicant/recruiter
job search matching (Geyik, Ambler, and Kenthapadi 2019)
we also consider the ‘transpose’ of the above constraint - per
item parity constraints. Buyers have group labels A and B
and some set of items are each required to have equal ex-
posure in the buyer groups. Here the goal is that items (e.g.
recruiter impressions) have parity in exposure to buyers (e.g.
resumes of two groups of individuals). Here, again, we lack
Pareto optimality and the intervention can reduce the utility
of a previously disadvantaged buyer group.

We consider a ‘floor’ constraint where we require that a
subset of buyers have a minimum exposure to a subset of
items. We find that this intervention gives outcomes that
are Pareto optimal if item exposure utility is taken into ac-
count but not otherwise. Satisfying this constraint in market
outcomes is equivalent to the market designer subsidizing
constrained buyers’ purchases of the protected items, and
though this may sound uniformly welfare improving, we
show that buyers in the constrained group can have their wel-
fare reduced by the intervention.

Finally, we show that each of the above constraint families
maintains the incentive properties of Fisher markets as long
as the group of buyers on whom the constraint applies grows
large with the market.

2 Related Work
There is large interest in centralized market alloca-
tion as a solution to the multi-unit assignment problem
(Budish and Cantillon 2012). Here individuals report their
valuations for items, a center computes an (approximate)
equal-budget equilibrium allocation, and returns this allo-
cation to the agents. This mechanism is known as com-
petitive equilibrium from equal incomes (CEEI, (Varian
1974)) and is used in the allocation of courses to univer-
sity students though with more complex utility functions
and computations than our Fisher case (Budish et al. 2013,
2016). Recent work studies how general constraints can be
added to CEEI allocations (Echenique, Miralles, and Zhang
2021). Our work adds to this literature by showing proper-
ties of specific constraints proposed in discussions of de-
mographic fairness in allocation. We do not seek to prove
general results about all possible constraint families. In-
stead, we focus on the more restrictive case of linear
constraints in Fisher markets which allows us to derive
stronger results–i.e. the convex program to determine op-
timal taxes/subsidies–than in general unit demand markets
studied by Echenique, Miralles, and Zhang (2021).

Market equilibria in Fisher markets and their re-
lationship to convex programming are well studied
(Eisenberg and Gale 1959; Shmyrev 2009; Cole et al. 2017;
Kroer et al. 2019; Cole et al. 2017; Cole and Gkatzelis 2018;
Caragiannis et al. 2016; Murray et al. 2019; Gao and Kroer
2020). Our work complements this existing work as we show
that the convex program equivalence allows us to easily con-
struct market interventions in the forms of taxes and subsi-
dies.

A recent literature has begun to study differen-
tial outcomes in online systems (Ali et al. 2019;
Geyik, Ambler, and Kenthapadi 2019; Zhang 2021;
Imana, Korolova, and Heidemann 2021) across categories
of users (e.g. job ads across gender). Though a highly
studied cause of these differential outcomes are biases in
machine learning systems, there are also market forces that
can cause such issues. For example, Lambrecht and Tucker
(2018) studies STEM job ads competing in a real ad
market and shows that “younger women are a prized
demographic and are more expensive to show ads to. An
algorithm that simply optimizes cost-effectiveness in ad
delivery will deliver ads that were intended to be gender
neutral in an apparently discriminatory way, because of
crowding out.” Our work further highlights the importance
of understanding market dynamics before committing to
various interventions.

Other work has begun to study unintended conse-
quences of fairness interventions (Fang and Moro 2011;
Liu et al. 2018; Emelianov et al. 2022) as well as the
fact that in many cases machine learning is used in
ways where there are strategic agents (Hardt et al. 2016;
Hu, Immorlica, and Vaughan 2019). The market setting is
particular interesting for both of these literatures as markets
are places with large second order effects as well as strategic
agents.

A recent literature has looked at imple-
menting various notions of fairness in sin-
gle auctions (Celis, Mehrotra, and Vishnoi
2019; Ilvento, Jagadeesan, and Chawla 2020;
Chawla and Jagadeesan 2022), paced auctions
(Celli et al. 2022) or online allocation problems
(Balseiro, Lu, and Mirrokni 2021). Our work complements
this by showing that in markets similar implementation can
be done via the use of the price system. In addition, these
papers study the performance of their algorithms but bypass
the questions such as second order market effects, who wins
and who loses, and whether good incentive properties are
preserved.

3 Fisher Markets

Consider a market where there are n buyers (e.g. adver-
tisers) and m items (e.g. individuals’ ad slots). Each item
has supply sj which for the purposes of this section we
take to be 1. We assume that fractional allocations are al-
lowed (in ad auctions these can be thought of as random-
ized allocations). Fractional allocation ensures existence and
polynomial time computability of equilibria. In practice
Kroer and Peysakhovich (2019) shows numerically that in
many Fisher markets with linear utility, almost all assign-
ments are 1 or 0.

For an allocation x ∈ R
n×m
+ , we let xi ∈ R

m
+ be the

bundle of goods assigned to buyer i with xij being the as-
signment of item j. Each buyer has a utility function vi(xi).

We assume the utilities are all homogenous of degree one
(i.e. that αvi(xi) = vi(αxi) for α > 0), concave, and contin-
uous. We also assume that there exists an allocation x such
that vi(xi) > 0 for all buyers i.



This class of utilities includes the constant elasticity of
substitution (CES) family of utilities, and linear utilites are
special case of CES utilities where each buyer has a value
vij for each item and vi(xi) =

∑

j vijxij . Linear utilities

are precisely what is assumed in many studies of online ad-
vertising markets (Conitzer et al. 2019; Balseiro et al. 2021).

Each item will be assigned a price pj > 0, with p being
the full price vector, and each buyer has a budget Bi > 0.
We study the quasi-linear (QL) case where leftover money
is kept by the buyer; this is most natural for several real
world markets such as advertising markets. Most of our re-
sults work the same for the non-QL case.

Let δi be the leftover budget under prices p with allocation
xi (δi = Bi − pTxi). The quasilinear utility that a buyer
experiences under prices p and allocation x is then

ui(xi, δi) = vi(xi) + δi

Given a price vector p, the demand of a buyer is

Di(p) = argmax
xi:x⊤

i
p≤Bi

ui(xi, δi).

A market equilibrium is an allocation x∗ and a price
vector p∗ such that 1) allocations are demands: for each i
x∗
i ∈ Di(p

∗), and 2) markets clear: for each j,
∑

i xij ≤ 1,
with equality if pj > 0.

In Fisher markets with our family of utilities, market
equilibria always exist. The general problem of market equi-
lbrium is computationally difficult (Chen and Teng 2009;
Vazirani and Yannakakis 2011; Chen, Kroer, and Kumar
2021) but in the family of utilities we are considering
the equilibrium allocation can be found via solving a
version of the Eisenberg-Gale convex program (EG)
(Eisenberg and Gale 1959):

max
x≥0,δ≥0

∑

i

Bilog(vi(xi) + δi)− δi

s.t.
∑

i

xij ≤ 1, ∀j = 1, . . . ,m
(1)

The objective maximizes a monotone transformation of
the budget-weighted geometric mean of buyer utilities. We
can get the price vector for the market equilibrium alloca-
tion1 by looking at the values of the Lagrange multipliers on
the supply constraints at the optimum (Eisenberg and Gale
1959).2

1There may be multiple equilibria in a Fisher market, however
the multiplicity only exists ‘up to ties’ in the allocation, in the sense
that in all equilibria the prices are the same, and though allocations
may differ, the utility realized by each buyer is the same. The in-
tuition for this uniqueness comes from the convex program equiv-
alence – though there may be multiple solutions, the program is
strictly convex in utilities, which leads to uniqueness.

2The fact that Fisher equilibria are allocations that maximize
the budget weighted product of utilities is an important reason
they are studied in the fair division community. In the equal
budget case Nash social welfare has been called an “unreason-
ably effective fairness criterion” (Caragiannis et al. 2016) and is
used in practice in allocation mechanisms such as Spliddit.com
(Goldman and Procaccia 2014).

Desirable Properties of Market Equilibria

Equilibria have several desirable properties: first, they are
Pareto efficient. In the QL case this is defined using the
leftover budget as well as the seller who receives the pay-
ments. Let (xi, δi) be the bundle of goods received by buyer
i and their leftover budget with (x, δ) being all buyers’ al-
locations/budgets. An allocation (x, δ) is Pareto optimal if
for every alternative allocation (x′, δ′) such that some buyer
strictly improves their utility, it must be the case that for
some other buyer i, we have vi(x

′
i) + δ′i < vi(xi) + δi or

∑

i δ
′
i >

∑

i δi, meaning that the seller is worse off. Simi-
larly, if

∑

i δ
′
i <

∑

i δi, meaning the seller strictly improves,
then it must be the case that for some buyer i, we have
vi(x

′
i) + δ′i < vi(xi) + δi.

Equilibrium allocations are envy free when accounting
for budgets. Let (x, δ) be an equilibrium allocation. For any

two buyers i, i′ with budget ratio γ = Bi

Bi′
we always have

that vi(xi) + δi ≥ vi(γxi′) + γδi′ .
Envy freeness is related to another important property:

strategy-proofness in the large. We consider ‘large’ in the
market context follows: let there be n buyers, each with bud-
get 1. The size of the market is determined by this n. Let
there be m items with generic item j, and let the supply of
each item be sjn where sj is some constant.

Consider the Fisher mechanism: each individual reports
their type (i.e. their valuation function) ti, a center computes
the market equilibrium, and gives each individual their cor-
responding allocation. At a high level, a mechanism is said
to be strategy-proof in the large (SPL) if for any ǫ > 0
for all types ti, there exists n̄ such that if n > n̄ the gain to
any buyer of type ti from misreporting any t′i instead of their

true ti is less than ǫ.3

In Appendix C, we give a formal definition as well as ex-
pand this definition to cover the constrained case.

Importantly though, it is known that:

Known Properties 1. The centralized Fisher mechanism is
SPL.

All of these properties are important reasons that markets
are considered useful allocative mechanisms.

4 Changing Market Outcomes

We consider a market designer that wants market allocations
to satisfy certain constraints. Though in some cases (e.g.
fully centralized) the market designer can control quantities
allocated directly, in some cases the market designer must
work through the price system, or they may wish to do so
due to efficiency properties derived from doing so.

We consider a market designer that is able to subsidize
and tax purchases. Let p̄ be an n ×m matrix of these price
interventions. We assume that each buyer i faces price pj +
p̄ij for item j with p̄ij > 0 being a tax and p̄ij < 0 being

3In the real world, auction-based ad markets act like a semi-
centralized Fisher mechanism. Buyers report their valuations for
various events (clicks, conversions, impressions, etc...) and the ad
system bids for them for each impression. In this case, a notion of
strategy proofness is extremely important.



a subsidy. Let p̄i ∈ R
m be the vector of price interventions

for buyer i.
The demand of a buyer i with base prices p and interven-

tions p̄ is then Di(p+ p̄i). We can now extend the definition
of a market equilibrium. We say that given a p̄ the triple
(x, p, p̄) is a tax-subsidy equilibrium if

1. Each xi ∈ Di(p+ p̄i)

2. For all j
∑

i xij ≤ 1, with equality if pj + p̄ij > 0.

Now, suppose that the market designer wants to force the
market equilibrium outcome to satisfy a certain set of con-
straints by appropriately designing a price intervention. That
is, we look for a system of taxes and subsidies p̄ such that
there exists (x∗, p∗) such that (x∗, p∗, p̄) is a tax-subsidy
equilibrium. The next proposition shows how to construct
such a p̄:

Proposition 1. Let D = {x : A1x ≤ b1, A2x = b2} for
A1 ∈ R

K1×m, A2 ∈ R
K2×m, b1 ∈ R

K1 , b2 ∈ R
K2 be a set

of linear constraints that the market designer wants an equi-
librium allocation to satisfy. Suppose there exists a supply-
feasible allocation x such that the constraints are satisfied
and vi(xi) > 0 for all i. Then we can compute, in poly-
nomial time, a tax/subsidy p̄ along with a tax-subsidy equi-
librium (x, p, p̄) such that all of the linear constraints are
satisfied.

The proof of this proposition is instructive as it provides
the algorithm for computing p̄ from a set of constraints so
we leave a high-level version of the proof in the text.

Proof. The proof is based on a straightforward generaliza-
tion of the argument for the Eisenberg-Gale convex program
with the additional constraint that x ∈ D:

max
x≥0,δ≥0

∑

i∈T

Bi log
(

vi(xi) + δi
)

− δi

s.t.
∑

i

xij ≤ 1, ∀j,

A1x ≤ b1,
A2x = b2.

(2)

Recall that in the standard EG argument, the prices corre-
spond to the Lagrange multipliers {pj}j∈[m] on the supply
constraints at the optimum.

Here, we end up with an additional Lagrange multiplier

λ1 ∈ R
K1

+ and λ2 ∈ R
K2 .

To construct a tax-subsidy equilibrium we construct price

interventions p̄∗ij =
∑K1

k=1 A1kjλ
∗
1k +

∑K2

k=1 A2kjλ
∗
2k using

the Lagrange multipliers at optimality, set prices equal to
the Lagrange multipliers p∗j on the supply constraints, and
take the optimal solution x∗ of Eq. (2) as the corresponding
allocation.

We extend the EG argument for why the corresponding
x∗, p∗ from Eq. (1) constitute a market equilibrium, we use
KKT conditions as well as a generalization of Euler’s iden-
tity for homogeneous functions to show that (x∗, p∗, p̄∗)
form a tax-subsidy equilibrium.

Let x, δ be an optimal solution to Eq. (2). Such a solution
exists by our assumptions. We use ∇jui(xi, δi) to denote
the j’th component of an arbitrarily-selected subgradient of

vi(xi). Let νi and µij be the Lagrange multipliers for δi ≥ 0
and xij ≥ 0 respectively.

We start by showing that each buyer i spends their budget
exactly. We let ui = ui(xi, δi). Now consider the KKT con-
ditions for Eq. (2) (we leave out primal and dual feasibility
conditions here since they are straightforward):

1. (Stationarity) For each xij we have

(∇jui(xi, δi))
Bi

ui
−pj−

K1
∑

k=1

A1kjλ1k−

K2
∑

k=1

A2kjλ2k+µij = 0,

and for δi we have Bi

ui
+ νi = 1.

2. (Complementary slackness)

xijµij = 0, ∀i, j, (3)

δiνi = 0, ∀i, (4)

pj(1 −
∑

i

xij) = 0, ∀j, (5)

λ⊤
1 (b1 −A1x) = 0, (6)

λ⊤
2 (b2 −A2x) = 0. (7)

Rewriting stationarity, using the fact that xijµij = 0, and
using our definition of p̄ij , we get

(∇jui(xi, δi))
Bi

ui
≤ pj + p̄ij ,

where equality holds if xij > 0. Let p̃ij = pj+ p̄ij . Now we
multiply each side of the rewritten stationarity condition by

xij , sum over j, and add δi
Bi

ui
= δi to get

∑

j

xij(∇jui(xi, δi))
Bi

ui
+ δi

Bi

ui
=

∑

j

xij p̃ij + δi.

Now we can apply the generalized Euler identity for subd-
ifferentials (Yang and Wei 2008): let g ∈ ∂vi(xi) belong to
the subdifferential of vi at xi. Then the generalized Euler
identity states that

∑

j gjxij = vi(xi).
Applying this identity we get

∑

j

xij p̃ij + δi = ui
Bi

ui
= Bi.

Since the left-hand side is expenditure, we get that buyer i
spends their budget exactly.

Next, we need to show that for every alternative bundle
x′
i, δ

′
i such that

∑

j x
′
ip̃ij+δ′i ≤ Bi, we have ui ≥ ui(x

′
i, δ

′
i).

By concavity of ui we have

ui(x
′
i, δ

′
i)− ui ≤

∑

j

∇jui(xi, δi)(x
′
ij − xij) + δ′i − δi

=
ui

Bi

∑

j
(p̃ij − µij)(x

′
ij − xij) +

ui

Bi
(1− νi)(δ

′
i − δi)

=
ui

Bi

(

∑

j
(p̃ij − µij)x

′
ij + (1− νi)δ

′
i −Bi

)

≤
ui

Bi

(

∑

j
p̃ijx

′
ij + δ′i −Bi

)

≤ 0



where the first equality follows by stationarity, and the sec-
ond by complementary slackness and the fact that (xi, δi)
spends the budget exactly. The second-to-last inequality fol-
lows because all variables are positive, and the last inequal-
ity follows by budget feasibility. Thus we have shown that
each buyer i receives a bundle xi belonging to their demand
set Di(p+ p̄i).

Finally we need to check the market clearing condition:
this follows immediately from complementary slackness on
pj and primal feasibility.

We also get a straightforward corollary about the power
of taxes/subsidies in a Fisher market.

Corollary 1. For any feasible allocation x̄, we can use a
convex program to compute a price intervention p̄ such that
there is a tax-subsidy equilibrium (x̄, p, p̄).

The corollary above follows from the fact that {xij =
x̄ij} is a family of linear constraints. Of course, for “ex-
treme” allocations the market designer may be required to
make large taxes or subsidies.

Note that arbitrary systems of constraints may re-
quire a complex system of taxes/subsidies (e.g. specific
taxes/subsidies for each buyer/item pair).

However, the “simpler” the constraint, the simpler the
tax/subsidy required to attain it. For example, consider the
exposure floor constraint that we will study further in later
sections. Here B is a subset of buyers and R is a subset of
items and our goal is that in aggregate buyers in B have at
least some fixed level of exposure to R. This is written as the
constraint

∑

i∈C

∑

j∈B xij ≥ L.

A tax/subsidy to make our equilibrium allocation satisfy
this goal will only require one common subsidy P̄ that all
buyers in B will face for all items in R.

The effects of taxes and subsidies in Fisher markets are
not always straightforward. In particular, in common discus-
sion taxes are viewed as ways to decrease demand (and in-
crease price) and subsidies for the opposite. However, this is
more complex in Fisher markets because “base” prices p are
determined in equilibrium given the market designer chosen
tax/subsidy schedule p̄.

Consider what happens when the market designer subsi-
dizes all purchases by all individuals an equal amount p̃.
Here new equilibrium ‘base’ prices will simply be the orig-
inal equilibrium prices increased by p̃ and there will be no
net effect on revenue or allocation. Similarly, in a 2 good
market a blanket subsidy for good 1 is equivalent in effect to
a blanket tax on good 2. Thus, while we continue to refer to
price interventions as taxes and subsidies it is important to
remember that it is relative, not absolute, levels of interven-
tions that matter for outcomes.

5 Market Fairness Constraints

We now focus specifically on fairness constraints that have
been brought up in existing literature.

Many of our motivating examples are from the literature
on online ad markets. In this literature, the most commonly
used utility function is the linear utility where buyers have

vectors of utilities for each item and the total utility of a bun-
dle is the sum of the item utilities vi(xi) = vTi xi. To keep
things simple we use this for our examples going forward.

We ask whether good properties of market allocations
(Pareto optimality, envy freeness, SPL) are preserved under
these interventions. In addition, we ask who wins and who
loses from these interventions.

Per Buyer Fractional Parity

Ali et al. (2019) consider the issue of preferential exposure
of certain groups to certain kinds of job ads. A similar issue
occurs in advertising for certain legally protected categories
(e.g. housing).

This leads to our first family, per buyer fractional parity
(PBFP) constraints.

Let items have a binary attribute, either A or B. There is a
subset of buyers called constrained buyers the set of which
we denote by C. In order to combat disparate outcomes, con-
strained buyers are required to have ‘balanced’ exposure to
items (e.g., in an online ad market these buyers could be
housing or job ads). This leads to the following linear con-
straints: for any i ∈ C we require that

∑

j∈A

xij = α
∑

j∈B

xij .

Other examples in the literature can also be expressed as
choices of α. For example, the equal exposure constraint sets

α = NB

NA
where NK is the size of each group.4

For this section, we will focus on purely equal exposure
for simplicity of exposition. We know that an equilibrium
can be constructed to satisfy this constraint.

Importantly, the implicit or explicit goal of PBFP con-
straints is generally to help some underlying disadvantaged
group. Therefore, any notion of Pareto optimality or winning
and losing must also include this group.

Formally, given an allocation X . For a buyer i let the i-
disadvantaged item group be the one that has less exposure.
Let the aggregate disadvantaged item group be the one
that has less exposure to C buyers. We will also refer to this
group as the protected item group.

Let P be a subset of items called the protected group.
Let

∑

i∈C

∑

j∈P xij be the aggregate exposure of the pro-

tected group to the C buyers. An allocation (x, δ) is buyer-
protected-item Pareto optimal if for every alternative allo-
cation (x′, δ′) such that some buyer strictly improves their
utility or such that the protected group P gains more ag-
gregate exposure to C buyers, it must be the case that for
some other buyer i, we have vi(x

′
i) + δ′i < vi(xi) + δi or

∑

i δ
′
i >

∑

i δi, meaning that the seller is worse off. Simi-
larly, if

∑

i δ
′
i <

∑

i δi, meaning the seller strictly improves,
then it must be the case that for some buyer i, we have
vi(x

′
i) + δ′i < vi(xi) + δi or the protected group loses expo-

sure to C buyers. Finally, if P gets more aggregate exposure
to C buyers it must be that either some buyer or the seller

4For the context of online job ads Ali et al. (2019) also suggest
using a weight of number of expected qualified candidates in each
group rather than simply group size.



V

Buyer Item A Item B

C 1.5 .4

C .4 1.5

U 5 2

U 2 5

XEG

Buyer Item A Item B Bi − pxi ui

C .33 0 .5 1

C 0 .33 .5 1

U .66 0 0 3.33

U 0 .66 0 3.33

Price 1.5 1.5 -

XPBFP

Buyer Item A Item B Bi − pxi ui

C 0 0 1 1

C 0 0 1 1

U 1 0 0 5

U 0 1 0 5

Price 1 1 -

Table 1: An example of a set of valuations with budgets set to 1 where imposing PBFP constraints leads to both parity con-
strained (C) buyers exiting the market completely and all items going to the unconstrained (U) buyers. Under the constraints,
the U buyers get both items and get them cheaper than in the original equilibrium, so they are better off.

is strictly worse off. We refer to the original definition in
Section 3 as buyer-only Pareto optimality.

We now ask whether PBFP constraints keep good market
properties.

Proposition 2. PBFP constrained equilibria are not buyer-
only Pareto optimal. PBFP constrained equilibria are also
not buyer-protected-item-group Pareto optimal.

While lack of buyer-only Pareto optimality may not be
surprising (since the goal of the intervention is to also
improve the utility of a supply-group), the lack of buyer-
protected-item-group Pareto optimality (shown in the Ap-
pendix Example Table 5) is more troubling.

In addition, imposing parity constraints on a single buyer
also imposes pecuniary externalities (i.e. second order ef-
fects) on other buyers. The net of these second order effects
may be large. This means, winners and losers are not clear.

Consider two buyers i, k. Suppose we add parity con-
straints only to i, then i is made worse off. However, the
addition of parity constraints changes i′s demand, it reduces
demand for i′s originally advantaged group and increases
it for i′s originally disadvantaged group. This means the
second order effect can be positive or negative from buyer
k’s perspective. When implementing parity constraints on
the entire group of C buyers, these second order effects can
dominate, making net effects not obvious. In particular, the
constraint may completely miss the mark of its original goal.

Proposition 3. Adding PBFP constraints can decrease the
exposure of disadvantaged item groups to C buyers relative
to the original equilibrium.

We see this in Example Table 1 adding parity constraints
leads constrained buyers to exit the market. This means af-
ter the imposition of PBFP constraints all items receive less
exposure to the constrained buyers. However, parity con-
straints also decrease competition and thus prices paid by
unconstrained buyers.

In the context of the job advertising example, we added
parity requirements to job ads leading to a particular type
of parity - nobody receives any job ads. The only welfare
improved is the ‘regular’ advertisers who now face less com-
petition.

Note that even which group of buyers wins or loses is
not guaranteed. For example, all buyers are worse off in the
example in Appendix Table 4.

Shifting focus to envy-free and SPL properties, it is clear
that in general there may be envy between a constrained and

an unconstrained buyer who share the same valuation func-
tion (since the constrained buyer effectively has a strictly
smaller choice set). However, within group this is not the
case:

Proposition 4. If buyers i, i′ are both constrained (or both
unconstrained) then i does not have (budget adjusted) envy
for i′.

Finally, and strongly related to the envy-free property, we
see that SPL continues to hold:

Proposition 5. The Fisher market with PBFP constraints
and constant fraction γ of constrained buyers who cannot
misreport whether they are constrained is SPL.

We relegate proofs of both propositions to the Appendix.

Per Item Fractional Parity

We now turn to the ‘transpose’ of the PBFP constraint.
Geyik, Ambler, and Kenthapadi (2019) consider the case of
job candidate search and the goal of creating a balanced slate
of candidates in any search query.

The market version of such a constraint is that items
(e.g. impressions) have a balanced exposure to different
types of buyers. For example, this can be used in cer-
tain recommender systems to balance the exposure of
content consumers on certain types of content producers
(Singh and Joachims 2018; Geyik, Ambler, and Kenthapadi
2019).

We refer to such constraints as per item fractional parity
constraints (PIFP).

Formally, buyers are one of two types, either A or B.
There is a subset of items which are constrained which we
denote by C. Formally the constraint is given by

∀j ∈ C,
∑

i∈A

xij = α
∑

i∈B

xij .

As above this can always be expanded to different item
groups C1, C2, . . . with their own values of α.

As before, there are many choices of α. For simplicity, we

again focus on parity of exposure, i.e. α = NA

NB
. Note though,

that various other choices of α in the buyer parity case often
have natural equivalents in the item parity case.

Given an allocation X , we call the buyer group G which
has less exposure to items C the disadvantaged buyer
group. With this in mind, we now focus on the welfare con-
sequences of implementing per item fractional parity con-
straints.



V

Buyer Item C Item U

A1 2 1

A2 2 1.5

B1 3 2

B2 3 2

XEG

Buyer Item C Item U Bi − pxi ui

A1 .167 0 .66 1

A2 0 .75 0 1.12

B1 .417 .125 0 1.5

B2 .417 .125 0 1.5

XPIFP or XAEF

Buyer Item C Item U Bi − pxi ui

A1 .382 0 .24 1

A2 .118 .42 .14 1

B1 .25 .29 0 1.33

B2 .25 .29 0 1.33

Table 2: An example of a set of valuations with budgets set to 1 where all buyers prefer C to U and A buyers are disadvantaged
originally. However, adding PIFP constraints fails to improve their utility and decreases the utility of A2. Note that this is
equivalent an AEF constraint of requiring .5 exposure of C to A buyers.

Proposition 6. PIFP constraints do not lead to buyer-only
Pareto optimal allocations. Originally disadvantaged buyers
may be worse off after constraints are implemented.

To put this result into context, consider the use of some-
thing like CEEI for job recommendation for recruiters. Here
each item is a recruiter impression and each buyer is a job
applicant. This means we take a ‘job applicant’-centric per-
spective, i.e., we focus on maximizing the applicant’s goals
with a Nash social welfare criterion as a distributional goal.
On the other hand, to avoid discrimination on the recruiter
side, we enforce parity of exposure to each recruiter expo-
sure across some binary attribute of the applicants. Then, it
is possible that the job applicants we are trying to help are
worse off after this ‘anti-discrimination’ intervention.

It is easy to construct an example where all buyers are
worse off under PIFP by simply considering that PIFP can
force an equal split of items which clearly can be Pareto
dominated by many allocations (see Table 3 in the Ap-
pendix).

However, PIFP can backfire in a different way as we see
in Example Table 2. Here all buyers prefer item C to item
U , and A buyers are less exposed to it than B buyers in equi-
librium. Implementing PIFP fails to help A buyers. While it
increases exposure of A1 and A2 buyers to C it strictly de-
creases the welfare of buyer A2 because of increased com-
petition from B buyers for item U .

As with the PBFP constraints we see that envy free and
SPL properties continue to hold.

Proposition 7. If buyers i, i′ are both A (or both B) then
i does not have (budget adjusted) envy for i′ in PIFP con-
strained equilibrium.

Proposition 8. The Fisher market with PIFP constraints
and a constant fraction γ of buyers as A buyers where no
buyers can misreport their group affiliation is SPL.

The full proofs of these propositions are in the Appendix.

Aggregate Exposure Floor Constraints

We now turn to studying an extremely simple constraint: we
set a floor below which aggregate exposure of some buy-
ers to some items cannot fall. We let C be a subset of con-
strained buyers and P a subset of protected items.

The aggregate exposure floor constraint (AEF) is writ-
ten as

∑

i∈C

∑

j∈P

xij ≥ L

where L is our floor level. We require that L is jointly feasi-
ble with the supply constraints. When P is a singleton buyer,
this can be thought of as a minimum quota.

We see that here at least some form of Pareto optimality
is preserved:

Proposition 9. Adding AEF constraints to EG guarantees
buyer-protected-item Pareto optimality. However, it does not
guarantee buyer-only Pareto optimality.

The proof and counter-example for this proposition is can
be found in the Appendix.

The AEF constraint can be used as an alternative to both
PBFP and PIFP constraints above. Proposition 9 shows that
it is more natural to wield the AEF constraint when the mar-
ket designer cares specifically about the increasing the expo-
sure of some set of items.

However, we can also consider the buyer-only case where
there may be a disadvantaged buyer group that the designer
cares about helping. For example, in the job applicant setting
the designer may want to increase exposure of some appli-
cant group (buyers) to some group of recruiters (items).

The AEF constraint is implemented via pricing by a blan-
ket subsidy of p̄ for all buyers in C for all items in P . It
seems intuitive that subsidizing buyers can only improve
their utility, but this is actually incorrect:

Proposition 10. Adding AEF constraints can decrease the
utility of buyers in the constrained group.

This follows from the fact that AEF constraints set with
the right threshold can simulate PIFP constraints. The PIFP
constrained equilibrium in Table 2 is also achievable with
AEF constraints. Again, adding AEF constraints helps buyer
C1 get more of item P but buyer C2 prefers the non-
protected item and, after implementation of AEF constraints,
faces increased competition from buyers outside of the C
set.

Thus, using AEF constraints purely as a way to improve
buyer outcomes can also backfire.

Proposition 11. The Fisher market with AEF constraints is
SPL when no buyers can misreport their group affiliation is
per-group envy free and SPL.

Again, we relegate the proofs to the Appendix. Note that
our SPL results require that the size of the constrained group
grows to infinity as the market gets large - this means that the
subsidy is done at the buyer/item group level and is, in the in-
finite limit, not affected by the report of an individual buyer.
We cannot in general derive SPL results for individualized



quota constraints per buyer since this would imply individ-
ualized subisidies and would incentivize buyers to underre-
port their valuation in order to increase their subsidy.

6 Conclusion and Future Directions

We have studied the implementation of parity constraints via
prices. More importantly, we studied the effects of parity
constraints and the winners and losers from their implemen-
tation.

We do not make claim that one type of intervention is al-
ways superior to another. The choice of intervention will, of
course, be specific to the market being studied, the goals of
the designer, and the sensitivity to various types of tradeoffs.
Rather, we hope that our work shows that in market settings
there can be many second order effects which make inter-
ventions work differently from what is intended or expected
and these should be carefully studied and understood.
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A Appendix

B Proof of Results

We organize the section by equilibrium property.

Pareto Optimality

Counter Examples for PBFP Pareto Optimality. See Exam-
ple 5 in the Extra Examples section.

Counter Example to AEF Buyer-Only Pareto Optimality.
See Example 6 in the Extra Examples section.

Proof that AEF is Buyer-Protected-Item Pareto Optimal.
Let x∗ be the optimal solution to the standard EG program,
and let xf be the optimal solution to EG with the floor
constraint added for some set of buyers C and set of
protected items A. We break the proof into two exhaustive
cases.

Case 1: suppose that the EG objective is the same un-
der x∗ and xf . In that case, it must be that ui(x

∗
i , δ

∗
i ) =

ui(x
f
i , δ

f
i ) for all buyers i, since there is a unique set of equi-

librium utilities for EG (this follow from strict convexity of
the log function). It then follows that xf must be Pareto op-
timal, since x∗ is Pareto optimal.

Case 2: suppose that the EG objective strictly decreases.
In that case, let λ be the Lagrange multiplier on the floor con-
straint. Since the floor constraint leads to a strict decrease
in objective, we must have that λ > 0. Now, by optimal-
ity and Lagrangian duality, we know that xf must maxi-
mize the objective

∑

i Bi log ui(xi, δi)+λ
∑

i∈C

∑

j∈A xij

over the set of supply-feasible allocations x. But then it
follows immediately that xf must be buyer-protected-item
Pareto optimal, since if there exists an alternative allocation

x such that ui(xi, δi) ≥ ui(x
f
i , δ

f
i ) and

∑

i∈C

∑

j∈A xij ≥
∑

i∈C

∑

j∈A xf
ij , with strict inequality in at least one of

these inequalities, then we could strictly improve the La-
grangian objective, which is a contradiction.

Since the EG objective must either stay the same or de-
crease under xf , this shows that buyer-protected-item Pareto
optimality holds.

Envy Freeness

In this section we show that allocation according to EG
with PBFP, PIFP, or AEF constraints leads to envy-freeness
within each buyer group. The proofs will all use the follow-
ing observation:

Fact 1. For any pair of buyers i, i′ in a market equilibrium
(possibly with constraints) we have that if buyer i can afford
(Bi/Bi′)(xi′ + δi′) under their personalized prices p + p̄i,
then ui(xi, δi) ≥ (Bi/Bi′)ui(xi′ , δi′).

This follows from the fact that buyer i receives something
in their demand set along with the homogeneity of vi (and
thereby of ui). If they preferred the other bundle (or a scaled
version thereof), then they would want to buy that instead.

We can now easily prove that each allocation approach
yields (budget-adjusted) envy freeness within each group.
For unconstrained buyers the proof is the same for all the
mechanisms: since unconstrained buyers all see the same

price vector p, they already satisfy the affordability condi-
tion in Fact 1. We thus restrict each proof to handling the
case of buyers that face constraints.

Proposition 1. EG with PBFP constraints yields per-group
envy freeness.

Proof. Consider a pair of buyers i, i′ that are constrained to
satisfy PBFP. We know that their allocations xi, xi′ are such
that

∑

j∈A xij =
∑

j∈B xij and
∑

j∈A xi′j =
∑

j∈B xi′j .

It follows that p̄⊤i xi = p̄⊤i′ xi′ = 0, and moreover p̄⊤i xi′ =
∑

j∈A λxi′j −
∑

j∈B λxi′j = 0, where λ is the Lagrange

multiplier on the PBFP constraint of buyer i, which means
that p̄ij = λ for j ∈ A and p̄ij = −λ for j ∈ B. Since the
only personalized price that i faces is the Lagrange multi-
plier on their PBFP constraint, it follows immediately that i
can afford (Bi/Bi′)xi′ with leftover budget Bi/Bi′δi′ , and
thus they have no budget-adjusted envy against i′.

Proposition 2. EG with PIFP constraints yields per-group
envy freeness.

Proof. For any pair of buyers i, i′ ∈ A, we have that they
face the same price pj + λj for each item j, where λj is the
Lagrange multiplier of the PIFP constraint. It immediately
follows that i can afford (Bi/Bi′)xi′ with leftover budget
Bi/Bi′δi′ . The same argument holds for pairs of buyers in
group B.

Proposition 3. EG with AEF constraints yields per-group
envy freeness.

Proof. For any pair of buyers i, i′ ∈ C, we have that they
face the same price pj + λj for each item j, where λj is the
Lagrange multiplier of the floor constraint. It immediately
follows that i can afford (Bi/Bi′)xi′ with leftover budget
Bi/Bi′δi′ .

C Strategyproofness in the Large

First we survey the result of Azevedo and Budish (2018).
This is a result for a general class of mechanisms that specify
how agents can report types and how that leads to outcomes
(which may include allocations as well as payments). We
will consider a variant of their result covered in the appendix
of their paper: we will need a more general outcome space,
and semi-anonymous mechanisms. We use ∆T to denote the
set of probability distributions over a given set T , and ∆̄T
to denote the set of distributions with full support. We note
that this section overloads some notation that we used for
Fisher markets; this is necessary in order to stay consistent
with the notation of Azevedo and Budish (2018), and to aid
readability in terms of sticking to conventional notation.

Next we specify the assumption made on the mechanism
setting for the setting of Azevedo and Budish (2018). Let us
call this the Azevedo-Budish setting. In the Azevedo-Budish
setting, there is a finite set of types T and a measurable set
of outcomes X0 (see the appendix of Azevedo and Budish
(2018) for the measurable outcomes case) that an individual
agent may receive. For each type ti ∈ T there’s a utility
function uti : X → [0, 1], where X = ∆X0 is the set
of probability distributions over outcomes that an agent may



receive. Note that in the Azevedo-Budish setup, any possible
payments are included in X0 and uti , so we do not add an
explicit extra variable corresponding to leftover budget.

The sets T and X0 are held fixed for all market sizes. For
each market size n, where n is the number of agents, there is
a set Yn ⊂ (X0)

n of feasible allocations. In our Fisher mar-
ket setting Yn is simply the set of supply-feasible allocations
given the supply of items for a market of size n.

For a sequence of feasibility constraints {Yn}n we say
that a direct mechanism is a sequence of allocation functions
(Φn : T n → ∆((X0)

n))n∈N such that for all market sizes n
and vectors of type reports t ∈ T n, Φn(t) is contained in
Yn.5

We assume that the mechanism is semi-anonymous: the
types space is partitioned into groups T = ∪g∈GTg. In our
Fisher market setting, the groups will be the constrained and
unconstrained buyers. Each agent of type t ∈ Tg is restricted
to reporting a type in Tg. For our constrained market set-
ting, this corresponds to the fact that buyers cannot lie about
whether they are constrained, but they may misreport their
valuation function.

For each n we assume that we are given some type distri-
bution µ ∈ ∆T resulting e.g. from the underlying distribu-
tion over types composed with some, possibly randomized,
map from types to report types. We then need the function
φn : T × ∆T → X which specifies the expected alloca-
tion function for each buyer given a reported type and a type
distribution. This is defined to be

φn(ti, µ) =
∑

t−i∈Tn−1

Φn
i (ti, t−i) · Pr(t−i|µ).

Definition 1. A direct and semi-anonymous mechanism
{Φn}n is strategy-proof in the large (SPL) if, for any semi-
anonymous type distribution with full support µ ∈ ∆̄T and
ǫ > 0, there exists n0 such that for all n ≥ n0, all g ∈ G,
and all ti, t

′
i ∈ Tg,

uti(φ
n(ti, µ)) ≥ uti(φ

n(t′i, µ))− ǫ,

i.e. there exists an n0 such that for every type, the incentive
to misreport is at most ǫ.

Azevedo and Budish (2018) show the following result for
semi-anonymous direct mechanisms:

Theorem 1. Assume that we are in the Azevedo-Budish set-
ting. If a mechanism is envy free within each group, then it is
SPL. Given a type distribution with full support µ ∈ ∆̄T
and ǫ > 0, there exists C > 0 such that for all g ∈
G, ti, t

′
i ∈ Tg and n, the gain from deviating is bounded

above by C · n−1/2+ǫ.

Now we consider the following mechanism setting. Each
agent reports a type (vi, c) specifying a homogeneous, con-
cave, and continuous valuation function vi and a binary vari-
able c denoting whether they are constrained or not (where
they cannot lie about the constrained part). All agents are as-
sumed to have budget Bi = 1, and all items are assumed to

5Azevedo and Budish (2018) also handle indirect mechanisms,
but we do not need to consider that case here

have supply n/|T | (that is, supply grows linearly in the mar-
ket size; the 1/|T | factor is WLOG. and for convenience).
Then the mechanism computes an EG solution with an AEF
constraint

∑

i∈C

∑

j∈P xij ≥ L(n, |C|) (here we parameter-

ize the floor L since we generally want the floor constrain
to depend on the market size or the number of constrained
buyers). Each agent then receives the corresponding alloca-
tion xi and pays 1− δi. If multiple agents reported the same
type, then from the perspective of EG-AEF we treat them as
a single representative buyer i with budget equal to the num-
ber of agents that reported the corresponding type, and split
the allocation xi proportionally. We call this the EG-AEF
mechanism.

Assume that there is a finite set T of possible valuation
functions v. Clearly the outcome space R

m
+ is measurable,

and the feasible set of allocation for market size n is the
set of supply-feasible allocations and leftover budgets. More-
over, the mechanism is also obviously semi-anonymous: the
EG-AEF program is invariant to permutation within the con-
strained and unconstrained buyer groups. Now, let µ ∈ ∆̄T
be the full-support distribution of type reports, potentially
resulting from the underlying distribution over types com-
posed with the strategy used by each type. In terms of the
Azevedo-Budish setup, we have that X0 = R

m+1
+ is the set

of allocations vectors and leftover budget pairs (xi, δi) for a
given buyer i.

Azevedo and Budish (2018) assume that for each utility
function uti , uti(x) ∈ [0, 1] for all x ∈ X0. But this

clearly cannot hold when X0 = R
m+1
+ and our valuation

functions v are homogeneous, since if vi(xi) > 0 for any
(xi, δi) ∈ X0, then by homogeneity we can make vi(αxi)
arbitrarily large by choosing a sufficiently-large α, thus vio-
lating the utility lying in [0, 1]. To alleviate this fact, consider
a modified EG-AEF mechanism: we pick some large cutoff
k such that µti > 1/k, and then if the allocation under the
reported type vector results in an allocation x such that for
some agent i and item j we have xij > k (after splitting pro-
portionally among all agents that reported this type), then we
throw away all the items and set xij = 0, δ = 0 for all i, j.
This modified EG-AEF mechanism is clearly still envy free:
when we use an EG-AEF allocation we know that there is
no envy within each group, and there’s clearly no envy if no
agent receives any allocation whatsoever. It follows that for
any full-support type distribution µ, the modified EG-AEF
mechanism satisfies the conditions of Theorem 1 and is thus
SPL.

Now we can use this result to show that EG-AEF itself is
SPL as a mechanism.

Theorem 2. The EG-AEF mechanism is SPL. Moreover,
consider any distribution µ over types (vi, c) with full sup-
port and an ǫ > 0. Then there exists C > 0 such that for
all constrained or unconstrained buyers, true valuation func-
tions v, alternative valuation function reports v′, and market
sizes n, the gain from reporting v′ rather than v is bounded
above by C · n−1/2+ǫ.

Proof. We already saw above that the modified EG-AEF
mechanism is SPL. Now we show that the EG-AEF mech-
anism and the modified EG-AEF mechanism achieve the



same utility in an asymptotic sense.
Consider a type distribution µ with full support. Now

consider a market size n and a sampled set of buyers t =
(v1, c1), . . . , (vn, cn). If the sampled set of buyers are such
that the resulting allocation satisfies xij > k for some i, then
the payoffs differ between EG-AEF and modified EG-AEF.
Consider some particular type (vi, ci) in this scenario: under
modified EG-AEF i gets utility zero. We can upper bound
the utility that i gets under EG-AEF by the utility that they

get from receiving all the items, i.e. xi = (n/|T |)~1 and set

δi = 1, which is ui(xi, δi) = vi(xi)+1 = (n/|T |)vi(~1)+1

by homogeneity. Let v̄ = max(v,c)∈T v(~1)/|T |, in which
case we upper bound this by nv̄ + 1. So, in the worst case,
a given type may gain nv̄ + 1 from misreporting in the case
where we sample a set of types t such that EG-AEF and
modified EG-AEF differ.

Let x∗, δ∗, xmod, δmod be the solutions from EG-AEF and
modified EG-AEF, where we suppress the dependence on
the reported types and market size.

Now fix an ǫ > 0 and a type distribution with full support
µ. It follows that for any type (v, c), they can gain at most

C · n−1/2+ǫ + (nv̄ + 1)Pr(x∗ 6= xmod|µ).

Thus, in order to show that EG-AEF is SPL, we need to show
that Pr(x∗ 6= xmod|µ) gets small at a fast enough rate. In
fact, we will show that this rate is exponential.

Suppose an agent with reported type ti receives more than
k units of some item j. In that case, we must have that in the
corresponding EG-AEF allocation, the representative buyer
i received k times the number of agents that reported type
ti of that good, let number of such reports be τ . First, this
implies that the supply of the good is at least k, so this only
happens when n ≥ k. In the worst case, all n units of item j
are allocated to the representative buyer i, in which case we
need n/τ ≥ k. This implies that τ ≤ n/k. Since the type
reports of the other agents are distributed iid. according to
µ, this means that we must sample at most n/k − 1 reports
of type ti for x∗ 6= xmod to occur. The expected number of
reports of type ti is n · µti .

By Hoeffding’s inequality, we now have that the probabil-
ity of sampling n/k − 1 reports of type ti or fewer is upper
bounded by 2 exp(−(n ·µti −n/k+1)2/n). Since we chose
k such that µti > 1/k, this grows small exponentially fast
in n.

The exact same proof goes through for PIFP and PBFP as
well, because the result did not rely on any structure in the
AEF constraint apart from the fact that for any pair of buyers
i, i′ from the same group, we have that they do not envy each
other.

D Additional Examples

Please, see the tables on the next page for additional exam-
ples.



V

Buyer Item C Item U

A 2 2

B .1 3

X∗

Buyer Item C Item U Bi − pxi ui

A 1 0 0 2

B 0 1 0 3

XPIFP *

Buyer Item C Item U Bi − pxi ui

A .5 .258 0 1.52

B .5 .742 0 2.28

Table 3: An example of a set of valuations with budgets set to 1 where imposing PIFP constraints on a subset of items leads to
both originally disadvantaged (B) and originally advantaged (A) buyers being worse off.

V

Buyer Item A Item B

C 2 1

U 1 2

X∗

Buyer Item A Item B Bi − pxi

C 1 0 0

U 0 1 0

Price 1 1 -

XPBFP

Buyer Item A Item B Bi − pxi

C .5 .5 0

U .5 .5 0

Price .66 1.33 -

Table 4: An example of a set of valuations with budgets set to 1 where imposing PBFP constraints leads to both parity con-
strained (C) and unconstrained (U) buyers being worse off.

V

Buyer Item A Item B

C 2 2

U 0 2

X∗

Buyer Item A Item B Bi − pxi

C 1 0 0

U 0 1 0

XPBFP

Buyer Item A Item B Bi − pxi

C .5 .5 0

U .5 .5 0

Table 5: An example of a set of valuations with budgets set to 1 where imposing PBFP constraints leads to an outcome that is
Pareto suboptimal both in the buyer only case and the buyer-protected item case (here B is the originally disadvantaged group).
XPBFP is Pareto dominated in both cases by any allocation which transfers some item A to buyer C.

V

Buyer Item C Item U

A 0 2

B 2 0

X∗

Buyer Item C Item U Bi − pxi

A 1 0 0

B 0 1 0

XAEF

Buyer Item C Item U Bi − pxi

A .5 1 0

B .5 0 0

Table 6: An example of a set of valuations with budgets set to 1 where imposing AEF constraints of xAC ≥ .5 leads to buyer
Pareto suboptimal outcomes.
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