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1. Network Architecture
In this section, we provide the network architecture de-

tails and hyperparameters for the teacher and student mod-
els. In addition, we explain the modifications we made to
DRAM [1] for a fair comparison to our proposed method.

1.1. Teacher Model

The joint feature encoder Jt (θ) of the teacher model
first repeats and tiles the hand pose θ ∈ R25 across the
UV space and θ′ ∈ R25×64×64 is obtained Given the
hand pose feature θ′, a 2-layer convolutional neural network
(CNN) with channel sizes (16, 64) outputs a joint feature
Jt (θ) ∈ R64×64×64. AOLAT adopts a U-Net [4] architec-
ture which takes wS × wS × 7S per-light feature as an in-
put. The U-Net encoder is a 4-layer CNN with channel sizes
(7S, 64, 64, 64). Here, the joint feature is concatenated with
the output feature from the U-Net encoder and passed to the
U-Net decoder. The U-Net decoder is a 4-layer CNN with a
skip connection from the U-Net encoder, with channel sizes
(128, 128, 128, 4S). We use bilinear interpolation to down-
sample and upsample the features at each layer. The first 3S
output channels encode raw RGB volumetric texture Ti

k,
and the last S channels the shadow map Si

k. The OLAT
texture Ci

k for the i-th light is computed as follows;

Ci
k = σ(Si

k)
(
ReLU

(
λsT

i
k

)
+ λb

)
∈ RS×S×3S , (1)

where σ(·) is a sigmoid function, ReLU(x) = max(0, x),
λs is a scale parameter, and λb is a bias parameter. In our
experiments, we set λs to 25 and λb to 100.

1.2. Student Model

The joint feature encoder Js (θ) of the student model
is the same architecture as Jt (θ). However, the student
model only has a texture decoder network Aenv, which
takes a 76(= 3 + 9 + 64) × 128 × 128 feature as an in-
put. The texture decoder is an 8-layer CNN with chan-
nel sizes (76, 256, 256, 128, 128, 64, 64, 32, 3S), outputting

raw RGB volumetric texture. Given the output raw RGB
texture Tk, the relit texture Ck is expressed as

Ck = ReLU (λsTk) + λb ∈ RS×S×3S , (2)

where the same hyperparameters λs and λb are the same as
for the teacher model.

1.3. DRAM [1]

Unlike DRAM [1], our hand model is animated by the
hand pose parameter instead of facial expressions. There-
fore, we replace the latent code z in their hyper-network
architecture with the hand pose parameter θ. In addition,
we rotate the environment map to align with the coordinate
system of the hand’s root joint before it is given to the hyper-
network.

2. Comparison to GGX Microfacet BRDF [5]
Our teacher model directly estimates an OLAT render-

ing from localized light and view directions and shadow
maps. An alternative approach is to adopt a physically-
based BRDF model and render with the rendering equation.
To validate the effectiveness of our neural rendering ap-
proach, we compare the teacher model against a physically-
based rendering baseline that is heavily inspired by the re-
cent success of Relighting4D [2]. This physically-based
baseline predicts material properties such as albedo, rough-
ness, and a localized normal map per voxel and feeds these
into GGX microfacet BRDF [5] to obtain the RGB textures.

We adopt the same network architecture as the origi-
nal teacher model with the joint feature encoder for deep
shadow map and albedo estimation except for the first and
output channel sizes. Concretely, we give the local light di-
rections Fk

v and visibility map V(li)k as an input to the
shadow map U-Net to obtain the per-light shadow map
Si
k ∈ RS×S×S . Also, we feed the average texture T̄ into

the albedo U-Net to acquire the albedo Ak ∈ RS×S×3S .
Since MVP [3] does not provide normal information, we
learn normal and roughness decoders with the channel sizes
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Subject 1 Subject 2
MSE (×10−3) ↓ SSIM ↑ MSE (×10−3) ↓ SSIM ↑

Right Left Both Right Left Both Right Left Both Right Left Both
GGX [2, 5] 15.2151 19.5409 59.7985 0.9591 0.9579 0.9201 22.3159 30.0019 65.5644 0.9145 0.9231 0.8695

Ours 4.9126 5.8608 15.7589 0.9790 0.9805 0.9536 8.8205 7.9357 22.3559 0.9541 0.9559 0.9075

Table 1. Quantitative comparison of the teacher model. We measure the MSE and SSIM metrics on the right, left, and two-hand
sequences. The result shows that our method significantly outperforms the physically-based rendering baseline based on Relighting4D [2].

Ground-Truth Ours GGX [2, 5]

Figure 1. Comparison with GGX microfacet BRDF model.
While the quality of relighting with physically-based relighting
is bounded by the underlying BRDF model, our neural relight-
ing model learns to synthesize photorealistic light transport effects
without specifying material parameters.

(128, 128, 128, 4S) and the same architecture as the teacher
model. GGX microfacet BRDF [5] takes the estimated
albedo Ak, roughness Rk ∈ RS×S×S , and normal Nk ∈
RS×S×3S as input to compute RGB texture Tk. Using the
shadow map and the raw RGB texture, the predicted texture
of the k-th primitive is expressed simply by

Ci
k = σ(Si

k)f (Ak,Rk,Nk) = σ(Si
k)Tk ∈ RS×S×3S ,

(3)
where f (Ak,Rk,Nk) is the element-wise GGX micro-
facet BRDF function. To train the network, the same hy-
perparameters and loss functions are used.

Table 1 shows that our neural relighting outperforms the
physically-based baseline by a large margin. This exper-
imental result demonstrates that the quality of physically-
based rendering is bounded by the underlying parameteri-
zation, and the GGX microfacet BRDF is unable to repre-
sent complex transmissive effects such as subsurface scat-
tering. In contrast, the proposed neural relighting approach
successfully models global light transport effects. We show
the qualitative comparison between our method and the
physically-based baseline in Figure 1.

3. Runtime Analysis

The student model runtime for a single hand mainly
comprises 0.3 ms for joint feature decoding, 2.7 ms for ray
tracing, 1.5 ms for grid sampling from 3D to the UV space,
and 15.8 ms for texture decoding on NVIDIA V100.

4. Qualitative Results
4.1. Teacher Model

Figures 2 to 7 show the results of teacher model with di-
rectional lighting, near-field lighting, and environment map
rendering for Subject 1 and 2. Note that the hand poses and
lighting conditions are randomly sampled from the valida-
tion subset. These qualitative results clearly demonstrate
the high-fidelity relighting of hand models with various
poses and illuminations. Please refer to the supplemental
video for animation results.

4.2. Student Model

Figures 8 and 9 exhibit the high-fidelity renderings gen-
erated by the student model in real-time. Our visibility-
aware diffuse and specular features enable the generaliza-
tion to unseen environment maps and hand poses. More-
over, our method is able to reproduce faithful details such
as specularity and soft shadows.
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Figure 2. Qualitative results of the teacher model with directional lighting. Each image is generated by a randomly sampled pose and
lighting condition from the test dataset of Subject 1.

Figure 3. Qualitative results of the teacher model with directional lighting. Each image is generated by a randomly sampled pose and
lighting condition from the test dataset of Subject 2.



Figure 4. Qualitative results of the teacher model with near-field lighting. We sample the poses from the validation dataset of Subject
1. Note that we set the light locations around the fingers manually and the white dot represents the projected light location in the 2D image
space.

Figure 5. Qualitative results of the teacher model with near-field lighting. We sample the poses from the validation dataset of Subject
2. Note that we set the light locations around the fingers manually and the white dot represents the projected light location in the 2D image
space.



Figure 6. Qualitative results of the teacher model with environment map lighting. We sample the poses from the validation dataset of
Subject 1.

Figure 7. Qualitative results of the teacher model with environment map lighting. We sample the poses from the validation dataset of
Subject 2.



Figure 8. Qualitative results of the student model with environment map lighting. We sample the poses from the validation dataset of
Subject 1.

Figure 9. Qualitative results of the student model with environment map lighting. We sample the poses from the validation dataset of
Subject 2.
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