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ABSTRACT

State of the art text-to-speech (TTS) models can generate
high fidelity monolingual speech, but it is still challenging to
synthesize multilingual speech from the same speaker. One
major hurdle is for training data. It’s hard to find speakers
who have native proficiency in several languages. One way of
mitigating this issue is by generating polyglot corpus through
voice conversion. In this paper, we train such multilingual
TTS system through a novel cross-lingual voice conver-
sion model trained with speaker-invariant features extracted
from a speech representation model which is pre-trained
with 53 languages through self-supervised learning [1]. To
further improve the speaker identity shift, we also adopt a
speaker similarity loss term during training. We then use this
model to convert multilingual multi-speaker speech data to
the voice of the target speaker. Through augmenting data
from 4 other languages, we train a multilingual TTS system
for a native monolingual English speaker which speaks 5
languages(English, French, German, Italian and Spanish).
Our system achieves improved mean opinion score (MOS)
compared with the baseline of multi-speaker system for all
languages, specifically: 3.74 vs 3.62 for Spanish, 3.11 vs
2.71 for German, 3.47 vs 2.84 for Italian, and 2.72 vs 2.41 for
French.

Index Terms— multilingual text-to-speech, transfer
learning, self-supervised learning, voice conversion.

1. INTRODUCTION

Recent advances in speech synthesis research witnessed the
applications of neural network-based models such as Wav-
eRNN [2], Tacotron2 [3] and Transformer-TTS [4] to synthe-
size natural and intelligible speech with high audio quality.
Typically, these models are trained on a monolingual text-
audio corpus. However, synthesizing speech from multilin-
gual input data still is a challenging task. A natural way to
train such a multilingual TTS system is using training data
from either a bilingual or a polyglot speaker. For example,
this method [5] presents a Chinese-English TTS system that
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is trained with recordings from bilingual speakers. However,
it is hard to find multilingual speakers with native proficiency
in several different languages. To address this problem, one
category of approaches is focused on disentangling speaker
and language information from a monolingual speech cor-
pus. For instance,this work [6] builds a multilingual TTS
system through cross-lingual voice cloning by incorporating
an adversarial term in the loss function to enable the model
to disentangle the speaker representation. Another paradigm
to tackle the same problem of insufficient speaker-language
pairs is explicitly generating that data using cross-lingual
voice conversion.

In this paper, we propose a multilingual TTS system
trained with polyglot speech corpus generated through a
novel cross-lingual voice conversion model.To train voice
conversion model, we first extract speaker-invariant features
from a speech representation model pre-trained through self-
supervised learning to leverage large amount of multilingual
speech data [1]. Concatenated with speaker and pitch fea-
tures, those extracted features from the pre-trained model
are fed into a HiFiGAN [7] based neural vocoder to gener-
ate speech for the target speaker. We also apply multi-task
learning with a loss on speaker embedding to ensure speaker
identity similarity during training. Details of the proposed
training and inference will be discussed in Section 3. Then,
to build a multilingual TTS voice, we start with a set of
monolingual TTS voices from multiple languages(e.g. Ital-
ian, French, Spanish, German). We use the proposed voice
conversion model to convert the speaker identities of these
non-English languages to the English speaker. Hence, we
generate a synthetic dataset containing multilingual data con-
sisting of Italian, French, Spanish and German languages for
an English speaker. The synthetic dataset combined with the
English speaker’s original data is then used to train a single
speaker multilingual TTS system with the same model archi-
tectures from this work [8]. The whole system of this paper
is shown in Figure 1.

2. RELATED WORK

There have been several studies to use cross-lingual voice
conversion [9] to build polyglot speech corpus for a multi-



Fig. 1. Multilingual TTS System. Audio data is colored green
and input text is colored yellow. Proposed HifiGAN-VC and
multilingual TTS models (for the target speaker) are colored
blue.

lingual TTS system [10, 11]. Among recent works, many
papers have shown good performance using phonetic pos-
teriorgram (PPG) as speaker-invariant features for the voice
conversion model [12, 13]. However, a PPG based system
needs to go through two stages in order to get desirable in-
put features before training the audio synthesizer. It first
needs to extract PPG features from target speech using a pre-
trained Automatic Speech Recognition(ASR) model. Then
it needs to train another model to map from target speech’s
PPG to source speaker’s acoustic features (for example, mel
spectrograms, etc). In this paper, instead of using PPG, we
use self-supervised speech representations extracted from
XLSR-53 [1], a wav2vec2.0-based [14] pre-trained cross-
lingual model . Compared with PPG based approach, without
training any extra model for feature mapping, our model
can train the speech synthesizer directly with features ex-
tracted from a cross-lingual representation model. Previous
work [15, 16, 17] showed such features enable high-quality
audio generation.

3. METHOD

3.1. Multilingual Voice Conversion

The proposed voice conversion model, HiFiGAN-VC, is
based on a generative adversarial network architecture similar
to [16, 17, 18] and a HiFiGAN neural vocoder [7]. It is condi-
tioned on speaker invariant content representations, spectral
features, and, a learned speaker embedding for speaker iden-
tity to generate raw speech waveforms. Once trained, voice
conversion can be achieved by changing the speaker identity
representation to that of the desired speaker. HiFiGAN-VC is
illustrated in Figure 2.

We denote the domain of audio samples by X ⊂ R. The
representation for a raw signal is therefore a sequence of sam-
ples x = (x1, . . . , xT ), where xt ∈ X for all 1 ≤ t ≤ T .

Input Features Given an input, x, we use XLSR-53 cross-

lingual speech representation [1] as content representations.
The representation is extracted via a wav2vec 2.0 [14] en-
coder, Ew2v , trained on raw speech waveforms in multiple
languages. Speaker identity is controlled via a speaker em-
bedding v as an additional input. The speaker embeddings
are learned during training and stored in a lookup table. Fi-
nally, we use the fundamental frequency, F0(x), as a prosodic
representation. We use YAAPT [19] to extract pitch contours.

The F0 values are upsampled and concatenated to the con-
tent representation, Ew2v(x). Then, the speaker embedding
v is repeated and concatenated to each time-step of the for-
mer concatenation. To summarize, the encoding is given as
E(x) = [Ew2v(x), F0(x),v].

Decoder A neural speech synthesizer is used to gener-
ate audio output from the extracted representation described
above. We decided to use an adapted HiFiGAN [7] architec-
ture to serve as the speech synthesizer. HiFiGAN is reported
to produce good audio quality with fast inference speed. Fast
inference enables us to efficiently generate large amounts of
multilingual data in our data augmentation stage.

HiFiGAN uses a generative adversarial network (GAN)
setup to produce raw waveforms. In our work we denote the
HiFiGAN generator as G, which is a fully convolutional neu-
ral network that takes as input the encoding described above
and outputs raw waveforms. The discriminator network
D, is composed of two discriminators: (i) a multi-period
discriminator (MPD) to handle periodic signals, and, (ii) a
multi-scale discriminator (MSD) to handle long-term depen-
dencies. Both the MPD and the MSD consists of multiple
sub-discriminators, Dj , operating at different periods and
scales accordingly. Specifically, the MPD employs a total of
five period discriminators with period hops of [2, 3, 5, 7, 11]
and the MSD’s three scale discriminators operate at: the
original input scale, a ×2 downsampled scale, and a ×4
downsampled scale. Each sub-discriminator Dj minimizes
the following loss functions,

Ladv(Dj , G) =
∑
x

||1−Dj(x̂)||22,

LD(Dj , G) =
∑
x

[||1−Dj(x)||22 + ||Dj(x̂)||22],
(1)

where x̂ = G(E(x)), is the generator output.
Additionally, three more terms are added to the loss func-

tion. The first one is feature-matching loss [20] which mea-
sures the distance between discriminator activations of a real
signal and those of the generator output,

Lfm(Dj , G) =
∑
x

R∑
i=1

1

Mi
||ψi(x)− ψi(x̂)||1, (2)

where ψi is an operator which extracts the activations of the
discriminator i-th layer, Mi is the number of features in layer
i, and R is the total number of layers in Dj .



Fig. 2. HiFiGAN-VC. HifiGAN model, speaker embedder
model and wav2vec2.0 pretrained model are colored blue. In-
put features of HiFiGAN-VC are colored yellow.

The second term is a reconstruction term computed be-
tween the mel-spectrogram of an input signal and the gener-
ated signal,

Lrecon(G) =
∑
x

||φ(x)− φ(x̂)||1, (3)

where φ is a spectral operator which computes the mel-
spectrogram.

The third term is a speaker similarity term computed be-
tween the input signal and a signal converted to the identity
of the input signal,

Lspkr(G) =
∑
x

1− cos(Eid(x), Eid(ŷ)), (4)

where x is an utterance spoken by a speaker with embedding
v, ŷ = G(Ew2v(y), F0(y),v) is the conversion of sample y
to the speaker with embedding v, Eid is a speaker embedding
network [21],and, cos is the cosine similarity between two
vectors.

In conclusion, discriminatorD and generatorGminimize
the following terms accordingly:

Lmulti
G (D,G) =

J∑
j=1

[Ladv(G,Dj) + λfmLfm(G,Dj)],

+ λrLrecon(G) + λspkrLspkr(G),

Lmulti
D (D,G) =

J∑
j=1

LD(G,Dj),

(5)
whereDj is the j-th sub-discriminator ofD. We set λfm = 2,
λr = 45, and, λspkr = 1.
Data Augmentation With a trained voice conversion
model for the target speaker, we convert our multilingual
multi-speaker speech dataset to the target speaker’s voice.
Formally, we denote the domain of transcription samples by
S ⊂ R. The representation for a transcription is therefore

a sequence of samples s = (s1, . . . , sT ), where st ∈ S for
all 1 ≤ t ≤ T . Similar to raw audio signals, the length
of the transcriptions varies for different samples, thus the
number of input samples in the sequence, T , is not fixed.
A TTS training dataset is composed of n paired examples
of text and audio, S = {(si,xi)}ni=1, where si is the text
transcription of audio xi. Given the desired speaker em-
bedding v, we generate a single speaker training dataset,
S̃ = {(si, x̂i) | x̂i = G(Ew2v(xi), F0(xi),v)}ni=1.

3.2. Multilingual TTS System

Our TTS system uses the same system described in [8] which
combines multi-rate attention based acoustic and prosody
models with an adapted WaveRNN-based neural vocoder.
The linguistic frontend adopts the supersegmental Inter-
national Phonetic Alphabet (IPA) representation [22].The
linguistic features are rolled out based on the phone level
duration predictions from the prosody model. Then they are
up-sampled by repetition to generate frame level features
which are used by the acoustic model. Additionally other cat-
egories of input features are extracted: sentence level features
like language ID and speaker ID; phrase level features such
as intonation; word level features such as word embedding;
syllable level features such as syllable type; and phone level
features such as articulation diacritics. These features are
consumed by the acoustic model to predict pitch features,
periodicity features and mel-frequency cepstrum features
(MFCC). Both acoustic and prosody models are trained using
the Mean Square Error (MSE) loss function as described in
the paper [8]. For the last step, we use an adapted version
of WaveRNN neural vocoder to condition on the predicted
acoustic features and synthesize speech for the target speaker.

4. EXPERIMENTS

4.1. Datasets

Both HiFiGAN-VC and TTS models are trained with our in-
ternal dataset, which was recorded in a voice production stu-
dio by contracted professional voice talents. Each voice talent
speaks only one language. Our voice data are from voice tal-
ents speaking English, German, Italian, French and Spanish.
We use 24kHz recorded audio from 8 speakers: 3 English
speakers (32 hours, 13 hours, 13 hours), 1 French speaker(
28.5 hours), 1 German speaker (8.5 hours), 1 Spanish speaker
(23.7 hours) and 3 Italian speakers (9.8 hours, 9.7 hours, 12.3
hours).

In this work, we train a multilingual TTS system using
one of the English speakers’ voice which is able to synthesize
audio in 4 other languages: Spanish, German, French, and
Italian. For internal dataset, we only have target speaker’s
data speaking English. To obtain data for other 4 languages,
we first train a HiFiGAN-VC with internal data from 8 speak-
ers covering targeted 4 languages, as described above. Then



we use audio dataset from 4 speakers who are monolingual
and speak native German, Spanish, Italian and French re-
spectively and convert their speakers’ voice to the identity of
our target English speaker. We now have a set of data with
target speaker’s voice obtained from voice conversion in 4
languages: Spanish (8 hours), French (4 hours), German (7
hours) and Italian (9 hours) and data from paid recording in
English (32 hours).

Table 1. Speaker Identities Equal-Error-Rate(%)

Models ES DE IT FR

Base multi 44.0 29.3 60.0 40.5
Base mono 2.0 11.1 9.5 4.0
Proposed 2.0 14.5 18.3 19.0

4.2. Evaluation

We evaluate the multilingual TTS system against three base-
lines. The first baseline is a TTS system trained only with
the target speaker’s recorded monolingual data (Base mono).
The second baseline (Base multi) is a multilingual multi-
speaker TTS system trained with 8 speakers’ data described
in Datasets. The training data has the same set of language-
speaker pairs as those used in the proposed voice conversion
model. This baseline model relies on transfer learning to
enable target English speaker to speak multiple languages.
A third baseline (Base vc) is set up as the following: we
first train separate monolingual TTS models for each tar-
get language. Then we use those TTS models to synthesize
multilingual audio samples with native speakers’ voice of
that language. We then use the proposed voice conversion
model to convert those audio samples to the target English
speaker’s voice. This baseline is expected to deliver high
quality because the TTS system is trained in their native
language. However, this baseline system is undesirable for
practical applications because it’s computationally expensive
to run a TTS followed by a voice conversion model during
inference time. All the TTS systems above are using the same
spectrum, prosody, and neural vocoder models.

4.2.1. Subjective evaluation

For evaluation, we conducted a mean opinion score (MOS)
study which used test set utterances excluded from the train-
ing data. We used a crowdsourcing platform which recruited
the following number of participants for each test set lan-
guage: 277 Spanish, 39 French, 290 Italian, and 39 Ger-
man. Each rater rated randomly assigned 30 samples. For
each MOS test, the participants rated each sample between
1-5 (1:bad - 5:excellent). We asked participants to rate the
audio samples in terms of overall naturalness and intelligibil-
ity. As you can see from Figure 3, for each language, our pro-

Fig. 3. MOS results described in the section of subjec-
tive evaluation. 95% confidence intervals are depicted as
black lines. For each language, from left to right: Base vc
(colored blue), Base multi (colored orange), Base mono
(colored grey), Proposed model (colored yellow). Lan-
guages evaluated are Spanish(ES), German(DE), Italian(IT)
and French(FR).

posed model achieves higher MOS than the multi-speaker and
mono-speaker baselines. Even compared with Base vc whose
TTS models are trained with native speakers, the scores are
comparable. A selection of samples can be found on the web-
page of this paper1.

4.2.2. Objective evaluation

Besides MOS studies, we also conducted an objective evalua-
tion on speaker similarities. We enrolled the 5 speakers from
Data Augmentation with a trained speaker embedding net-
work [21]. We calculated the Equal-Error-Rate (EER) based
on speaker embeddings’ multi-class similarity matrix. The re-
sults are shown in table 1. As you can see, there is a noticeable
improvement compared with Base multi which is trained with
multi-speaker’s data. Also the proposed model narrows the
gap between the TTS model(Base mono) trained with data
purely from recordings of the target speaker.

5. CONCLUSIONS

In conclusion, we propose a new way to train multilingual
TTS with data augmentation through voice conversion. The
voice conversation model is trained with wav2vec2.0 rep-
resentations and uses HiFiGAN as the audio synthesizer.
Our MOS study shows that our proposed multilingual model
achieves better quality compared to the multi-speaker or
single-speaker baselines. It also has comparable quality with
baseline TTS models trained with native speakers’ dataset.
For future work, we plan to explore other audio synthesizer
architectures to further improve the quality of the voice con-
version model.

1https://multilingual-tts-data-aug.github.io/
multilingual_tts_data_aug/

https://multilingual-tts-data-aug.github.io/multilingual_tts_data_aug/
https://multilingual-tts-data-aug.github.io/multilingual_tts_data_aug/
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