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Abstract 

Augmented Reality / Virtual Reality (AR/VR) devices aim to connect 
people in the Metaverse with photorealistic virtual avatars, referred 
to as “Codec Avatars”. Delivering a high visual performance for 
Codec Avatar workloads, however, is a challenging task for mobile 
SoCs as AR/VR devices have limited power and form factor 
constraints. On-device, local, near-sensor processing provides the 
best system-level energy-efficiency and enables strong security and 
privacy features in the long run. In this work, we present a custom-
built, prototype small-scale mobile SoC that achieves energy-
efficient performance for running eye gaze extraction of the Codec 
Avatar model. The test-chip, fabricated in 7nm technology node, 
features a Neural Network (NN) accelerator consisting of a 1024 
Multiply-Accumulate (MAC) array, 2MB on-chip SRAM, and a 32bit 
RISC-V CPU. The featured test-chip is integrated on a prototype 
mobile VR headset to run the Codec Avatar application. This work 
aims to show the full stack design considerations of system-level 
integration, hardware-aware model customization, and circuit-level 
acceleration to meet the challenging mobile AR/VR SoC 
specifications for a Codec Avatar demonstration. By re-architecting 
the Convolutional NN (CNN) based eye gaze extraction model and 
tailoring it for the hardware, the entire model fits on the chip to 
mitigate system-level energy and latency cost of off-chip memory 
accesses. By efficiently accelerating the convolution operation at the 
circuit-level, the presented prototype SoC achieves 30 frames per 
second performance with low-power consumption at low form 
factors. With the full-stack design considerations presented in this 
work, the featured test-chip consumes 22.7mW power to run 
inference on the entire CNN model in 16.5ms from input to output for 
a single sensor image. As a result, the test-chip achieves 375 
μJ/frame/eye energy-efficiency within a 2.56 mm2 silicon area.  

 

1. Introduction 

Mobile telepresence aims for photorealistic social interactions in the 
Metaverse [1]. Enabled by mobile Augmented Reality / Virtual Reality 
(AR/VR) devices, users will be represented with their lifelike virtual 
avatars, referred to as “Codec Avatars” [2], to feel socially present 
and share experiences together even when they are physically 
distant. The main working model of the Codec Avatars application is 
provided in Figure.1. The model is implemented with two main 
building blocks: Encoding and Decoding [2][3]. To virtually represent 
faces in a realistic fashion, facial expressions of one user are 
captured and encoded on their headset. The encoded facial 
expression data is continuously transmitted to the other user(s), and 
then decoded and rendered to a life-like avatar on the other user’s 
headset. The encoding and decoding blocks simultaneously work on 
both headsets for a realistic conversation. The shared medium can 
be a virtual environment for VR headsets today, and could be 
physical locations of the users for AR glasses in the future. 

Codec Avatars application demands high visual performance with 
low latency for realistic interactions. For a smooth rendering and 
mobile telepresence quality, encoding and decoding blocks have to 
achieve high frame-rates on the captured video images coming from 
the sensors on the device. As a result, the mobile AR/VR devices 
have to provide high visual processing capability reaching a target 
frames per second (fps). Mobile AR/VR devices, however, have very 
limited physical space and tight form-factors to fit a variety of 
wearable device requirements. Therefore both battery and the 
available SoC area are very limited. To enable the Codec Avatars 
workload on mobile AR/VR devices, the headset system has to then 
achieve high visual performance and fps on a very power and area 
limited hardware platform. A custom silicon solution would provide 
the design flexibility to achieve such low power and high performance 
processing capability at the strict low form factors. 

Local, near-the-sensor computation minimizes data transmission to 
save energy and enables stronger privacy solutions in the long run. 
To meet the combined challenges of performance, power, and area 
of running Codec Avatars on mobile AR/VR devices, we built a VR 
prototype system where a part of the workload is off-loaded to a 
custom-built low-power Deep Neural Network (DNN) accelerator 
test-chip (Fig.1). The encoding and decoding blocks are 
implemented as distributed architecture models, and thus are 
distributed to different SoC components on the presented prototype 
hardware. The prototype printed circuit board (PCB) consists of the 
custom-built test-chip running a part of the encoding block of the 
Codec Avatar workload, and an FPGA communicating with the DNN 
accelerator chip and the VR headset sensors for pre/post-processing 
image data. An off-the-shelf system SoC on the prototype VR 
headset runs the decoding workloads and performs rendering of the 
virtual avatars on its compute DSP and mobile GPU components. 

The custom-built DNN accelerator test-chip is implemented in 7nm 
technology node. The prototype chip features a NN accelerator 
consisting of a 1024 Multiply-Accumulate (MAC) array, 2MB 
embedded SRAM capacity, and a 32bit RISC-V CPU to control the 
on-chip components and execute the program code. Eye gaze 
feature extraction of the encoding block is implemented as a 
Convolutional NN (CNN) architecture and is deployed on the test-
chip. The eye gaze extraction NN is designed in a hardware-friendly 
fashion to fit the model on the custom-built chip’s total embedded 
SRAM capacity. This way, the test-chip runs inference on the NN 
model without loading data from off-chip memory during runtime to 
save system-level energy and increase performance as only final 
results are sent to the system SoC. Compared to a traditional central 
SoC based processing, this approach also enables a higher level of 
user data security as all sensor data is consumed immediately 
without being buffered on the system memory. 

This work aims to show the implementation details of the whole 
design stack to realize a Machine Learning workload on AR/VR 
devices. The presented work focuses on custom SoC 
implementation, NN architecture customization and deployment on 
chip, and finally system-level integration of the chip on the prototype 
PCB for running inference on the NN model. We further provide layer 
by layer performance breakdown and silicon power measurements.  
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Fig. 1. Photo-realistic mobile conversation with Codec Avatars, 
application-level diagram of the model with two users, and a 
prototype hardware featuring custom DNN accelerator test-chip 
targeting Codec Avatars demonstration on a VR headset. 
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By combining circuit-level acceleration and hardware-aware CNN 
model customization, the prototype SoC achieves the system-level 
30fps performance target for two eyes per single frame. Our silicon 
measurements show that the presented test-chip achieves an 
average low power consumption of 22.7mW (at 500MHz, 0.75V) for 
processing the entire CNN model, while effectively accelerating 
convolution operation by trading off high power consumption for very 
short durations of time for gaining high performance. 
The rest of the paper is organized as follows. System-level details of 
the prototype hardware are provided in Section 2. Section 3 
highlights NN model customization details and a custom built 
compiler to map the NN based workload on the chip. Section 4 
provides circuit level details of the DNN test-chip. Finally, the power 
and performance results of the featured chip are provided in Section 
5. The paper is concluded in Section 6. 
 
2. Prototype VR Hardware and System-level Integration Details 
of the Featured DNN Test-Chip 
The mission of Codec Avatars is enabling authentic social interaction 
where natural eye contact plays a very critical role for providing extra 
interactive information between people. To achieve the best 
experience for social telepresence in AR/VR, a novel encoder model 
for sensing joint eye and face appearance was proposed in [4]. In 
this work, we present a prototype hardware for running the encoding 
block of the Codec Avatar application, targeting mobile telepresence 
demonstration on a VR headset. Lab images of the prototype PCB 
board and a modified Oculus Quest 2 Mobile VR Headset 
augmented with sensors and lighting placement to demonstrate the 
Codec Avatars workload are provided in Figure.2.  
The prototype PCB consists of the featured DNN accelerator chip, 
an FPGA, a DRAM chip, and a non-volatile flash type memory chip 
to store various program and model parameters. The featured 
custom-built DNN accelerator chip runs inference on the eye gaze 
extraction CNN model of the Codec Avatars encoding block. The 
FPGA communicates with the DNN chip for pre/post-processing 
data. An off-the-shelf, high-performance mobile SoC on the VR 
headset runs the decoding block workloads. 
The FPGA functions as the main system-level interface on the PCB 
and communicates with the test-chip (on the PCB) and the system 
SoC residing in the VR headset (off the PCB). The DRAM chip is 
provided for the FPGA to increase its memory capacity. The non-
volatile flash memory is also controlled by the FPGA, and it stores 
the model parameters and the application programs. The FPGA 
handles pre-/post-processing the input/output to/from the DNN 
accelerator chip, and works in parallel to process several encoding 
block related workloads. The FPGA uses both SPI interface and 

DNN chip’s parallel bus (pbus) interface to communicate with and 
load data into the accelerator chip. Interface details for the DNN chip 
are provided in Section.4. Clock and configuration signals (e.g. reset, 
etc.) for the DNN chip are generated by the FPGA and provided over 
the GPIO pins. 
To run inference on the eye gaze CNN model on the custom chip, 
model parameters are first loaded into the on-chip SRAM using the 
pbus interface before program execution. The on-chip configuration 
registers are also set with the same interface to load the program 
code binary into the RISC-V core. Since model parameters stay in 
the on-chip SRAM persistently, no further instructions or additional 
parameters are loaded during inference runtime. We implemented a 
custom compiler framework to translate the CNN model to an 
executable code and to deploy the model on the chip. Detailed 
information on model customization and deployment are provided in 
Section.3. 
For the presented work, the eye gaze extraction model is trained for 
right and left eyes separately, meaning that the same CNN 
architecture has two sets of algorithm-level model parameters for left 
and right eyes. The application performance target is achieving 30 
fps at the system-level. This translates to performing inference on 
two sensor images of the two eyes within 33.33ms latency at the 
chip-level. Therefore, the DNN chip integrated on the prototype VR 
hardware has to achieve less than 16.67ms latency for one eye to 
run inference on the entire CNN model from a single input sensor 
image to its final CNN output. 
During runtime, the on-chip CPU executes the program of the CNN 
model per single input image captured from the VR headset 
sensor(s). VR prototype sensor data is first pre-processed on the 
FPGA before sending it to the DNN chip, to form a single batch, 
16x16 sensor image of 8bit pixels with 64 channels, for one eye. This 
input activation tensor of dimension (1x16x16x64) and size 16KB is 
sent to the DNN chip as the input sensor image. Once the input is 
received, the featured chip performs inference to generate an output 
eye gaze extraction vector of size 1x1x1x3 output tensor, for one eye 
(left/right). The CPU moves from one NN layer to the next NN layer 
by executing the offline compiled hardware operations in order, 
which readily provide the correct addresses for model parameters 
(e.g. layer weights, biases, etc.) and all intermediate work data 
residing in the global SRAM and the CPU cache. After completion, 
output vector is sent back to the FPGA, where several post-
processing and merging steps are performed. The FPGA works on 
other parts of the encoding block in parallel with the DNN chip, and 
sends the final output to the main SoC in the VR headset. The chip 
performs and completes inference on both eyes in a sequential 
manner, completing two inference runs on two eyes in a single frame 
by ping-ponging between the CNN model parameters.  
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Fig. 2. System-level details of prototype VR hardware: a modified Oculus Quest 2 Mobile VR Headset, prototype printed circuit board (PCB) 
with its integrated components, and the featured custom built low-power DNN accelerator test-chip. 
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The featured chip operates at 500MHz clock frequency and 0.75V 
VDD. By customizing the CNN architecture for the featured DNN 
chip, using the in-house compiler framework to deploy and execute 
the model, and accelerating the convolution operations on the chip, 
we were able to achieve 16.51ms latency to perform inference on a 
single eye, thereby meeting the strict system-level 30fps target of the 
application. Details on how the CNN model is customized and 
deployed on chip are provided in Section.3, and circuit-level details 
of the DNN chip are further provided in Section.4. 

 

3. Customizing and Mapping Eye Gaze Extraction Model on Chip 

The eye gaze extraction model has to provide good accuracy, but at 
the same time fit well in the on-chip SRAM storage capacity of the 
featured hardware accelerator to eliminate off-chip memory 
accesses during the inference runtime, saving latency and system-
level energy. For this purpose, a mobile-friendly CNN architecture is 
implemented to extract the eye gaze of a user from video images 
with sensors capturing images inside the VR headset. High-level 
CNN architecture details targeting the featured mobile SoC are 
provided in Figure.3. Hardware-aware implementation details for the 
eye gaze CNN model to fit on chip and to facilitate meeting the 30fps 
performance target are provided in this section. 

 

3.1. CNN Architecture and Hardware-Specific Customizations 

The eye gaze NN model is comprised of convolutional (CONV) 1x1 
and 3x3 layers, and element-wise operations such as Rectified 
Linear Unit (ReLU) and Pooling. Batch-normalization is implemented 
to increase model accuracy during training. The custom 
implemented eye gaze NN model graph and its layer dimensions are 
provided in Figure.3. The DNN chip is implemented with an integer 
arithmetic based NN acceleration block. To fit the model parameters 
on chip in a persistent fashion to avoid off-chip memory accesses 
during inference runtime, as well as to meet the strict application-
level latency requirements using the on-chip acceleration circuit, the 
NN model is trained for the hardware using quantization aware 
training (QAT) with signed 8bit integer input activations and weights.  

We implemented batch-normalization folding during inference [5] to 
minimize the amount of required hardware operations. In the folded 
batch-normalization, multiplicative and additive normalization 

parameters are fused with the preceding convolution weights and 
biases, respectively. This way, batch-normalization is inherently 
performed at inference during convolutional operations of matrix-
multiplication and bias addition. The batch-normalization folding step 
is performed offline to enable efficient inference. As a result, the NN 
model only requires trained weights, biases, and quantization 
parameters stored on the chip for running inference. 

To achieve an adequate model accuracy, arithmetic operations 
following the MAC operation on 8b inputs and weights require higher 
bit precisions. For convolution operation, multiplication of 8bit inputs 
and weights generate 16bit results, which are then accumulated over 
24bits. However, the 24bit output from MAC operation needs to be 
re-quantized to an 8bit integer so that it can be used as the input for 
next layer computation. This re-quantization step requires 
normalization and rescaling operation with a scale factor generated 
offline. To meet the strict frame-rate latency considerations, we 
implemented the integer-based quantization method from [5] to 
deploy on the accelerator chip. In this method, the integer 
replacement of the single precision floating point (float32) scaling 
factor Sfloat32 is generated off-line using the following equations: 

 
(𝑆𝑐𝑎𝑙𝑒𝑖𝑛𝑝𝑢𝑡×𝑆𝑐𝑎𝑙𝑒𝑤𝑒𝑖𝑔ℎ𝑡)

𝑆𝑐𝑎𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡
= 𝑆𝑓𝑙𝑜𝑎𝑡32 = (2−𝑁𝑖𝑛𝑡8) × 𝑆0𝑖𝑛𝑡32  (1) 

 𝑁𝑖𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(− log2(2 × 𝑆𝑓𝑙𝑜𝑎𝑡32))   (2) 

 𝑆0𝑖𝑛𝑡32 = 𝑟𝑜𝑢𝑛𝑑(2(31+𝑁𝑖𝑛𝑡8) × 𝑆𝑓𝑙𝑜𝑎𝑡32)   (3) 

 

where Nint8 in (2) and S0_int32 in (3) are 8bit and 32bit integers, 
respectively. Using these equations, the quantization layer can be 
implemented on hardware with integer arithmetic based on 
multiplication and bitwise shift operations, with scaling factors 
calculated offline. Nint8 is used for the shift operation and S0_int32 is 
used for the multiply operation during quantization. To match the 
model level accuracy on hardware, the 24bit signed integer (INT24) 
accumulation outputs of the systolic-array are cast to 32bit signed 
integers in the RISC-V core before the quantization operations.  

We performed behavioral simulations to quantify the cost of carrying 
out all the normalization operations in the float32 domain by casting 
the INT24 to float32 on the chip. Our system-level RTL simulation 
results showed that casting back-and-forth between integer and 
floating-point domains in the RISC-V core is extremely costly in terms 
of chip-level performance. In a case-study, our simulations showed 
that float32 based quantization method in the core takes ~0.9μs per 
element, at 500MHz clock frequency. Applying the above integer-
based quantization method, we were able to achieve >30× faster 
quantization per element. Therefore, we implemented the integer-
based quantization method to eliminate incurring high latency 
penalty of casting back-and-forth integer and floating-point domains 
for every NN layer. 

Initially, ResNet network architecture [6] was considered to achieve 
a better model accuracy. However, residual connections introduce 
additional complexity in hardware implementation due to rescaling of 
regular path and shortcut path outputs for quantization purposes. 
Therefore, shortcut connections are dropped for a more hardware 
friendly implementation of quantization steps while trading off some 
model level accuracy. 

We used QAT with 8bit precision which can perform on par with 
float32 models [5][7] for state-of-the-art DNN architectures. From 
analyzing the training loss logs, the model accuracy is not impacted 
by quantization. In fact, model simplification for designing a hardware 
friendly architecture actually improved the training loss slightly 
compared to the full-scale baseline model in this work (loss term 1.10 
for simplified model and 1.26 for baseline model). This can be 
attributed to low resolution input used to train the simplified model 
and the optimized training flow. We further tested the trained encoder 
model by rendering the avatar animation and confirmed that there is 
no visible degradation in the animated avatar quality when low 
resolution input, quantization method, and hardware-aware model 
customizations are all employed together. 

As a result of implemented model customizations and integer-based 
quantization method, the final model parameter size that is needed 
to be stored on chip persistently adds up to less than 550KB. Eye 
gaze NN model is trained for each eye separately, and the chip can 
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Fig. 3. Eye gaze extraction CNN model dimensions and model 
graph, with the in-house built compiler framework translating 
software model layers to executable hardware operations. 
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use 2x 1MB partitions to store 2x NN model parameters for the two 
eyes. Therefore, we allocated approximately half of each 1MB on-
chip SRAM partitions to be used as model parameter storage and 
the remaining halves to be used as a scratchpad memory to store 
working data (i.e. layer-to-layer activation and intermediate data). 
Model parameters are stored contiguously in the 2x 1MB SRAM 
partitions, within the address space of 0 to 550KB for both. To switch 
back and forth for right and left eyes during runtime, all the hardware 
operation sequences remain the same while the on-chip CPU core 
points to two sets of addresses for accessing model parameters. 
Therefore while one 1MB address space of the memory is active, the 
other 1MB global partition stays in standby when processing a single 
sensor image for one eye (i.e. left/right). 

 

3.2. Custom Compiler Framework for Mapping the CNN on Chip 

We developed a custom built compiler framework to map the NN 
model onto the accelerator chip (Figure.3). The in-house built 
compiler first translates NN layers to executable hardware 
operations in C programming language. The program code in C is 
then compiled to RISC-V instructions using GNU Compiler Collection 
(GCC) tool. All of the code compilation is performed offline before 
runtime. During runtime, the on-chip CPU controls the overall 
execution of the program by orchestrating the correct sequence of 
operations and dataflow in between the core, the global SRAM, and 
the DNN accelerator block.  

Each NN layer is first compiled to a sequence of hardware operations 
specific to our custom chip. The implemented set of hardware 
operations can be grouped into three main subsets: (i) moving data 
between the global SRAM, the core, and the DNN accelerator block, 
(ii) matrix-multiplication performed on the DNN accelerator block, (iii) 
element-wise operations such as ReLU, Pool, im2col, quantization, 
casting, etc. performed on the core. 

The compiler first parses the NN model and generates a 
comprehensive list of NN layers and their tensor dimensions. The 
parsing is performed on model summary data, typically available in 
PyTorch or Tensorflow models, or by loading an ONNX model. Then 
each NN layer in the list is translated into a set of hardware 
operations. For instance a convolutional layer of filter size 3x3 (i.e. 
CONV3x3) is mapped to equivalent hardware operations as shown 
in Figure.3. While translating each layer, the compiler calculates 
correct tensor dimensions and keeps track of SRAM/core address 
pointers for model parameters and for intermediate layer data (i.e. 
input activations and MAC outputs). The RISC-V CPU has a total of 
128KB cache size. Therefore, to fit both program instructions and 
working data into the available 128KB core cache, the compiler also 
keeps track of working data size. Whenever the data size is more 
than the allocated data cache size, the compiler tiles the hardware 
operations into manageable data chunks, to be executed within a for-
loop. As a result, NN model layers are individually mapped to one or 
multiple sets of hardware operations in the correct sequence that the 
custom chip can execute.  

We implemented a function library in C language corresponding to 
the hardware operations that the RISCV core can execute. All the 

intended hardware operations are then implemented as a 
corresponding C function that is based on the C library functions. As 
a result, once the list of hardware operations is ready, the custom 
compiler translates the operations to their corresponding C functions 
and automatically prints the C code snippets. These code snippets 
in the correct sequence with correct address pointers are then 
automatically stitched together to generate the program code. The 
final code is passed to GCC to be compiled into RISC-V instructions 
in binary format. Model parameters are also printed out in binary 
format to be loaded into the chip. Instruction cache and data cache 
address space is automatically allocated by GCC during program 
compilation. As a result, the compiler framework translates the eye 
gaze CNN model to an executable code for the presented chip. 

For a hardware friendly inference, all the weight, input activation, and 
output tensors are stored in “channel-last” format, meaning that 
channels are stored in contiguous addresses in hardware. This way, 
im2col operation for pointwise convolution (i.e. conv1x1) becomes 
“free”, as the input tensor is inherently stored in the preferred format. 
To eliminate any matrix reorganization operation on the weights, 4D 
weight tensor parameters are lowered to 2D matrices offline, and 
stored in the global on-chip memory in the correct format ready to be 
loaded into the NN accelerator block without on-chip operations. 

After compilation, the program binary file takes 13.5KB of instruction 
space. As a result 14KB is allocated for instructions in the 128KB 
core cache. This means that the compiler framework has to fit the 
working data in the remaining 114KB cache space. With these limits, 
the compiler automatically fits the layer-to-layer work data within a 
78KB address space by tiling large size operations into smaller 
chunks. The custom-built compiler framework successfully fits the 
CNN model instructions and all the intermediate data within less than 
100KB cache memory space in the RISC-V core. 

As a result of the hardware-aware customizations, the eye gaze 
extraction CNN model fits on the chip for running inference. Utilizing 
QAT enables on-chip circuit acceleration of convolutional layers with 
integer-based arithmetic and the custom compiler framework further 
enables deploying the customized model on the chip. 

 

4. Low-Power DNN Accelerator Chip Implementation Details 

The presented chip integrated on the VR hardware prototype targets 
running inference on the CNN model, enabled by hardware-aware 
customizations and the in-house compiler framework highlighted in 
the previous section. The chip consists of a 1K MAC array block to 
accelerate matrix-matrix multiplication based convolution operations,  
2MB on-chip SRAM that stores both workload model parameters and 
acts as a scratchpad memory for holding intermediate data, and a 
32bit RISC-V CPU to run the program code and control the 
communication in between the on-chip components over Direct 
Memory Access (DMA) interconnect block. 

 

4.1. 1024 Multiply-Accumulate Array Accelerator Circuit Details 

Array-type convolution acceleration on SoC is demonstrated to 
enable energy efficiency for mobile platforms [8]. Systolic arrays are 
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Fig. 4. NN accelerator block details: (Left) Double-buffering and stagger unit circuit details. (Middle) Block-level circuit diagram of the NN 

accelerator featuring systolic-array based 1K Multiply-Accumulate (MAC) block. (Right) Processing-element circuit details: output-stationary, 

reduction-of-2 architecture, with two multipliers with signed 8bit integer inputs and a shared 24bit adder for accumulation. 
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further demonstrated to be efficient hardware accelerators for 
convolution [9][10]. In convolution, weight tensors consist of output 
channel, filter height, filter width, input channel and input activation 
tensors consist of batch, input height, input width, input channel. 
These four-dimensional weight and input activation tensors are first 
lowered to two-dimensional matrices (e.g. via im2col operation), and 
then multiplied via Generalized Matrix-Matrix Multiplication (GEMM) 
operation [11]. GEMM operation can be parallelized (or tiled) and 
mapped to a systolic-array in a resource efficient manner to achieve 
high throughput and energy-efficient operation. Biases are added to 
the multiplication output in an element-wise fashion.  

Top-level diagram of the NN accelerator block is provided in Figure.4 
(middle). To accelerate performing the matrix multiplication based 
convolution operation, we implemented a systolic-array consisting of 
1024 MAC elements. MAC block arithmetic is designed as 8bit 
signed integer (INT8) inputs for multiplicands that accumulate over a 
24bit signed integer (INT24). Each processing element (PE) is 
implemented as a reduction-of-2 arithmetic block, such that 2× sets 
of matrix operand inputs are multiplied in parallel in two multiplier 
circuits and are then accumulated on a shared adder block. This way, 
the PE executes 2× sets of MAC operations in a single clock cycle 
(Figure.4(right)). The chosen MAC architecture is output-stationary, 
such that the accumulation is stored in a 24bit flip-flop per PE until 
outputs are ready to be collected. Each PE unit in the array is 
pipelined in systolic fashion with flip-flops storing and passing the 
inputs and weights to the next PE in the row and the column, while 
the output flip-flop holding the accumulation result. The PEs are 
arrayed in a 16x32 configuration in Rows x Columns format, with 
each PE consisting of 2× MACs accumulating on a single output, 
therefore totaling to 1024 MAC units. The array configuration of 
16x32 was chosen to accommodate for the average layer size of our 
workloads. The reduction-of-2 architecture was chosen to minimize 
the overall MAC energy consumption for the specific technology 
node. To reduce overall dynamic energy, each column of the array 
is automatically clock-gated when the streamed input is zero during 
the beginning of each matrix multiplication. For a case study of an 
example convolutional layer that has 9.4% compute utilization ratio 
due to a small output channel dimension size of 3 (i.e. output channel 
= 3), the implemented column-wise clock-gating technique reduces 
the overall dynamic power of the PE array by 36%. 

The input matrices to the MAC block are stored in two SRAM buffers 
of sizes 64KB and 32KB. Both buffers can be chosen as either the 
input activation buffer or the weight buffer in a mutually exclusive 
fashion, depending on the convolutional layer parameter sizes. 
Buffer sizes were chosen to accommodate the average layer size of 
our workloads. Both buffers are partitioned and implemented by tiling 
8KB foundry SRAM macros. SRAM macros are clock gated with 

read/write enable signals to reduce standby energy. The internal 
banking mechanism for both memories is implemented with double-
buffering architecture as shown in Figure.4(left) to increase the 
overall NN accelerator throughput. For large data-reuse workloads, 
double-buffering increases the accelerator throughput by up to 2x. 
This way, while one memory bank feeds the MAC array with data, 
the other bank receives the next data tile to parallelize data fetching 
and minimize overall latency. The 64KB and the 32KB buffers feed 
the 32× PE columns and the 16× PE rows with 2× elements of 8bits, 
respectively. As a result, the 64KB and 32KB buffers provide 512bits 
(i.e. 32x2x8bits) and 256bits (i.e. 16x2x8bits) of data per clock cycle, 
respectively, to feed the PEs when the systolic-array is fully-utilized. 
This internal bandwidth is sustained by accessing 2x and 4x 8KB 
SRAM sub-partitions per bank with 128bit words each for the 32KB 
and the 64KB buffers, respectively. 

The output-stationary systolic array requires matrix data to be 
streamed into the array in a staggered manner. We implemented 
multiple FIFOs (implemented with flip flops) to act as shift registers 
between the SRAM buffers and the MAC array to provide a fixed 
delay for each row/column of the array. The staggering unit and a 
16-deep FIFO feeding data into the 16th row is shown in 
Figure.4(left), denoted by row<15>. Each FIFO entry is 16bits to hold 
2× elements of 8bits. The staggering unit avoids re-organizing the 
matrices in a diagonal, staggered fashion with initial zeros in the 
SRAM buffers, which is an energy expensive operation compared to 
using flip-flops for the chosen size of FIFOs. Flops in the FIFOs are 
clock-gated such that only the flop that is written a new entry receives 
a clock pulse to minimize the energy consumption of the staggering 
unit. FIFO read and write address generation is simplified by using a 
shared local counter of increment by 1, as the systolic array only 
requires sequential accesses for the rows and columns. 

Majority of the matrix sizes the workload incorporates are larger than 
the physical 16x32 PE array size. Therefore, larger size matrix 
operands are divided into smaller matrix tiles to perform the matrix 
multiplication in a tiled fashion within a loop, as shown in Figure.5. 
Consider the matrix multiplication (i.e. MatMul) example given in 

Figure.5, Moutput = M1 ✕ M2, with M1 and M2 having (A x B) and 
(B x C) matrix dimensions in Row x Column format, respectively. 
Consider also that M1 and M2 are stored in the 32KB and 64KB 
buffers, respectively. Since the on-chip PE array is implemented as 
a 16x32 size, M1 and M2 are segmented into multiple tiles of sizes 
(16 rows x B cols) and (B rows x 32 cols), respectively. The MAC 
block then goes through the M1 and M2 tiles in a nested loop fashion 
and computes the 16x32 output tiles one by one in an iterative way. 
Note that if either M1 or M2 tiles have less than 16 rows or 32 
columns, respectively, then the 16x32 PE array is not fully filled 
which creates compute under-utilization. The under-utilization 
typically occurs at the last M1 or M2 tile, and therefore the number 
of tiles to iterate in the nested loop are calculated by a ceiling function 
(i.e. round up). Compute under-utilization also occurs at later CNN 
layers in the architecture where the convolution layer dimensions are 
smaller. For M1 and M2 tiles, double buffering mechanism 
continuously writes the next tile(s) into the local SRAMs to continue 
feeding the PE array with operands. 

A state-machine is implemented to control the data flow of the NN 
accelerator block; (i) receiving data from global SRAM and storing it 
in the double buffered input/weight SRAM buffers, (ii) feeding data 
into the PE array from the local buffers through the staggering units, 
(iii) start/stop of the systolic array, and (iv) output collection. Matrix 
tiling and number of tiles are decided offline before runtime. During 
runtime, the control unit keeps track of operand sizes to orchestrate 
start/stop for the systolic array per matrix tile and the address 
generation for the input/weight buffers. The set of two consecutive 
elements going into reduction-of-2 are grouped together and stored 
contiguously to be fed into the PE arrays. The matrix re-organization 
is performed at runtime at the RISC-V core, during im2col operation.  

Once the multiplication on an output tile is completed, the outputs 
are physically collected from the opposite side of the 64KB buffer, 
such that 32x24bit elements are written to the global SRAM as 128bit 
data in 6 clock cycles. Output flops are shifted downwards in a daisy-
chain structure, and the output collection is repeated for the 16x rows 
to collect the 16x32x24bit elements. In similar fashion, biases can be 
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Fig. 5. Matrix multiplication tiling: input and output matrices are 
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of size 16x32 (Row x Cols) is computed one at a time by feeding 
input matrix tiles to the PE array in a nested loop fashion. 
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first loaded into the output flops to start the accumulation from an 
initial added value. 

The NN accelerator block occupies 0.24 mm2 silicon area on chip. 
The 64KB and 32KB SRAM buffers are physically placed on the left 
and bottom sides of the 1K MAC array, respectively, as close to the 
PEs as possible to minimize the wire energy cost. We measured the 
power consumption of the test-chip to estimate the energy efficiency 
of the standalone NN accelerator block. Details on how the power 
measurements are carried out and more comprehensive power and 
performance results at the chip-level are provided in Section.5. As a 
test-case, multiplication of matrices with sizes 128x576 and 576x64 
is performed at 500MHz clock frequency and 0.75V VDD. The test-
case dimensions are chosen to exercise realistic output tiling and 
MAC array utilization in the measurements. Cost of writing data into 
the buffers, systolic array compute operation, and final output 
collection are all included in the measurement. Global SRAM data 
read/write energy cost is not included to get the standalone NN 
accelerator block energy. Our test-chip measurements indicate that 
the standalone accelerator circuit consumes 29.43mW average 
power at 500MHz, 0.75V for this test. An additional post-layout RC 
extracted netlist simulation is performed (500MHz, 0.75V, TT, 25°C) 
to estimate the power breakdown and the cycle count at the circuit-
level. Our analysis shows that the PE array, the local SRAM buffers 
(input and weight), and the staggering unit consumes 81%, 16%, and 
3% of the NN accelerator circuit power, respectively. The standalone 
NN accelerator achieves an estimated 0.20 pJ/op of energy-
efficiency at 500MHz (where a single MAC is two OP’s). When 
including all the circuit components of 1K MACs, 96KB buffer SRAM, 
and dataflow control, the standalone NN accelerator circuit achieves 
4.98 TOPs/W (Tera Operations/sec/Watt) of performance. Different 
matrix sizes, cost of matrix tiling, and under-utilization due to non-
ideal matrix dimensions would change the estimated energy-
efficiency accordingly. 

 

4.2. Top-level Chip Implementation Details 

Top-level block diagram showing the chip organization and the chip 
layout are provided in Figure.6. The DNN accelerator chip features a 
RISC-V core to orchestrate memory accesses and data transfers 
between the systolic array and the global SRAM memory. We 
implemented a small set of instructions, where each instruction either 
directs a direct memory access (DMA) controller to transfer data from 
the 2x 1MB memory partitions to/from the systolic array or instructs 
the systolic array to compute matrix multiplication. Any remaining 
control or element-wise operations are performed in the core.  

The 32bit RISC-V CPU core is implemented with a generator and 
includes both integer and floating point arithmetic capability. We 
implemented a 128KB SRAM based cache in the core, where the 
address space is allocated for and shared by both program 
instructions and the data. Address space allocation for instruction 
and data portions of the cache is predetermined offline for a given 
program. The RISC-V core includes an integer arithmetic block for 

addition/subtraction, multiplication, and bitwise operations. It further 
includes a floating-point unit for float32 based arithmetic operations. 
Division operation is possible by utilizing either the integer or the 
floating-point arithmetic blocks for the chosen precision domain, 
however it is very costly in latency and results in accuracy loss. 

The main communication interface chosen for the global SRAM is 
the Open Core Protocol (OCP). OCP interface allows for customizing 
the interconnect signals, and therefore was chosen to minimize the 
amount of control signals and maximize the data bandwidth. Since 
the majority of DNN applications work on contiguous data (e.g. matrix 
operations and element-wise loops), we implemented a small set of 
instructions using the customized OCP based data communication 
to include burst type of memory read and write accesses. The global 
SRAM is implemented by arraying multiple partitions of 64KB SRAM 
macros. We implemented the global SRAM word size to be 128bits. 
To communicate over the OCP based interconnect, a custom OCP 
wrapper is implemented around the arrayed memory macros. Global 
SRAM macros are clock gated with enable signal (read/write) to 
reduce energy during inactive cycles. 

The DMA controller is used to load data from the global SRAM to the 
NN accelerator buffers and from the systolic array back to the shared 
global memories. The DMA controller includes 32bit registers to 
control the data access pattern (e.g., starting address, stride, ending 
address) for both the read and write ports. These registers can be 
written to by the RISC-V core through the main AXI interconnect. The 
data paths of the DMA controller, however, operate over an OCP 
interconnect which exclusively includes the two shared global 
memories, NN accelerator buffers, systolic array, and the DMA 
controller. All data ports in this interconnect are 128 bits wide. 

To communicate with off-chip sensors, the RISC-V core uses the 
APB bus for low speed interconnects (e.g., SPI, I3C, I2S, UART, 
GPIO). To provide higher bandwidth access to on-chip memories via 
off-chip (e.g., from the FPGA), the chip includes a 16-bit parallel 
memory bus (pbus) running at 50MHz, which acts as an initiator on 
the main AXI interconnect. A dedicated 128KB SRAM is 
implemented as a configuration buffer to facilitate temporarily storing 
input data coming from off-chip, connected to the AXI bus. The chip 
includes several unswitched power domains, operating at the same 
voltage, with power supplied externally in order to be able to measure 
on-chip current for various parts of the chip. The main chip clock is 
supplied externally (e.g., by the FPGA) as an LVDS clock and 
transformed into a single-ended clock on-chip (i.e. core_clk domain). 
The 7nm die occupies 2.56 mm2 silicon area. 

 

5. DNN Chip Silicon Results for Performance and Power 

This section provides detailed performance and power analysis of 
the DNN chip. Test-chips are verified successfully in a testing lab 
after fabrication. Power is measured on silicon by running the entire 
eye gaze CNN model on the chip, from input to output, for a single 
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Fig. 6. Custom-built low-power DNN accelerator test-chip details: System-level diagram and chip layout. 
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sensor input. Performance is extracted by using an in-house built 
profiler on chip-level post-layout RTL simulations. 
Boot up sequences for the on-chip core and initial sanity checks were 
first performed to verify correct test-chip functionality and its on-chip 
components. These initial tests include global SRAM read/write, 
example matrix multiplication, and passing messages over the DMA. 
After the functional verification, we deployed the workload model on 
the chip. The DNN accelerator chip runs inference on the pre-
processed sensor data at 500MHz, 0.75V, processing the entirety of 
the eye gaze CNN model from input to output while finishing within 
the target latency per single eye. Chip results after processing the 
CNN model are read-out and verified with respect to the software 
implementation of the model to match one-to-one. One time data 

loading of model parameters and program instructions before the 
runtime are omitted from the power measurements. 
 
Performance Evaluation 
We built a profiler tool to extract the execution time of various NN 
layers deployed on the chip. The profiler tool reads a decompiled 
version of the NN code and maps memory address to the entrance 
and exit of all functions in the program. The tool then scans a 
simulation dump file (e.g. in .vcd, .vpd, or .fsdb format) and marks 
the simulation time when the core program counter (e.g. pc) fetches 
instructions from memory at the entrance/return to/from a function. 
The time stamps for each function call and return are then processed 
to calculate how much time the process spends executing each 
function in the program.  
Using the in-house profiler, we extracted the performance of running 
the eye gaze CNN model on post-layout gate-netlist. The post-layout 
netlist is used to make sure the results are clock cycle accurate with 
respect to the test-chip. Performance results for running the eye gaze 
CNN per single sensor image are shown in Figure.7. The CNN layer 
dimensions were previously provided in Figure.3. The model 
consists of seven main layers with various channel and stride 
characteristics. Layers are grouped into seven for ease of reading 
the results, where each main layer changes the dimension from input 
to output. The overall model translates to 51 hardware operations 
stitched in order, as discussed in Section.3.  
The chip runs the model from its 16KB input to the final three element 
output vector in 16.51ms per sensor image, meeting the workload 
frame-rate target. Layer-by-layer model execution times are provided 
in Figure.7.(a). The performance results show that the chip spends 
most of the execution time in the first three convolutional layers, 
where L0, L1, and L2 takes approximately 32%, 19%, and 27% of 
the overall latency, respectively. The remaining layers are executed 
relatively faster, with L3, L4, L5, pool, and L6 layers taking a 
combined 21% of the overall execution time. This expected behavior 
is due to CNN layer dimensions; while the sequence of hardware 
operations remains the same for the CONV3x3 and CONV1x1 
layers, subsequent CNN layers get smaller dimension-wise. 
We further analyzed the latency of sub-layer operations. Hardware 
operations for the layers L0 (CONV3x3) and L1 (CONV1x1) are 
shown in Figure.7.(b) and Figure.7.(c), respectively. For both layers, 
our analysis shows that the NN accelerator block completes matrix 
multiplication operations very quickly, while the core is relatively 
slower since it needs to handle multiple tasks simultaneously, i.e. 
program execution, issuing memory accesses over the DMA, and 
performing all the element-wise arithmetic operations. 
For layer 0, our analysis shows that combined initial move to core 
and performing im2col takes approximately 60% of the layer’s 
execution time, as shown in Figure.7.(b). This cost is because of 
moving the initial 16KB data into core and working on the im2col 
operation that prepares the 2D input activation matrix for a 3x3 filter. 
The systolic-array MAC block accelerates the matrix-multiplication 
efficiently and completes the overall operation within less than 65μs. 
For the subsequent L1 layer, the execution time gets faster 
compared to L0, since there is no im2col cost for 1x1 filter 
convolution (as discussed in Section.3.2) and the input data size is 

 

Fig. 7. (a) Layer-by-layer performance results. (b) Latency breakdown for conv3x3 layer L0. (c) Latency breakdown for conv1x1 layer L1. 

 
Fig. 8. (a) Chip-level silicon power measurements and energy 
consumption for all layers. (b) Chip-level power consumption 
during matrix-multiply acceleration per layer compared to chip-
level total average power consumption. 
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reduced to half compared to the previous layer. L1 layer’s CONV1x1 
operation results in an output matrix size and subsequent casting 
data size that do not fit into the core’s available cache capacity. 
Therefore the “move to core & cast” operation is performed in four 
tiles, as shown in Figure.7.(c). Since the output of the L1 layer is 
larger in size than its input, post-MatMul operations take the majority 
of the execution time for the L1 layer. 

 

Power Measurements 

Test-chip power measurements are performed on standalone chip(s) 
integrated to a custom testing pcb setup to measure isolated drawn 
current. Communication to the test-chip to load program code, model 
data, and input pre-processed data is performed over GPIO using a 
tester FPGA connected to a lab desktop computer. After program 
completion, the chip dumps its output over the GPIO back to the 
FPGA to verify functional correctness in software. For silicon 
measurements, the model is run from input to output per single eye, 
and the average drawn current per voltage rail is measured via power 
supplies. Individual CNN layers are run separately on valid 
intermediate data for a finer grained silicon measurement. Average 
power consumption for the entire CNN model or a chosen specific 
layer is measured by running the associated section of the code 
repeatedly. 

Layer-by-layer silicon measurements for running the model on chip 
at 500MHz clock frequency, at 0.75V supplied to logic and memory 
power rails, on a typical corner test-chip are provided in Figure.8. 
Average power consumption per layer is provided in Figure.8.(a). 
From the performance analysis, MatMul is effectively accelerated 
and therefore core related operations occupy the majority of the 
execution time. This is also evident when we analyze the power 
consumption. Power consumption of the chip ranges from 20.63mW 
to 23.13mW for all the layers from L0 to L6, indicating an active core 
dominated power. At chip-level, the average power consumption for 
running inference on the entire eye gaze extraction model from input 
to output is measured to be 22.7mW. This measurement 
corresponds to processing the entire CNN model in 16.5ms for a 
single sensor image (i.e. for single eye). 

Layer-by-layer and total energy consumption are also provided in 
Figure.8.(a). The chip consumes 375μJ energy per eye gaze 
extraction (i.e. per single eye sensor input) over 16.5ms. Similar to 
the latency analysis, the energy consumption gradually decreases 
towards the final layers as data dimensions get smaller and the 
execution gets faster. Our analysis also shows that a given conv3x3 
layer consumes more energy when compared to its previous or next 
conv1x1 layers, due to 2D lowering and re-organization for 3x3 filters 
generating larger data sizes and thus longer execution times. 

Chip-level power consumption during NN acceleration compared to 
the overall chip-level average power consumption for the entire 
model execution are provided in Figure.8.(b). Our analysis shows 
that when the NN accelerator block is actively performing matrix 
multiplication, the chip-level power consumption goes up to 40mW 
to 55mW ranges when the compute utilization of the MAC array is 
high (L0 to L4). NN acceleration power is lower for layers 5 and 6, at 
the range of 26mW to 29mW as the MAC array utilizes clock gating 
for the small matrix dimensions in layers L5 and L6. 

Combining the power and latency analysis, our results show that the 
NN accelerator circuit block efficiently trades-off high power 
consumption coming from its compute resources for speed. The 
accelerator circuit enables completing the convolution operation 
consistently within less than 65μs for this workload to achieve overall 
energy-efficiency at the chip-level. The silicon measurements show 
that the chip effectively goes into a higher power consumption mode 
for convolution acceleration for a short burst of time, and remains in 
a lower-power mode to process the model. As a result, the presented 
mobile SoC provides efficient high-performance for CNN inference 
using its acceleration circuit while consuming lower-power on 
average. Hardware-friendly customizations further enable fitting the 

model on chip to avoid costly off-chip memory accesses during 
runtime. 

 

6. Conclusion 

System-level design and integration considerations for a custom-
built, low-power DNN accelerator test-chip is presented in this work. 
The featured test-chip is integrated on a mobile, prototype AR/VR 
hardware targeting Codec Avatars demonstration. Eye gaze 
extraction CNN model of the encoding block is offloaded to the 
presented test-chip to run inference. The test-chip consumes 
22.7mW power at 500MHz clock frequency, at 0.75V, to process the 
entire CNN architecture from input to output within 16.5ms for a 
single sensor image, thereby meeting the 30fps target performance 
for two eyes. In this work, we show that by combining efficient on-
chip compute acceleration and hardware-centric NN model 
rearchitecting, the presented prototype mobile SoC achieves 375 
μJ/frame/sensor image energy-efficiency within a 2.56mm2 silicon 
area. 
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