
1 IEEE CICC 2022

System-Level Design and Integration of a Prototype
AR/VR Hardware Featuring a Custom Low-Power DNN
Accelerator Chip in 7nm Technology for Codec Avatars

H. Ekin Sumbul, Tony F. Wu, Yuecheng Li, Syed Shakib Sarwar,

William Koven, Eli Murphy-Trotzky, Xingxing Cai, Elnaz Ansari,

Daniel H. Morris, Huichu Liu, Doyun Kim, Edith Beigne

Reality Labs, Meta

Abstract

Augmented Reality / Virtual Reality (AR/VR) devices aim to connect
people in the Metaverse with photorealistic virtual avatars, referred
to as “Codec Avatars”. Delivering a high visual performance for
Codec Avatar workloads, however, is a challenging task for mobile
SoCs as AR/VR devices have limited power and form factor
constraints. On-device, local, near-sensor processing provides the
best system-level energy-efficiency and enables strong security and
privacy features in the long run. In this work, we present a custom-
built, prototype small-scale mobile SoC that achieves energy-
efficient performance for running eye gaze extraction of the Codec
Avatar model. The test-chip, fabricated in 7nm technology node,
features a Neural Network (NN) accelerator consisting of a 1024
Multiply-Accumulate (MAC) array, 2MB on-chip SRAM, and a 32bit
RISC-V CPU. The featured test-chip is integrated on a prototype
mobile VR headset to run the Codec Avatar application. This work
aims to show the full stack design considerations of system-level
integration, hardware-aware model customization, and circuit-level
acceleration to meet the challenging mobile AR/VR SoC
specifications for a Codec Avatar demonstration. By re-architecting
the Convolutional NN (CNN) based eye gaze extraction model and
tailoring it for the hardware, the entire model fits on the chip to
mitigate system-level energy and latency cost of off-chip memory
accesses. By efficiently accelerating the convolution operation at the
circuit-level, the presented prototype SoC achieves 30 frames per
second performance with low-power consumption at low form
factors. With the full-stack design considerations presented in this
work, the featured test-chip consumes 22.7mW power to run
inference on the entire CNN model in 16.5ms from input to output for
a single sensor image. As a result, the test-chip achieves 375
μJ/frame/eye energy-efficiency within a 2.56 mm2 silicon area.

1. Introduction

Mobile telepresence aims for photorealistic social interactions in the
Metaverse [1]. Enabled by mobile Augmented Reality / Virtual Reality
(AR/VR) devices, users will be represented with their lifelike virtual
avatars, referred to as “Codec Avatars” [2], to feel socially present
and share experiences together even when they are physically
distant. The main working model of the Codec Avatars application is
provided in Figure.1. The model is implemented with two main
building blocks: Encoding and Decoding [2][3]. To virtually represent
faces in a realistic fashion, facial expressions of one user are
captured and encoded on their headset. The encoded facial
expression data is continuously transmitted to the other user(s), and
then decoded and rendered to a life-like avatar on the other user’s
headset. The encoding and decoding blocks simultaneously work on
both headsets for a realistic conversation. The shared medium can
be a virtual environment for VR headsets today, and could be
physical locations of the users for AR glasses in the future.

Codec Avatars application demands high visual performance with
low latency for realistic interactions. For a smooth rendering and
mobile telepresence quality, encoding and decoding blocks have to
achieve high frame-rates on the captured video images coming from
the sensors on the device. As a result, the mobile AR/VR devices
have to provide high visual processing capability reaching a target
frames per second (fps). Mobile AR/VR devices, however, have very
limited physical space and tight form-factors to fit a variety of
wearable device requirements. Therefore both battery and the
available SoC area are very limited. To enable the Codec Avatars
workload on mobile AR/VR devices, the headset system has to then
achieve high visual performance and fps on a very power and area
limited hardware platform. A custom silicon solution would provide
the design flexibility to achieve such low power and high performance
processing capability at the strict low form factors.

Local, near-the-sensor computation minimizes data transmission to
save energy and enables stronger privacy solutions in the long run.
To meet the combined challenges of performance, power, and area
of running Codec Avatars on mobile AR/VR devices, we built a VR
prototype system where a part of the workload is off-loaded to a
custom-built low-power Deep Neural Network (DNN) accelerator
test-chip (Fig.1). The encoding and decoding blocks are
implemented as distributed architecture models, and thus are
distributed to different SoC components on the presented prototype
hardware. The prototype printed circuit board (PCB) consists of the
custom-built test-chip running a part of the encoding block of the
Codec Avatar workload, and an FPGA communicating with the DNN
accelerator chip and the VR headset sensors for pre/post-processing
image data. An off-the-shelf system SoC on the prototype VR
headset runs the decoding workloads and performs rendering of the
virtual avatars on its compute DSP and mobile GPU components.

The custom-built DNN accelerator test-chip is implemented in 7nm
technology node. The prototype chip features a NN accelerator
consisting of a 1024 Multiply-Accumulate (MAC) array, 2MB
embedded SRAM capacity, and a 32bit RISC-V CPU to control the
on-chip components and execute the program code. Eye gaze
feature extraction of the encoding block is implemented as a
Convolutional NN (CNN) architecture and is deployed on the test-
chip. The eye gaze extraction NN is designed in a hardware-friendly
fashion to fit the model on the custom-built chip’s total embedded
SRAM capacity. This way, the test-chip runs inference on the NN
model without loading data from off-chip memory during runtime to
save system-level energy and increase performance as only final
results are sent to the system SoC. Compared to a traditional central
SoC based processing, this approach also enables a higher level of
user data security as all sensor data is consumed immediately
without being buffered on the system memory.

This work aims to show the implementation details of the whole
design stack to realize a Machine Learning workload on AR/VR
devices. The presented work focuses on custom SoC
implementation, NN architecture customization and deployment on
chip, and finally system-level integration of the chip on the prototype
PCB for running inference on the NN model. We further provide layer
by layer performance breakdown and silicon power measurements.

Prototype

VR

Board

DNN

Chip

Low-Power DNN

Accelerator

Chip in 7nm

Diagram Source: [3] X. Zhang, et.al.,DAC

Image source: Tech@Facebook, Codec Avatars: Conversation in VR Video, Sep 25, 2019

Codec Avatars: Conversation in VR

VR

Headset

Fig. 1. Photo-realistic mobile conversation with Codec Avatars,
application-level diagram of the model with two users, and a
prototype hardware featuring custom DNN accelerator test-chip
targeting Codec Avatars demonstration on a VR headset.

978-1-6654-0756-4/22/$31.00 ©2022 IEEE

 IEEE CICC 2022 2

By combining circuit-level acceleration and hardware-aware CNN
model customization, the prototype SoC achieves the system-level
30fps performance target for two eyes per single frame. Our silicon
measurements show that the presented test-chip achieves an
average low power consumption of 22.7mW (at 500MHz, 0.75V) for
processing the entire CNN model, while effectively accelerating
convolution operation by trading off high power consumption for very
short durations of time for gaining high performance.
The rest of the paper is organized as follows. System-level details of
the prototype hardware are provided in Section 2. Section 3
highlights NN model customization details and a custom built
compiler to map the NN based workload on the chip. Section 4
provides circuit level details of the DNN test-chip. Finally, the power
and performance results of the featured chip are provided in Section
5. The paper is concluded in Section 6.

2. Prototype VR Hardware and System-level Integration Details
of the Featured DNN Test-Chip
The mission of Codec Avatars is enabling authentic social interaction
where natural eye contact plays a very critical role for providing extra
interactive information between people. To achieve the best
experience for social telepresence in AR/VR, a novel encoder model
for sensing joint eye and face appearance was proposed in [4]. In
this work, we present a prototype hardware for running the encoding
block of the Codec Avatar application, targeting mobile telepresence
demonstration on a VR headset. Lab images of the prototype PCB
board and a modified Oculus Quest 2 Mobile VR Headset
augmented with sensors and lighting placement to demonstrate the
Codec Avatars workload are provided in Figure.2.
The prototype PCB consists of the featured DNN accelerator chip,
an FPGA, a DRAM chip, and a non-volatile flash type memory chip
to store various program and model parameters. The featured
custom-built DNN accelerator chip runs inference on the eye gaze
extraction CNN model of the Codec Avatars encoding block. The
FPGA communicates with the DNN chip for pre/post-processing
data. An off-the-shelf, high-performance mobile SoC on the VR
headset runs the decoding block workloads.
The FPGA functions as the main system-level interface on the PCB
and communicates with the test-chip (on the PCB) and the system
SoC residing in the VR headset (off the PCB). The DRAM chip is
provided for the FPGA to increase its memory capacity. The non-
volatile flash memory is also controlled by the FPGA, and it stores
the model parameters and the application programs. The FPGA
handles pre-/post-processing the input/output to/from the DNN
accelerator chip, and works in parallel to process several encoding
block related workloads. The FPGA uses both SPI interface and

DNN chip’s parallel bus (pbus) interface to communicate with and
load data into the accelerator chip. Interface details for the DNN chip
are provided in Section.4. Clock and configuration signals (e.g. reset,
etc.) for the DNN chip are generated by the FPGA and provided over
the GPIO pins.
To run inference on the eye gaze CNN model on the custom chip,
model parameters are first loaded into the on-chip SRAM using the
pbus interface before program execution. The on-chip configuration
registers are also set with the same interface to load the program
code binary into the RISC-V core. Since model parameters stay in
the on-chip SRAM persistently, no further instructions or additional
parameters are loaded during inference runtime. We implemented a
custom compiler framework to translate the CNN model to an
executable code and to deploy the model on the chip. Detailed
information on model customization and deployment are provided in
Section.3.
For the presented work, the eye gaze extraction model is trained for
right and left eyes separately, meaning that the same CNN
architecture has two sets of algorithm-level model parameters for left
and right eyes. The application performance target is achieving 30
fps at the system-level. This translates to performing inference on
two sensor images of the two eyes within 33.33ms latency at the
chip-level. Therefore, the DNN chip integrated on the prototype VR
hardware has to achieve less than 16.67ms latency for one eye to
run inference on the entire CNN model from a single input sensor
image to its final CNN output.
During runtime, the on-chip CPU executes the program of the CNN
model per single input image captured from the VR headset
sensor(s). VR prototype sensor data is first pre-processed on the
FPGA before sending it to the DNN chip, to form a single batch,
16x16 sensor image of 8bit pixels with 64 channels, for one eye. This
input activation tensor of dimension (1x16x16x64) and size 16KB is
sent to the DNN chip as the input sensor image. Once the input is
received, the featured chip performs inference to generate an output
eye gaze extraction vector of size 1x1x1x3 output tensor, for one eye
(left/right). The CPU moves from one NN layer to the next NN layer
by executing the offline compiled hardware operations in order,
which readily provide the correct addresses for model parameters
(e.g. layer weights, biases, etc.) and all intermediate work data
residing in the global SRAM and the CPU cache. After completion,
output vector is sent back to the FPGA, where several post-
processing and merging steps are performed. The FPGA works on
other parts of the encoding block in parallel with the DNN chip, and
sends the final output to the main SoC in the VR headset. The chip
performs and completes inference on both eyes in a sequential
manner, completing two inference runs on two eyes in a single frame
by ping-ponging between the CNN model parameters.

VR Headset
with Prototype

Board

Prototype
VR Board

Prototype Printed
Circuit Board
Featuring DNN
Accelerator ChipDNN

Chip

Custom built
low-power DNN
Accelerator
Chip in 7nm

FPGA

DRAM
Flash

Fig. 2. System-level details of prototype VR hardware: a modified Oculus Quest 2 Mobile VR Headset, prototype printed circuit board (PCB)
with its integrated components, and the featured custom built low-power DNN accelerator test-chip.

3 IEEE CICC 2022

The featured chip operates at 500MHz clock frequency and 0.75V
VDD. By customizing the CNN architecture for the featured DNN
chip, using the in-house compiler framework to deploy and execute
the model, and accelerating the convolution operations on the chip,
we were able to achieve 16.51ms latency to perform inference on a
single eye, thereby meeting the strict system-level 30fps target of the
application. Details on how the CNN model is customized and
deployed on chip are provided in Section.3, and circuit-level details
of the DNN chip are further provided in Section.4.

3. Customizing and Mapping Eye Gaze Extraction Model on Chip

The eye gaze extraction model has to provide good accuracy, but at
the same time fit well in the on-chip SRAM storage capacity of the
featured hardware accelerator to eliminate off-chip memory
accesses during the inference runtime, saving latency and system-
level energy. For this purpose, a mobile-friendly CNN architecture is
implemented to extract the eye gaze of a user from video images
with sensors capturing images inside the VR headset. High-level
CNN architecture details targeting the featured mobile SoC are
provided in Figure.3. Hardware-aware implementation details for the
eye gaze CNN model to fit on chip and to facilitate meeting the 30fps
performance target are provided in this section.

3.1. CNN Architecture and Hardware-Specific Customizations

The eye gaze NN model is comprised of convolutional (CONV) 1x1
and 3x3 layers, and element-wise operations such as Rectified
Linear Unit (ReLU) and Pooling. Batch-normalization is implemented
to increase model accuracy during training. The custom
implemented eye gaze NN model graph and its layer dimensions are
provided in Figure.3. The DNN chip is implemented with an integer
arithmetic based NN acceleration block. To fit the model parameters
on chip in a persistent fashion to avoid off-chip memory accesses
during inference runtime, as well as to meet the strict application-
level latency requirements using the on-chip acceleration circuit, the
NN model is trained for the hardware using quantization aware
training (QAT) with signed 8bit integer input activations and weights.

We implemented batch-normalization folding during inference [5] to
minimize the amount of required hardware operations. In the folded
batch-normalization, multiplicative and additive normalization

parameters are fused with the preceding convolution weights and
biases, respectively. This way, batch-normalization is inherently
performed at inference during convolutional operations of matrix-
multiplication and bias addition. The batch-normalization folding step
is performed offline to enable efficient inference. As a result, the NN
model only requires trained weights, biases, and quantization
parameters stored on the chip for running inference.

To achieve an adequate model accuracy, arithmetic operations
following the MAC operation on 8b inputs and weights require higher
bit precisions. For convolution operation, multiplication of 8bit inputs
and weights generate 16bit results, which are then accumulated over
24bits. However, the 24bit output from MAC operation needs to be
re-quantized to an 8bit integer so that it can be used as the input for
next layer computation. This re-quantization step requires
normalization and rescaling operation with a scale factor generated
offline. To meet the strict frame-rate latency considerations, we
implemented the integer-based quantization method from [5] to
deploy on the accelerator chip. In this method, the integer
replacement of the single precision floating point (float32) scaling
factor Sfloat32 is generated off-line using the following equations:

(𝑆𝑐𝑎𝑙𝑒𝑖𝑛𝑝𝑢𝑡×𝑆𝑐𝑎𝑙𝑒𝑤𝑒𝑖𝑔ℎ𝑡)

𝑆𝑐𝑎𝑙𝑒𝑜𝑢𝑡𝑝𝑢𝑡
= 𝑆𝑓𝑙𝑜𝑎𝑡32 = (2−𝑁𝑖𝑛𝑡8) × 𝑆0𝑖𝑛𝑡32 (1)

 𝑁𝑖𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(− log2(2 × 𝑆𝑓𝑙𝑜𝑎𝑡32)) (2)

 𝑆0𝑖𝑛𝑡32 = 𝑟𝑜𝑢𝑛𝑑(2(31+𝑁𝑖𝑛𝑡8) × 𝑆𝑓𝑙𝑜𝑎𝑡32) (3)

where Nint8 in (2) and S0_int32 in (3) are 8bit and 32bit integers,
respectively. Using these equations, the quantization layer can be
implemented on hardware with integer arithmetic based on
multiplication and bitwise shift operations, with scaling factors
calculated offline. Nint8 is used for the shift operation and S0_int32 is
used for the multiply operation during quantization. To match the
model level accuracy on hardware, the 24bit signed integer (INT24)
accumulation outputs of the systolic-array are cast to 32bit signed
integers in the RISC-V core before the quantization operations.

We performed behavioral simulations to quantify the cost of carrying
out all the normalization operations in the float32 domain by casting
the INT24 to float32 on the chip. Our system-level RTL simulation
results showed that casting back-and-forth between integer and
floating-point domains in the RISC-V core is extremely costly in terms
of chip-level performance. In a case-study, our simulations showed
that float32 based quantization method in the core takes ~0.9μs per
element, at 500MHz clock frequency. Applying the above integer-
based quantization method, we were able to achieve >30× faster
quantization per element. Therefore, we implemented the integer-
based quantization method to eliminate incurring high latency
penalty of casting back-and-forth integer and floating-point domains
for every NN layer.

Initially, ResNet network architecture [6] was considered to achieve
a better model accuracy. However, residual connections introduce
additional complexity in hardware implementation due to rescaling of
regular path and shortcut path outputs for quantization purposes.
Therefore, shortcut connections are dropped for a more hardware
friendly implementation of quantization steps while trading off some
model level accuracy.

We used QAT with 8bit precision which can perform on par with
float32 models [5][7] for state-of-the-art DNN architectures. From
analyzing the training loss logs, the model accuracy is not impacted
by quantization. In fact, model simplification for designing a hardware
friendly architecture actually improved the training loss slightly
compared to the full-scale baseline model in this work (loss term 1.10
for simplified model and 1.26 for baseline model). This can be
attributed to low resolution input used to train the simplified model
and the optimized training flow. We further tested the trained encoder
model by rendering the avatar animation and confirmed that there is
no visible degradation in the animated avatar quality when low
resolution input, quantization method, and hardware-aware model
customizations are all employed together.

As a result of implemented model customizations and integer-based
quantization method, the final model parameter size that is needed
to be stored on chip persistently adds up to less than 550KB. Eye
gaze NN model is trained for each eye separately, and the chip can

#
0
1
2
3
4
5
p
6

Layer Activation Filter Bias OutputStride
conv3x3
conv1x1
conv3x3
conv1x1
conv3x3
conv1x1

conv1x1
pool Avg

1, 16, 16, 64
1, 8, 8, 128
1, 8, 8, 256
1, 4, 4, 128
1, 4, 4, 256
1, 2, 2, 32
1, 2, 2, 64
1, 1, 1, 64

128, 3, 3, 64
256, 1, 1, 128
128, 3, 3, 256
256, 1, 1, 128
32, 3, 3, 256
64, 1, 1, 32

3, 1, 1, 64

128
256
128
256
32
64

3

2
1
2
1
2
1

1
2

1, 8, 8, 128
1, 8, 8, 256
1, 4, 4, 128
1, 4, 4, 256
1, 2, 2, 32
1, 2, 2, 64
1, 1, 1, 64
1, 1, 1, 3

Input activation format:
Filter format:

[batch, Row, Col, in_channel]
[out_channel, Row, Col, in_channel]

CNN Architecture

S
o

ft
w

a
re

 M
o

d
e

l
L

a
y
e

r

#
0

 c
o

n
v
3
x
3

#
1

 c
o

n
v
1
x
1

#
2

 c
o

n
v
3
x
3

#
3

 c
o

n
v
1
x
1

#
4

 c
o

n
v
3
x
3

#
5

 c
o

n
v
1
x
1

P
o
o

l
A

V
G

#
6

 c
o

n
v
1
x
1

in o
u

t

H
a

rd
w

a
re

 O
p

e
ra

ti
o

n
s

im2col (8b)

Move to
SRAM (8b)

MatMul
(8b in, 24b out)

Move to
CORE (24b)

Cast (32b)

ADD bn+bias
(32b)

Quantize
(32b →8b)

ReLU (8b)

CONV 3x3

Batch Norm &
Bias Addition

ReLU

Quantize

In-house built
compiler framework
to translate SW
model layer to
sequence of HW
operations

Compiler

Fig. 3. Eye gaze extraction CNN model dimensions and model
graph, with the in-house built compiler framework translating
software model layers to executable hardware operations.

 IEEE CICC 2022 4

use 2x 1MB partitions to store 2x NN model parameters for the two
eyes. Therefore, we allocated approximately half of each 1MB on-
chip SRAM partitions to be used as model parameter storage and
the remaining halves to be used as a scratchpad memory to store
working data (i.e. layer-to-layer activation and intermediate data).
Model parameters are stored contiguously in the 2x 1MB SRAM
partitions, within the address space of 0 to 550KB for both. To switch
back and forth for right and left eyes during runtime, all the hardware
operation sequences remain the same while the on-chip CPU core
points to two sets of addresses for accessing model parameters.
Therefore while one 1MB address space of the memory is active, the
other 1MB global partition stays in standby when processing a single
sensor image for one eye (i.e. left/right).

3.2. Custom Compiler Framework for Mapping the CNN on Chip

We developed a custom built compiler framework to map the NN
model onto the accelerator chip (Figure.3). The in-house built
compiler first translates NN layers to executable hardware
operations in C programming language. The program code in C is
then compiled to RISC-V instructions using GNU Compiler Collection
(GCC) tool. All of the code compilation is performed offline before
runtime. During runtime, the on-chip CPU controls the overall
execution of the program by orchestrating the correct sequence of
operations and dataflow in between the core, the global SRAM, and
the DNN accelerator block.

Each NN layer is first compiled to a sequence of hardware operations
specific to our custom chip. The implemented set of hardware
operations can be grouped into three main subsets: (i) moving data
between the global SRAM, the core, and the DNN accelerator block,
(ii) matrix-multiplication performed on the DNN accelerator block, (iii)
element-wise operations such as ReLU, Pool, im2col, quantization,
casting, etc. performed on the core.

The compiler first parses the NN model and generates a
comprehensive list of NN layers and their tensor dimensions. The
parsing is performed on model summary data, typically available in
PyTorch or Tensorflow models, or by loading an ONNX model. Then
each NN layer in the list is translated into a set of hardware
operations. For instance a convolutional layer of filter size 3x3 (i.e.
CONV3x3) is mapped to equivalent hardware operations as shown
in Figure.3. While translating each layer, the compiler calculates
correct tensor dimensions and keeps track of SRAM/core address
pointers for model parameters and for intermediate layer data (i.e.
input activations and MAC outputs). The RISC-V CPU has a total of
128KB cache size. Therefore, to fit both program instructions and
working data into the available 128KB core cache, the compiler also
keeps track of working data size. Whenever the data size is more
than the allocated data cache size, the compiler tiles the hardware
operations into manageable data chunks, to be executed within a for-
loop. As a result, NN model layers are individually mapped to one or
multiple sets of hardware operations in the correct sequence that the
custom chip can execute.

We implemented a function library in C language corresponding to
the hardware operations that the RISCV core can execute. All the

intended hardware operations are then implemented as a
corresponding C function that is based on the C library functions. As
a result, once the list of hardware operations is ready, the custom
compiler translates the operations to their corresponding C functions
and automatically prints the C code snippets. These code snippets
in the correct sequence with correct address pointers are then
automatically stitched together to generate the program code. The
final code is passed to GCC to be compiled into RISC-V instructions
in binary format. Model parameters are also printed out in binary
format to be loaded into the chip. Instruction cache and data cache
address space is automatically allocated by GCC during program
compilation. As a result, the compiler framework translates the eye
gaze CNN model to an executable code for the presented chip.

For a hardware friendly inference, all the weight, input activation, and
output tensors are stored in “channel-last” format, meaning that
channels are stored in contiguous addresses in hardware. This way,
im2col operation for pointwise convolution (i.e. conv1x1) becomes
“free”, as the input tensor is inherently stored in the preferred format.
To eliminate any matrix reorganization operation on the weights, 4D
weight tensor parameters are lowered to 2D matrices offline, and
stored in the global on-chip memory in the correct format ready to be
loaded into the NN accelerator block without on-chip operations.

After compilation, the program binary file takes 13.5KB of instruction
space. As a result 14KB is allocated for instructions in the 128KB
core cache. This means that the compiler framework has to fit the
working data in the remaining 114KB cache space. With these limits,
the compiler automatically fits the layer-to-layer work data within a
78KB address space by tiling large size operations into smaller
chunks. The custom-built compiler framework successfully fits the
CNN model instructions and all the intermediate data within less than
100KB cache memory space in the RISC-V core.

As a result of the hardware-aware customizations, the eye gaze
extraction CNN model fits on the chip for running inference. Utilizing
QAT enables on-chip circuit acceleration of convolutional layers with
integer-based arithmetic and the custom compiler framework further
enables deploying the customized model on the chip.

4. Low-Power DNN Accelerator Chip Implementation Details

The presented chip integrated on the VR hardware prototype targets
running inference on the CNN model, enabled by hardware-aware
customizations and the in-house compiler framework highlighted in
the previous section. The chip consists of a 1K MAC array block to
accelerate matrix-matrix multiplication based convolution operations,
2MB on-chip SRAM that stores both workload model parameters and
acts as a scratchpad memory for holding intermediate data, and a
32bit RISC-V CPU to run the program code and control the
communication in between the on-chip components over Direct
Memory Access (DMA) interconnect block.

4.1. 1024 Multiply-Accumulate Array Accelerator Circuit Details

Array-type convolution acceleration on SoC is demonstrated to
enable energy efficiency for mobile platforms [8]. Systolic arrays are

32 KB
SRAM
Buffer

64 KB
SRAM
Buffer

512 bits

2
5

6
 b

it
s

Systolic
Array

Control

Output / Bias
Stream

O
C

P
 –

 S
R

A
M

 I
n

te
rf

a
c
e

OCP

Control Signals

PE PE PE

PE PE PE

PE PE

PE

PE PE PE

PE

PE

PE

PE

PE

PE

PE

Systolic
Array

S
ta

g
g

e
r

U
n

it

Stagger Unit

16×

32×
768 bits

Accumulate

Weight <0> Weight <1>

Input <1>

Input <0>

Adder
24b

Multiplier
8b × 8b

Multiplier
8b × 8b

Weight <0>
Out

Weight <1>
Out

Accumulate
Out

Weight <0>
In

Weight <1>
In

Accumulate
In

Input
Act. <0>

In

Input
Act. <1>

In

Input
Act. <0>

Out

Input
Act. <1>

Out

P
ro

c
e

s
s
in

g

E
le

m
e

n
t

(P
E

)

PE

8b

8b

8b8b

16b16b

24b

24b

24b

24b

NN Accelerator Block

2×8b

2×8b

1
6

b

1
6

b

1
6

b

1-to-16

write

wr_addr rd_addr

1
6

-t
o
-1

1-to-16wr_addr

clk

clk_gating
read

FIFO

32KB
Double

Buffered
SRAM

1
6

K
B

 S
R

A
M

write

re
a

d

cntrl

128b

128b

2
5

6
b

2
5

6
b

0

1

write_in

01

128b

2
5

6
b

a
d

d
r

wen ren cntrl

A
d

d
re

s
s
 [

0
]

A
d

d
re

s
s
 [

1
]

Read
Enable

Write
Enable

16 Row Stagger Unit

2×8b

2×8b
Row<0>

2×8b

Row<1>

Row<15>

2×8b

2×8b

2×8b

FIFO
(depth: 2)

(FF)

FIFO
(depth: 16)

2
5

6
b

Fig. 4. NN accelerator block details: (Left) Double-buffering and stagger unit circuit details. (Middle) Block-level circuit diagram of the NN

accelerator featuring systolic-array based 1K Multiply-Accumulate (MAC) block. (Right) Processing-element circuit details: output-stationary,

reduction-of-2 architecture, with two multipliers with signed 8bit integer inputs and a shared 24bit adder for accumulation.

5 IEEE CICC 2022

further demonstrated to be efficient hardware accelerators for
convolution [9][10]. In convolution, weight tensors consist of output
channel, filter height, filter width, input channel and input activation
tensors consist of batch, input height, input width, input channel.
These four-dimensional weight and input activation tensors are first
lowered to two-dimensional matrices (e.g. via im2col operation), and
then multiplied via Generalized Matrix-Matrix Multiplication (GEMM)
operation [11]. GEMM operation can be parallelized (or tiled) and
mapped to a systolic-array in a resource efficient manner to achieve
high throughput and energy-efficient operation. Biases are added to
the multiplication output in an element-wise fashion.

Top-level diagram of the NN accelerator block is provided in Figure.4
(middle). To accelerate performing the matrix multiplication based
convolution operation, we implemented a systolic-array consisting of
1024 MAC elements. MAC block arithmetic is designed as 8bit
signed integer (INT8) inputs for multiplicands that accumulate over a
24bit signed integer (INT24). Each processing element (PE) is
implemented as a reduction-of-2 arithmetic block, such that 2× sets
of matrix operand inputs are multiplied in parallel in two multiplier
circuits and are then accumulated on a shared adder block. This way,
the PE executes 2× sets of MAC operations in a single clock cycle
(Figure.4(right)). The chosen MAC architecture is output-stationary,
such that the accumulation is stored in a 24bit flip-flop per PE until
outputs are ready to be collected. Each PE unit in the array is
pipelined in systolic fashion with flip-flops storing and passing the
inputs and weights to the next PE in the row and the column, while
the output flip-flop holding the accumulation result. The PEs are
arrayed in a 16x32 configuration in Rows x Columns format, with
each PE consisting of 2× MACs accumulating on a single output,
therefore totaling to 1024 MAC units. The array configuration of
16x32 was chosen to accommodate for the average layer size of our
workloads. The reduction-of-2 architecture was chosen to minimize
the overall MAC energy consumption for the specific technology
node. To reduce overall dynamic energy, each column of the array
is automatically clock-gated when the streamed input is zero during
the beginning of each matrix multiplication. For a case study of an
example convolutional layer that has 9.4% compute utilization ratio
due to a small output channel dimension size of 3 (i.e. output channel
= 3), the implemented column-wise clock-gating technique reduces
the overall dynamic power of the PE array by 36%.

The input matrices to the MAC block are stored in two SRAM buffers
of sizes 64KB and 32KB. Both buffers can be chosen as either the
input activation buffer or the weight buffer in a mutually exclusive
fashion, depending on the convolutional layer parameter sizes.
Buffer sizes were chosen to accommodate the average layer size of
our workloads. Both buffers are partitioned and implemented by tiling
8KB foundry SRAM macros. SRAM macros are clock gated with

read/write enable signals to reduce standby energy. The internal
banking mechanism for both memories is implemented with double-
buffering architecture as shown in Figure.4(left) to increase the
overall NN accelerator throughput. For large data-reuse workloads,
double-buffering increases the accelerator throughput by up to 2x.
This way, while one memory bank feeds the MAC array with data,
the other bank receives the next data tile to parallelize data fetching
and minimize overall latency. The 64KB and the 32KB buffers feed
the 32× PE columns and the 16× PE rows with 2× elements of 8bits,
respectively. As a result, the 64KB and 32KB buffers provide 512bits
(i.e. 32x2x8bits) and 256bits (i.e. 16x2x8bits) of data per clock cycle,
respectively, to feed the PEs when the systolic-array is fully-utilized.
This internal bandwidth is sustained by accessing 2x and 4x 8KB
SRAM sub-partitions per bank with 128bit words each for the 32KB
and the 64KB buffers, respectively.

The output-stationary systolic array requires matrix data to be
streamed into the array in a staggered manner. We implemented
multiple FIFOs (implemented with flip flops) to act as shift registers
between the SRAM buffers and the MAC array to provide a fixed
delay for each row/column of the array. The staggering unit and a
16-deep FIFO feeding data into the 16th row is shown in
Figure.4(left), denoted by row<15>. Each FIFO entry is 16bits to hold
2× elements of 8bits. The staggering unit avoids re-organizing the
matrices in a diagonal, staggered fashion with initial zeros in the
SRAM buffers, which is an energy expensive operation compared to
using flip-flops for the chosen size of FIFOs. Flops in the FIFOs are
clock-gated such that only the flop that is written a new entry receives
a clock pulse to minimize the energy consumption of the staggering
unit. FIFO read and write address generation is simplified by using a
shared local counter of increment by 1, as the systolic array only
requires sequential accesses for the rows and columns.

Majority of the matrix sizes the workload incorporates are larger than
the physical 16x32 PE array size. Therefore, larger size matrix
operands are divided into smaller matrix tiles to perform the matrix
multiplication in a tiled fashion within a loop, as shown in Figure.5.
Consider the matrix multiplication (i.e. MatMul) example given in

Figure.5, Moutput = M1 ✕ M2, with M1 and M2 having (A x B) and
(B x C) matrix dimensions in Row x Column format, respectively.
Consider also that M1 and M2 are stored in the 32KB and 64KB
buffers, respectively. Since the on-chip PE array is implemented as
a 16x32 size, M1 and M2 are segmented into multiple tiles of sizes
(16 rows x B cols) and (B rows x 32 cols), respectively. The MAC
block then goes through the M1 and M2 tiles in a nested loop fashion
and computes the 16x32 output tiles one by one in an iterative way.
Note that if either M1 or M2 tiles have less than 16 rows or 32
columns, respectively, then the 16x32 PE array is not fully filled
which creates compute under-utilization. The under-utilization
typically occurs at the last M1 or M2 tile, and therefore the number
of tiles to iterate in the nested loop are calculated by a ceiling function
(i.e. round up). Compute under-utilization also occurs at later CNN
layers in the architecture where the convolution layer dimensions are
smaller. For M1 and M2 tiles, double buffering mechanism
continuously writes the next tile(s) into the local SRAMs to continue
feeding the PE array with operands.

A state-machine is implemented to control the data flow of the NN
accelerator block; (i) receiving data from global SRAM and storing it
in the double buffered input/weight SRAM buffers, (ii) feeding data
into the PE array from the local buffers through the staggering units,
(iii) start/stop of the systolic array, and (iv) output collection. Matrix
tiling and number of tiles are decided offline before runtime. During
runtime, the control unit keeps track of operand sizes to orchestrate
start/stop for the systolic array per matrix tile and the address
generation for the input/weight buffers. The set of two consecutive
elements going into reduction-of-2 are grouped together and stored
contiguously to be fed into the PE arrays. The matrix re-organization
is performed at runtime at the RISC-V core, during im2col operation.

Once the multiplication on an output tile is completed, the outputs
are physically collected from the opposite side of the 64KB buffer,
such that 32x24bit elements are written to the global SRAM as 128bit
data in 6 clock cycles. Output flops are shifted downwards in a daisy-
chain structure, and the output collection is repeated for the 16x rows
to collect the 16x32x24bit elements. In similar fashion, biases can be

M1_tile cols = M2_tile rows = B

I = ceiling(A / 16)

J = ceiling(C / 32)

Nested loop for tiled MatMul:

Performing tiled MatMul on chip

using the 16x32 PE Array:

Buffer 1

(32KB)

Buffer 2

(64KB)

PE Array

16x32

Mo

of size

16x32

Repeat I × J times to compute output matrix

NN

accel.

circuit

Tiled M2 Tiled MoTiled M1

Matrix Multiplication (MatMul):

M1 × M2 = Mo

M1 : A rows , B cols
M2 : B rows , C cols
Mo : A rows , C cols

D
im

e
n

s
io

n
s

Matrix Tiling for 16x32 PE Array:

M1
M2

MoA
rows

B cols C cols

B
rows

C cols

A
rows

16 rows

A
B

32 cols

C
B

row x col:

16x32

A
C M1

I
ti

le
s

M2

J tiles

// Repeat I × J times to compute Mout

for i in (I):

for j in (J):

// Tiled MatMul mapped to the

PE Array of size 16x32

// iter. on M1 tiles

// Num. of M1 tiles

// Num. of M2 tiles

// iter. on M2 tiles

M1 [i]
t

M2 [j]
t

I
ti

le
s

J tiles

Tile
Mout [i , j] =

Tile TileM1 [i] × M2 [j]

Mo [i , j]
t

Fig. 5. Matrix multiplication tiling: input and output matrices are
tiled into sub-blocks to fit on the PE array circuit. Each output tile
of size 16x32 (Row x Cols) is computed one at a time by feeding
input matrix tiles to the PE array in a nested loop fashion.

 IEEE CICC 2022 6

first loaded into the output flops to start the accumulation from an
initial added value.

The NN accelerator block occupies 0.24 mm2 silicon area on chip.
The 64KB and 32KB SRAM buffers are physically placed on the left
and bottom sides of the 1K MAC array, respectively, as close to the
PEs as possible to minimize the wire energy cost. We measured the
power consumption of the test-chip to estimate the energy efficiency
of the standalone NN accelerator block. Details on how the power
measurements are carried out and more comprehensive power and
performance results at the chip-level are provided in Section.5. As a
test-case, multiplication of matrices with sizes 128x576 and 576x64
is performed at 500MHz clock frequency and 0.75V VDD. The test-
case dimensions are chosen to exercise realistic output tiling and
MAC array utilization in the measurements. Cost of writing data into
the buffers, systolic array compute operation, and final output
collection are all included in the measurement. Global SRAM data
read/write energy cost is not included to get the standalone NN
accelerator block energy. Our test-chip measurements indicate that
the standalone accelerator circuit consumes 29.43mW average
power at 500MHz, 0.75V for this test. An additional post-layout RC
extracted netlist simulation is performed (500MHz, 0.75V, TT, 25°C)
to estimate the power breakdown and the cycle count at the circuit-
level. Our analysis shows that the PE array, the local SRAM buffers
(input and weight), and the staggering unit consumes 81%, 16%, and
3% of the NN accelerator circuit power, respectively. The standalone
NN accelerator achieves an estimated 0.20 pJ/op of energy-
efficiency at 500MHz (where a single MAC is two OP’s). When
including all the circuit components of 1K MACs, 96KB buffer SRAM,
and dataflow control, the standalone NN accelerator circuit achieves
4.98 TOPs/W (Tera Operations/sec/Watt) of performance. Different
matrix sizes, cost of matrix tiling, and under-utilization due to non-
ideal matrix dimensions would change the estimated energy-
efficiency accordingly.

4.2. Top-level Chip Implementation Details

Top-level block diagram showing the chip organization and the chip
layout are provided in Figure.6. The DNN accelerator chip features a
RISC-V core to orchestrate memory accesses and data transfers
between the systolic array and the global SRAM memory. We
implemented a small set of instructions, where each instruction either
directs a direct memory access (DMA) controller to transfer data from
the 2x 1MB memory partitions to/from the systolic array or instructs
the systolic array to compute matrix multiplication. Any remaining
control or element-wise operations are performed in the core.

The 32bit RISC-V CPU core is implemented with a generator and
includes both integer and floating point arithmetic capability. We
implemented a 128KB SRAM based cache in the core, where the
address space is allocated for and shared by both program
instructions and the data. Address space allocation for instruction
and data portions of the cache is predetermined offline for a given
program. The RISC-V core includes an integer arithmetic block for

addition/subtraction, multiplication, and bitwise operations. It further
includes a floating-point unit for float32 based arithmetic operations.
Division operation is possible by utilizing either the integer or the
floating-point arithmetic blocks for the chosen precision domain,
however it is very costly in latency and results in accuracy loss.

The main communication interface chosen for the global SRAM is
the Open Core Protocol (OCP). OCP interface allows for customizing
the interconnect signals, and therefore was chosen to minimize the
amount of control signals and maximize the data bandwidth. Since
the majority of DNN applications work on contiguous data (e.g. matrix
operations and element-wise loops), we implemented a small set of
instructions using the customized OCP based data communication
to include burst type of memory read and write accesses. The global
SRAM is implemented by arraying multiple partitions of 64KB SRAM
macros. We implemented the global SRAM word size to be 128bits.
To communicate over the OCP based interconnect, a custom OCP
wrapper is implemented around the arrayed memory macros. Global
SRAM macros are clock gated with enable signal (read/write) to
reduce energy during inactive cycles.

The DMA controller is used to load data from the global SRAM to the
NN accelerator buffers and from the systolic array back to the shared
global memories. The DMA controller includes 32bit registers to
control the data access pattern (e.g., starting address, stride, ending
address) for both the read and write ports. These registers can be
written to by the RISC-V core through the main AXI interconnect. The
data paths of the DMA controller, however, operate over an OCP
interconnect which exclusively includes the two shared global
memories, NN accelerator buffers, systolic array, and the DMA
controller. All data ports in this interconnect are 128 bits wide.

To communicate with off-chip sensors, the RISC-V core uses the
APB bus for low speed interconnects (e.g., SPI, I3C, I2S, UART,
GPIO). To provide higher bandwidth access to on-chip memories via
off-chip (e.g., from the FPGA), the chip includes a 16-bit parallel
memory bus (pbus) running at 50MHz, which acts as an initiator on
the main AXI interconnect. A dedicated 128KB SRAM is
implemented as a configuration buffer to facilitate temporarily storing
input data coming from off-chip, connected to the AXI bus. The chip
includes several unswitched power domains, operating at the same
voltage, with power supplied externally in order to be able to measure
on-chip current for various parts of the chip. The main chip clock is
supplied externally (e.g., by the FPGA) as an LVDS clock and
transformed into a single-ended clock on-chip (i.e. core_clk domain).
The 7nm die occupies 2.56 mm2 silicon area.

5. DNN Chip Silicon Results for Performance and Power

This section provides detailed performance and power analysis of
the DNN chip. Test-chips are verified successfully in a testing lab
after fabrication. Power is measured on silicon by running the entire
eye gaze CNN model on the chip, from input to output, for a single

1MB
SRAM

<1>

1MB
SRAM

<0>

NN
Accelerator

 RISC-V
Core

Config &
DMA

clk

I/O

I/O

I/O

I/O

Shared
Global 1MB

SRAM
<1>

Shared
Global 1MB

SRAM
<0>

Interconnect

follower follower

initiator initiator

DMA

follower

initiator initiator

follower

in
it
. 1K MAC

Array +
Buffers

fl
w

r.

OCP

Control Signals

Control
Signals

R
e

g
is

te
rs

C
o

n
fi

g
.

S
R

A
M

A
X

I
to

O

C
P

fl
w

r.

OCP

fo
llo

w
e
rs

A
X

I
Clk
Div.

In
it
ia

to
rs

RISC-V
Subsystem

AXI
TranslatorC

D
C

Clock
Receiver

Clock
Generator

P
a

ra
ll

e
l

M
e

m
o

ry
 B

u
s

O
C

P

O
C

P

O
C

P

O
C

P

fast_clk P

fast_clk N
+

-
clk

fclk

core_clk

JTAG

APB

AXI to APB

I3C io_clkSPI GPIO I2SUART
I/O Clock
Domain

Core Clk Domain

1
.6

m
m

1.6mm

Fig. 6. Custom-built low-power DNN accelerator test-chip details: System-level diagram and chip layout.

7 IEEE CICC 2022

sensor input. Performance is extracted by using an in-house built
profiler on chip-level post-layout RTL simulations.
Boot up sequences for the on-chip core and initial sanity checks were
first performed to verify correct test-chip functionality and its on-chip
components. These initial tests include global SRAM read/write,
example matrix multiplication, and passing messages over the DMA.
After the functional verification, we deployed the workload model on
the chip. The DNN accelerator chip runs inference on the pre-
processed sensor data at 500MHz, 0.75V, processing the entirety of
the eye gaze CNN model from input to output while finishing within
the target latency per single eye. Chip results after processing the
CNN model are read-out and verified with respect to the software
implementation of the model to match one-to-one. One time data

loading of model parameters and program instructions before the
runtime are omitted from the power measurements.

Performance Evaluation
We built a profiler tool to extract the execution time of various NN
layers deployed on the chip. The profiler tool reads a decompiled
version of the NN code and maps memory address to the entrance
and exit of all functions in the program. The tool then scans a
simulation dump file (e.g. in .vcd, .vpd, or .fsdb format) and marks
the simulation time when the core program counter (e.g. pc) fetches
instructions from memory at the entrance/return to/from a function.
The time stamps for each function call and return are then processed
to calculate how much time the process spends executing each
function in the program.
Using the in-house profiler, we extracted the performance of running
the eye gaze CNN model on post-layout gate-netlist. The post-layout
netlist is used to make sure the results are clock cycle accurate with
respect to the test-chip. Performance results for running the eye gaze
CNN per single sensor image are shown in Figure.7. The CNN layer
dimensions were previously provided in Figure.3. The model
consists of seven main layers with various channel and stride
characteristics. Layers are grouped into seven for ease of reading
the results, where each main layer changes the dimension from input
to output. The overall model translates to 51 hardware operations
stitched in order, as discussed in Section.3.
The chip runs the model from its 16KB input to the final three element
output vector in 16.51ms per sensor image, meeting the workload
frame-rate target. Layer-by-layer model execution times are provided
in Figure.7.(a). The performance results show that the chip spends
most of the execution time in the first three convolutional layers,
where L0, L1, and L2 takes approximately 32%, 19%, and 27% of
the overall latency, respectively. The remaining layers are executed
relatively faster, with L3, L4, L5, pool, and L6 layers taking a
combined 21% of the overall execution time. This expected behavior
is due to CNN layer dimensions; while the sequence of hardware
operations remains the same for the CONV3x3 and CONV1x1
layers, subsequent CNN layers get smaller dimension-wise.
We further analyzed the latency of sub-layer operations. Hardware
operations for the layers L0 (CONV3x3) and L1 (CONV1x1) are
shown in Figure.7.(b) and Figure.7.(c), respectively. For both layers,
our analysis shows that the NN accelerator block completes matrix
multiplication operations very quickly, while the core is relatively
slower since it needs to handle multiple tasks simultaneously, i.e.
program execution, issuing memory accesses over the DMA, and
performing all the element-wise arithmetic operations.
For layer 0, our analysis shows that combined initial move to core
and performing im2col takes approximately 60% of the layer’s
execution time, as shown in Figure.7.(b). This cost is because of
moving the initial 16KB data into core and working on the im2col
operation that prepares the 2D input activation matrix for a 3x3 filter.
The systolic-array MAC block accelerates the matrix-multiplication
efficiently and completes the overall operation within less than 65μs.
For the subsequent L1 layer, the execution time gets faster
compared to L0, since there is no im2col cost for 1x1 filter
convolution (as discussed in Section.3.2) and the input data size is

Fig. 7. (a) Layer-by-layer performance results. (b) Latency breakdown for conv3x3 layer L0. (c) Latency breakdown for conv1x1 layer L1.

Fig. 8. (a) Chip-level silicon power measurements and energy
consumption for all layers. (b) Chip-level power consumption
during matrix-multiply acceleration per layer compared to chip-
level total average power consumption.

 IEEE CICC 2022 8

reduced to half compared to the previous layer. L1 layer’s CONV1x1
operation results in an output matrix size and subsequent casting
data size that do not fit into the core’s available cache capacity.
Therefore the “move to core & cast” operation is performed in four
tiles, as shown in Figure.7.(c). Since the output of the L1 layer is
larger in size than its input, post-MatMul operations take the majority
of the execution time for the L1 layer.

Power Measurements

Test-chip power measurements are performed on standalone chip(s)
integrated to a custom testing pcb setup to measure isolated drawn
current. Communication to the test-chip to load program code, model
data, and input pre-processed data is performed over GPIO using a
tester FPGA connected to a lab desktop computer. After program
completion, the chip dumps its output over the GPIO back to the
FPGA to verify functional correctness in software. For silicon
measurements, the model is run from input to output per single eye,
and the average drawn current per voltage rail is measured via power
supplies. Individual CNN layers are run separately on valid
intermediate data for a finer grained silicon measurement. Average
power consumption for the entire CNN model or a chosen specific
layer is measured by running the associated section of the code
repeatedly.

Layer-by-layer silicon measurements for running the model on chip
at 500MHz clock frequency, at 0.75V supplied to logic and memory
power rails, on a typical corner test-chip are provided in Figure.8.
Average power consumption per layer is provided in Figure.8.(a).
From the performance analysis, MatMul is effectively accelerated
and therefore core related operations occupy the majority of the
execution time. This is also evident when we analyze the power
consumption. Power consumption of the chip ranges from 20.63mW
to 23.13mW for all the layers from L0 to L6, indicating an active core
dominated power. At chip-level, the average power consumption for
running inference on the entire eye gaze extraction model from input
to output is measured to be 22.7mW. This measurement
corresponds to processing the entire CNN model in 16.5ms for a
single sensor image (i.e. for single eye).

Layer-by-layer and total energy consumption are also provided in
Figure.8.(a). The chip consumes 375μJ energy per eye gaze
extraction (i.e. per single eye sensor input) over 16.5ms. Similar to
the latency analysis, the energy consumption gradually decreases
towards the final layers as data dimensions get smaller and the
execution gets faster. Our analysis also shows that a given conv3x3
layer consumes more energy when compared to its previous or next
conv1x1 layers, due to 2D lowering and re-organization for 3x3 filters
generating larger data sizes and thus longer execution times.

Chip-level power consumption during NN acceleration compared to
the overall chip-level average power consumption for the entire
model execution are provided in Figure.8.(b). Our analysis shows
that when the NN accelerator block is actively performing matrix
multiplication, the chip-level power consumption goes up to 40mW
to 55mW ranges when the compute utilization of the MAC array is
high (L0 to L4). NN acceleration power is lower for layers 5 and 6, at
the range of 26mW to 29mW as the MAC array utilizes clock gating
for the small matrix dimensions in layers L5 and L6.

Combining the power and latency analysis, our results show that the
NN accelerator circuit block efficiently trades-off high power
consumption coming from its compute resources for speed. The
accelerator circuit enables completing the convolution operation
consistently within less than 65μs for this workload to achieve overall
energy-efficiency at the chip-level. The silicon measurements show
that the chip effectively goes into a higher power consumption mode
for convolution acceleration for a short burst of time, and remains in
a lower-power mode to process the model. As a result, the presented
mobile SoC provides efficient high-performance for CNN inference
using its acceleration circuit while consuming lower-power on
average. Hardware-friendly customizations further enable fitting the

model on chip to avoid costly off-chip memory accesses during
runtime.

6. Conclusion

System-level design and integration considerations for a custom-
built, low-power DNN accelerator test-chip is presented in this work.
The featured test-chip is integrated on a mobile, prototype AR/VR
hardware targeting Codec Avatars demonstration. Eye gaze
extraction CNN model of the encoding block is offloaded to the
presented test-chip to run inference. The test-chip consumes
22.7mW power at 500MHz clock frequency, at 0.75V, to process the
entire CNN architecture from input to output within 16.5ms for a
single sensor image, thereby meeting the 30fps target performance
for two eyes. In this work, we show that by combining efficient on-
chip compute acceleration and hardware-centric NN model
rearchitecting, the presented prototype mobile SoC achieves 375
μJ/frame/sensor image energy-efficiency within a 2.56mm2 silicon
area.

References:

[1] Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang,
Yuecheng Li, Fernando De La Torre, Yaser Sheikh, "Pixel Codec
Avatars", 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), April 2021, 64-73

[2] Stephen Lombardi, Jason Saragih, Tomas Simon, Yaser Sheikh,
"Deep Appearance Models for Face Rendering", ACM Transactions
on Graphics (TOG) Vol. 37, Issue 4, 2018, pp 1-13

[3] X. Zhang, D. Wang, P. Chuang, S .Ma, D. Chen, Y. Li, “F-CAD: A
Framework to Explore Hardware Accelerators for Codec Avatar
Decoding”, ACM/IEEE Design Automation Conference 2021
(DAC’21), December 2021

[4] Gabriel Schwartz, Shih-En Wei, Te-Li Wang, Stephen Lombardi,
Tomas Simon, Jason Saragih, Yaser Sheikh, “The Eyes Have It: An
Integrated Eye And Face Model For Photorealistic Facial Animation”,
ACM Transactions on Graphics (TOG), Vol. 39, Issue 4, July 2020,
pp 91:1 - 91:15

[5] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, Dmitry
Kalenichenko, “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference”, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pg 2074-2713, Jun 2018

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep
Residual Learning for Image Recognition”, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Jun 2016

[7] TensorFlow Model Optimization Team, “Quantization Aware
Training with TensorFlow Model Optimization Toolkit - Performance
with Accuracy”, TensorFlow Blog, April 08 2020,
https://blog.tensorflow.org/2020/04/quantization-aware-training-
with-tensorflow-model-optimization-toolkit.html.

[8] Bert Moons, Daniel Bankman, Lita Yang, Boris Murmann, Marian
Verhelst, “Binareye: An Always-On Energy-Accuracy-Scalable
Binary CNN Processor With All Memory On Chip In 28nm CMOS”,
IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2018, pp. 1-4.

[9] Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks," IEEE International Conference on Solid-State Circuits
(ISSCC), pp. 262-264, February 2016.

[10] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, “Efficient
Processing of Deep Neural Networks: A Tutorial and Survey”,
Proceedings of the IEEE 105 (2017), 2295-2329

[11] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan
Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer, “cuDNN:
Efficient Primitives for Deep Learning”, ArXiv abs/1410.0759 (2014)

