
Near-Realtime Server Reboot Monitoring and Root
Cause Analysis in a Large-Scale System

Fred Lin, Bhargav Bolla, Eric Pinkham, Neil Kodner, Daniel Moore, Amol Desai, Sriram Sankar
Facebook Inc.

Abstract—Large-scale Internet services run on a fleet of dis-
tributed servers, and the continuous availability of the hardware
is key to the robustness of the services. Unplanned reboots
disrupt the services running on the hardware and lower the
fleet availability. Server reboots are also important signals that
could indicate underlying issues such as memory leaks from the
services, catastrophic hardware failures, and network or power
disruptions at the datacenters.

In this paper, we present an at-scale, near-realtime reboot
monitoring framework built with multiple state-of-the-art data
infrastructures, as well as machine learning-based anomaly detec-
tion and automated root cause analysis across hundreds of server
attribute combinations. We observed that 1% of the reboots
in our hardware fleet were associated with kernel panics and
out-of-memory events, and these reboots exhibit strong locality
temporally and across services

I. INTRODUCTION

Server reboot is a critical signal when monitoring the health
of a distributed infrastructure. Unplanned server reboots are
disruptive to the services and could indicate underlying service
or hardware issues. For example, memory leaks from a service
may lead to out-of-memory (OOM) or kernel panic incidents,
which could cause the server to crash and require a reboot to
recover [1]. Catastrophic hardware failures such as a CPU or
network interface card (NIC) failure could cause the server
to reboot or lose connection to the rest of the network.
Additionally, a group of servers going offline could be a signal
of an unexpected power or connectivity issue that impacts the
Internet service. From the service’s perspective, server reboot
and offline events imply server downtime, which lowers the
fleet availability for running the service [2].

While some reboots are associated with tooling or server
log events, reboots triggered by power or network disruptions
may be completely unexpected and not correlate to any of the
tooling or server logs. In order to detect all types of reboots,
we use server uptime as the ground truth for the detection. As
some reboots are needed for the normal maintenance of the
servers such as a firmware or kernel upgrade, a provisioning
job, and a hardware repair work, we further categorize the
reboots as planned or unplanned.

In this paper, we present a production framework for
monitoring all possible server reboot and offline events by the
cause, with the integration of automated anomaly detection
and root cause analysis at scale and in near-realtime. From
the production data we found that 89% of the reboots in our
hardware fleet were planned, while 10% of the reboots were
due to hardware repairs. The other 1% of the reboots were

associated with OOMs and panics, and these reboots are highly
correlated temporally and to the services that are running.

Following the reboot detection and categorization, a ma-
chine learning-based anomaly detection [3] is run for mon-
itoring the spikes and slow drifts in the reboot rates across
hundreds of dimensions. A fast dimensional analysis presented
in [4] then automatically finds the most relevant server at-
tribute combinations for explaining the reboots at scale. For
example, the framework has been able to detect a spike of
server reboots and correlate it to a specific main switchboard
in a datacenter.

The rest of the paper is organized as the following: Server
reboot categorization and datasets are discussed in Section II.
The reboot detection and categorization framework and the
field data are presented in Section III. Section IV and Sec-
tion V explain the setup of the anomaly detection and root
cause analysis, respectively. Section VI concludes the paper.

II. SERVER REBOOTS IN A LARGE-SCALE SYSTEM

A. Reboot Categorization

In production we categorize reboots as either planned or
unplanned. In addition to the unplanned reboots initiated by
the server itself, the hardware auto-remediation tools [5] can
also trigger reboots through out-of-band (OOB) management
if the server is detected to be unreachable through in-band
connection such as Secure Shell (SSH). In this scenario, we
also consider the reboot to be unplanned.

Planned reboots can usually be executed gracefully, in
which case all services are shut down properly as designed.
More often observed from unplanned reboots, ungraceful
shutdowns may corrupt the data on the servers. With fault
tolerance mechanisms, the corrupted data might be recovered
but the recovery process is typically time-consuming.

B. Data Sources for Server Reboot and Offline Events

The logs that record the reboot-related events are stored
either on- or off-server:

• On-Server logs: Reboots triggered by the kernel or the
hardware would typically correlate with events recorded
in the logs on server such as the dmesg log or the system
event log (SEL). Tooling-triggered reboots would also be
logged on server when executed through an application
on server. We push these logs to a centralized database
either in realtime, e.g. netconsole log, or at hourly or
daily schedule, e.g. SEL.



• Off-Server logs: Tooling-triggered reboots are recorded in
the tooling logs in our centralized, off-server databases.
In production, the tooling data are typically stored in
MySQL databases to support realtime production queries,
and pushed to Scuba [6] for more expensive realtime
analytical queries. Some data are further backed up in
Hadoop Distributed File System (HDFS) with longer
retention and can be queried through Presto [7].

Additionally, there are unplanned server reboot and offline
events that are triggered physically, e.g. voltage and network
outages, without any preceding signal. For detecting these un-
planned reboot and offline events, we need to look beyond the
tooling and server logs and use system uptime as the ground
truth for detecting reboots, as described in Section III-A.

III. SERVER REBOOT DETECTION AT SCALE

In summary, the requirements for this reboot monitoring
framework are:

1) Detecting all possible reboot and offline events
2) Categorizing reboots by cause
3) Near-realtime - record every event within 10 minutes
4) At scale - achieve items 1 to 3 for any and all servers

across all geographically distributed datacenters, and
store the result to allow for realtime query at per-server
and fleet-wide levels

5) Detecting anomalous reboot trends - detect spikes and
slow drifts in the reboot rates across hundreds of server
attribute dimensions

6) Automating root cause analysis - automatically iden-
tify the combinations of hardware and software attributes
with which the reboots can be best isolated

In the output of the framework, each reboot or offline event
should be recorded with three pieces of information: hostname,
event, and event time. We will discuss how we achieve the first
four requirements in this section.

A. Server Uptime Monitoring

We use system uptime as the ground truth for deciding
whether a server is rebooted or offline. The system uptime of a
server is the duration of time that the server has been operating
since it is booted. In our system, we collect the uptime signals
from each server every few minutes and store the data in a
centralized database, Operational Data Store (ODS), powered
by Gorilla [8]. ODS stores key-value pairs with timestamps,
and the workload is write-intensive.

Unfortunately, while ODS handles server-level queries well,
querying the system uptime of the entire fleet of servers every
10 minutes would significantly overload ODS. To meet the
near-realtime requirement, we need to build a more scalable
framework for detecting and categorizing reboots at scale.

B. Reboot and Offline Event Definition

In order to detect reboot and offline events correctly, we
need to first design robust logic to address the noise in the
collected signals. Fig. 1 shows the actual system uptime of a
server that was rebooted between 10:32 and 10:38.

Fig. 1: Server uptime signals around a reboot.

From this example, it is clear that system uptime would not
be populated until the data collection daemon starts running
after the reboot. It took 191 seconds for the first uptime signal
to populate in Fig. 1, and this delay is nondeterministic. In
most cases, this delay would be shorter than 10 minutes, i.e.
our detection frequency, but some reboots can take longer.

Another observation is the missing uptime signals even
when the server is not being rebooted. This could be because
the server is hanging or having connection issues so the
daemon could not send out the uptime signal. In rare cases,
there could also be dips and bumps in the uptime time series.

Fig. 2 shows two scenarios where there is a time window
of missing uptime data points, and the first data point after the
window has an uptime value lower than that of the last data
point before the window. Let tlast and ulast be the timestamp
and uptime value of the last data point before the window,
and tnew and unew be the timestamp and uptime value of
the first data point after the window. Since uptime should be
monotonically increasing at a fixed rate with respect to time,
we can derive the latest boot time as tnew − unew.

In Fig. 2a, tnew − unew is marked as the projected boot
time. In Fig. 2b, however, tnew − unew is smaller than tlast,
which implies that the server could not have been rebooted at
tnew−unew because we know at tlast we have already logged
a non-zero ulast. The uptime after the window, unew, may be
lower than the uptime value right before the window, ulast,
due to transmission issues or delays in our system, but it is
impossible that the server was rebooted in this window. From
this analysis, we define our uptime reboot check as:

tnew − unew > tlast (1)

This check can be applied to any two consecutive uptime
data points, regardless of whether there is a time window of
missing uptime data points in between. In practice, we add
a small margin to this comparison to account for potential
delays in data delivery. In the output of the framework, we
report tlast as the event time of the reboot or offline event.

The logic for detecting an offline event is more straightfor-
ward. The offline check is simply:

tnew = NULL (2)



tlast

ulast

tnew

unew

Time

System Uptime

projected boot time

(a) A reboot happened between the consecutive data points.

tlast

ulast

tnew

unew

Time

System Uptime

(b) A reboot could not have happened in the window.

Fig. 2: Two scenarios of system uptime signals.

There are three possibilities following an offline event the
next time we check the uptime data: 1) The uptime is still
missing, in which case the offline event continues. 2) We start
seeing uptime signals that pass the reboot check, in which
case we update the offline event to a reboot event. 3) If the
new uptime signal fails the reboot check, we update the offline
event as a missed signal event. Given the space limit of this
paper, we will skip the details about how we handle some other
edge cases in the system, e.g. when new servers are deployed.

C. Near-Realtime Reboot Detection at Scale

In our production framework, server uptime signals are
first streamed to Scribe, a persistent, distributed queueing
system [9]. The Scribe data is then consumed by a stream
processing system called PUMA [10], for filtering the uptime
data and pushing it to a Scuba [6] dataset for batch processing.

Note that although the uptime data is streamed from the
servers in realtime, we choose to process the data in micro
batches. It is hence a near-realtime framework. Given the size
of the data, the complexity of the logic, and the number of
tooling and server logs to query, this micro-batch approach
is more efficient than a realtime framework. The number of
queries issued for the tooling and server logs can be reduced
by multiple orders of magnitude, because we do not need to
query all the logs when detecting each reboot. The data flow
of the monitoring framework is illustrated in Fig. 3.

Table I shows the distribution of the cause of reboot from
all the servers rebooted in our production environment over a
30-day period. 89% of the server reboots were triggered by
planned operations. 10.0% of the reboots were initiated for

ODS
Scribe

PUMA

Scuba

Detector

Anomaly 
Detection

Root Cause 
Analysis

MySQL

Scuba

Servers

Tooling/Server
Logs

Server
Attributes

User 
Queries and 
Dashboards

Fig. 3: The data flow in the server reboot detection, categoriza-
tion, anomaly detection, and root cause analysis framework.

hardware repairs, and 1% of the reboots were associated with
OOM or kernel panic events.

TABLE I: Distribution of server reboots by cause.

Cause of Reboot Percentage of Servers Rebooted
firmware upgrade 34.9%
kernel upgrade 42.5%
hardware repair 10.0%
OOM 0.8%
kernel panic 0.2%
other operations 11.6%

The OOM- and panic-related reboots exhibit strong tempo-
ral locality. Over this 30-day period, servers on average had
2.8 and 1.6 unplanned reboots per kernel panic and OOM issue
respectively, until the issue was mitigated. Note that we count
a series of consecutive panic or OOM events as one issue.
The distribution of the number of unplanned reboots on the
servers has a long tail, and some servers could be rebooted
more than 10 times a day. Fig. 4 shows the uptime of a server
that was constantly rebooted due to kernel panics that were
triggered by uncorrectable memory errors. The server was not
able to run for more than 40 minutes without being rebooted.
We fixed the server by replacing the bad memory card.

The OOM- and panic-related reboots are also highly cor-
related with the services that are running on the machines.
93.4% of the servers with OOM reboots were associated with
three specific services, while 89.3% of the servers with kernel
panic reboots were associated with one of these services and
two other different services. These services are generally for
supporting engineering development and testing.

IV. SERVER REBOOT MONITORING AT SCALE

Many production issues can be detected as either a spike or
a slow drift in the reboot rate of some cohorts of the servers.
There are many dimensions along which we can define the
server cohorts, e.g. by server or component model, firmware or
kernel version, geographical location, position in a datacenter



Sy
st

em
 U

pt
im

e 
(S

ec
on

ds
)

Time

Fig. 4: System uptime of a server that had a series of kernel
panics due to uncorrectable memory errors.

or a rack, and so on. Each of these dimensions could have tens
to hundreds of distinct values, and the reboot rate in each of
these dimensions could exhibit different norm and seasonality.
It is therefore challenging to detect emerging issues from each
of these time series with fixed thresholds.

In our framework, we first join the reboot and offline
detection result with a collection of server attributes, as shown
in Fig. 3. We then utilize the predictive thresholds generated
by machine learning algorithms [3] to automatically set up
a forecasted reboot rate range, which scales our anomaly
detection significantly for detecting emerging issues.

In addition to the spikes and slow drifts in the reboot rates,
we also detect anomalous servers that are rebooted many times
in a short period. These repeat offenders typically suffer from
individual server problems, and the services cannot run on
these servers without frequent disruptions.

V. ROOT CAUSE ANALYSIS FOR SERVER REBOOTS

When an anomalous reboot rate is detected, we need to
quickly direct our investigation by identifying the differences
between the servers that were rebooted or offline and the
servers that were not. As mentioned above, in a production
environment, a server can be described by tens of attributes,
each with tens to hundreds of distinct values. The computa-
tional complexity for finding the best combination of these
attribute values to explain the reboots is therefore very high.
To automate the root cause analysis (RCA) process, we apply
the scalable fast dimensional analysis proposed in [4].

With the server attribute data shown in Fig. 3, the RCA
framework would identify combinations of server attribute
values that could explain the rebooted and offline servers in a
format similar to this example:

firmware version = A and server model = B and service
= C correspond to 70% of the rebooted servers, which is 5X
more likely than expected.

More details on the algorithm for identifying, sorting, and
deduplicating the correlations and calculating the metrics can
be found in [4]. In practice, this RCA method has been able
to pinpoint reboots to root causes such as a specific main
switchboard in a datacenter.

VI. CONCLUSION

In this paper we present a near-realtime, at-scale framework
for server reboot detection, categorization, anomaly detection,
and root cause analysis. We discuss the reboot population ob-
served in a production system, and demonstrated the temporal
and service locality of OOM- and panic-related reboots.

One of the biggest challenges in this framework is that
we need to maintain a comprehensive collection of relevant
messages from the logs, for correctly categorizing the reboot
and offline events. In practice, we monitor the reboots catego-
rized as having unknown causes closely to see if new logs or
messages should be added to the correlation.

This framework has a strong dependency on the platform
that executes the micro batches regularly. If this execution
platform fails or delays, we would lose the visibility of the
reboot and offline events, which could potentially be the cause
of the issue with the execution platform in the first place.
To handle this scenario, we monitor the execution platform
separately, and when failures or delays are observed, the RCA
framework in [4] can help us identify the root cause quickly.

ACKNOWLEDGEMENT

The authors would like to thank Ravi Singamsetty, Anuj
Mittal, and Andrew Hoogeveen for their extensive contribution
to this framework. We also greatly appreciate the insightful in-
puts from Justin Akers, Mihai-Valentin Curelea, Chris Down,
Angelo Failla, Sumedha Gholba, Tyler Graf, Alex Levchuk,
Keyur Muzumdar, Gene Oden, and Olivier Raginel.

REFERENCES

[1] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, “Characterization of
linux kernel behavior under errors,” in Proceedings of the International
Conference on Dependable Systems and Networks (DSN), 2003.

[2] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines, 3rd ed. Morgan
& Claypool, 2018.

[3] S. J. Taylor and B. Letham, “Forecasting at scale,” The American
Statistician, vol. 72, 2018.

[4] F. Lin, K. Muzumdar, N. P. Laptev, M.-V. Curelea, S. Lee, and S. Sankar,
“Fast dimensional analysis for root cause investigation in a large-scale
service environment,” in Proceedings of the ACM on Measurement and
Analysis of Computing Systems (POMACS), 2020.

[5] F. Lin, M. Beadon, H. D. Dixit, G. Vunnam, A. Desai, and S. Sankar,
“Hardware remediation at scale,” in IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, Jun. 2018.

[6] L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea,
D. Merl, J. Metzler, D. Reiss, S. Subramanian, J. Wiener, and O. Zed,
“Scuba: Diving into data at facebook,” in International Conference on
Very Large Data Bases (VLDB), Aug. 2013.

[7] M. Traverso. (2013) Presto: Interacting with
petabytes of data at facebook. [Online]. Avail-
able: https://www.facebook.com/notes/facebook-engineering/presto-
interacting-with-petabytes-of-data-at-facebook/10151786197628920/

[8] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza,
and K. Veeraraghavan, “Gorilla: A fast, scalable, in-memory time series
database,” in Proceedings of the VLDB Endowment, 2015.

[9] M. Karpathiotakis, D. Wernli, and M. Stojanovic. (2019) Scribe:
Transporting petabytes per hour via a distributed, buffered
queueing system. [Online]. Available: https://engineering.fb.com/data-
infrastructure/scribe/

[10] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha,
W. Wang, K. Wilfong, T. Williamson, and S. Yilmaz, “Realtime data
processing at facebook,” in Proceedings of the International Conference
on Management of Data (SIGMOD), 2016.


