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Abstract

We introduce an architecture to learn joint
multilingual sentence representations for 93
languages, belonging to more than 30 dif-
ferent families and written in 28 differ-
ent scripts. Our system uses a single
BiLSTM encoder with a shared BPE vo-
cabulary for all languages, which is cou-
pled with an auxiliary decoder and trained
on publicly available parallel corpora. This
enables us to learn a classifier on top of
the resulting embeddings using English an-
notated data only, and transfer it to any
of the 93 languages without any modifi-
cation. Our experiments in cross-lingual
natural language inference (XNLI dataset),
cross-lingual document classification (ML-
Doc dataset) and parallel corpus mining
(BUCC dataset) show the effectiveness of
our approach. We also introduce a new
test set of aligned sentences in 112 lan-
guages, and show that our sentence em-
beddings obtain strong results in multilin-
gual similarity search even for low-resource
languages. Our implementation, the pre-
trained encoder and the multilingual test set
are available at https://github.com/
facebookresearch/LASER.

1 Introduction

While the recent advent of deep learning has led to
impressive progress in Natural Language Process-
ing (NLP), these techniques are known to be par-
ticularly data hungry, limiting their applicability in
many practical scenarios. An increasingly popular
approach to alleviate this issue is to first learn gen-
eral language representations on unlabeled data,
which are then integrated in task-specific down-
stream systems. This approach was first popular-
ized by word embeddings (Mikolov et al., 2013b;

∗This work was performed during an internship at Face-
book AI Research.

Pennington et al., 2014), but has recently been su-
perseded by sentence-level representations (Peters
et al., 2018; Devlin et al., 2018). Nevertheless, all
these works learn a separate model for each lan-
guage and are thus unable to leverage information
across different languages, greatly limiting their
potential performance for low-resource languages.

In this work, we are interested in universal
language agnostic sentence embeddings, that is,
vector representations of sentences that are gen-
eral with respect to two dimensions: the input lan-
guage and the NLP task. The motivations for such
representations are multiple: the hope that lan-
guages with limited resources benefit from joint
training over many languages, the desire to per-
form zero-shot transfer of an NLP model from
one language (typically English) to another, and
the possibility to handle code-switching. To that
end, we train a single encoder to handle multiple
languages, so that semantically similar sentences
in different languages are close in the embedding
space.

While previous work in multilingual NLP has
been limited to either a few languages (Schwenk
and Douze, 2017; Yu et al., 2018) or specific appli-
cations like typology prediction (Malaviya et al.,
2017) or machine translation (Neubig and Hu,
2018), we learn general purpose sentence repre-
sentations for 93 languages (see Table 1). Using a
single pre-trained BiLSTM encoder for all the 93
languages, we obtain very strong results in various
scenarios without any fine-tuning, including cross-
lingual natural language inference (XNLI dataset),
cross-lingual classification (MLDoc dataset), bi-
text mining (BUCC dataset) and a new multilin-
gual similarity search dataset we introduce cover-
ing 112 languages. To the best of our knowledge,
this is the first exploration of general purpose mas-
sively multilingual sentence representations across
a large variety of tasks.

https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER


2 Related work

Following the success of word embeddings
(Mikolov et al., 2013b; Pennington et al., 2014),
there has been an increasing interest in learn-
ing continuous vector representations of longer
linguistic units like sentences (Le and Mikolov,
2014; Kiros et al., 2015). These sentence embed-
dings are commonly obtained using a Recurrent
Neural Network (RNN) encoder, which is typi-
cally trained in an unsupervised way over large
collections of unlabelled corpora. For instance,
the skip-thought model of Kiros et al. (2015) cou-
ple the encoder with an auxiliary decoder, and
train the entire system to predict the surrounding
sentences over a collection of books. It was later
shown that more competitive results could be ob-
tained by training the encoder over labeled Natu-
ral Language Inference (NLI) data (Conneau et al.,
2017). This was later extended to multitask learn-
ing, combining different training objectives like
that of skip-thought, NLI and machine translation
(Cer et al., 2018; Subramanian et al., 2018).

While the previous methods consider a single
language at a time, multilingual representations
have attracted a large attention in recent times.
Most of this research focuses on cross-lingual
word embeddings (Ruder et al., 2017), which are
commonly learned jointly from parallel corpora
(Gouws et al., 2015; Luong et al., 2015). An al-
ternative approach that is becoming increasingly
popular is to separately train word embeddings for
each language, and map them to a shared space
based on a bilingual dictionary (Mikolov et al.,
2013a; Artetxe et al., 2018a) or even in a fully un-
supervised manner (Conneau et al., 2018a; Artetxe
et al., 2018b). Cross-lingual word embeddings are
often used to build bag-of-word representations of
longer linguistic units by taking their respective
(IDF-weighted) average (Klementiev et al., 2012;
Dufter et al., 2018). While this approach has the
advantage of requiring weak or no cross-lingual
signal, it has been shown that the resulting sen-
tence embeddings work poorly in practical cross-
lingual transfer settings (Conneau et al., 2018b).

A more competitive approach that we follow
here is to use a sequence-to-sequence encoder-
decoder architecture (Schwenk and Douze, 2017;
Hassan et al., 2018). The full system is trained
end-to-end on parallel corpora akin to multilingual
neural machine translation (Johnson et al., 2017):
the encoder maps the source sequence into a fixed-

length vector representation, which is used by the
decoder to create the target sequence. This de-
coder is then discarded, and the encoder is kept to
embed sentences in any of the training languages.
While some proposals use a separate encoder for
each language (Schwenk and Douze, 2017), shar-
ing a single encoder for all languages also gives
strong results (Schwenk, 2018a).

Nevertheless, most existing work is either lim-
ited to few, rather close languages (Schwenk and
Douze, 2017; Yu et al., 2018) or, more commonly,
consider pairwise joint embeddings with English
and one foreign language (España-Bonet et al.,
2017; Guo et al., 2018). To the best of our knowl-
edge, existing work on learning multilingual rep-
resentations for a large number of languages is
limited to word embeddings (Ammar et al., 2016;
Dufter et al., 2018) or specific applications like ty-
pology prediction (Malaviya et al., 2017) or ma-
chine translation (Neubig and Hu, 2018), ours be-
ing the first paper exploring general purpose mas-
sively multilingual sentence representations.

All the previous approaches learn a fixed-length
representation for each sentence. A recent re-
search line has obtained very strong results using
variable-length representations instead, consisting
of contextualized embeddings of the words in the
sentence (Dai and Le, 2015; Peters et al., 2018;
Howard and Ruder, 2018; Devlin et al., 2018). For
that purpose, these methods train either an RNN
or self-attentional encoder over unnanotated cor-
pora using some form of language modeling. A
classifier can then be learned on top of the result-
ing encoder, which is commonly further fine-tuned
during this supervised training. Concurrent to
our work, Lample and Conneau (2019) propose a
cross-lingual extension of these models, and report
strong results in cross-lingual natural language in-
ference, machine translation and language mod-
eling. In contrast, our focus is on scaling to a
large number of languages, for which we argue
that fixed-length approaches provide a more ver-
satile and compatible representation form.1 Also,
our approach achieves strong results without task-
specific fine-tuning which makes it interesting for
tasks with limited resources.

1For instance, there is not always a one-to-one correspon-
dence among words in different languages (e.g. a single word
of a morphologically complex language might correspond to
several words of a morphologically simple language), so hav-
ing a separate vector for each word might not transfer as well
across languages.
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Figure 1: Architecture of our system to learn multilingual sentence embeddings.

3 Proposed method

We use a single, language agnostic BiLSTM en-
coder to build our sentence embeddings, which
is coupled with an auxiliary decoder and trained
on parallel corpora. From Section 3.1 to 3.3, we
describe its architecture, our training strategy to
scale to 93 languages, and the training data used
for that purpose.

3.1 Architecture

Figure 1 illustrates the architecture of the proposed
system, which is based on Schwenk (2018a). As
it can be seen, sentence embeddings are obtained
by applying a max-pooling operation over the out-
put of a BiLSTM encoder. These sentence em-
beddings are used to initialize the decoder LSTM
through a linear transformation, and are also con-
catenated to its input embeddings at every time
step. Note that there is no other connection be-
tween the encoder and the decoder, as we want all
relevant information of the input sequence to be
captured by the sentence embedding.

We use a single encoder and decoder in our sys-
tem, which are shared by all languages involved.
For that purpose, we build a joint byte-pair encod-
ing (BPE) vocabulary with 50k operations, which
is learned on the concatenation of all training cor-
pora. This way, the encoder has no explicit sig-
nal on what the input language is, encouraging it
to learn language independent representations. In
contrast, the decoder takes a language ID embed-
ding that specifies the language to generate, which
is concatenated to the input and sentence embed-
dings at every time step.

Scaling up to almost one hundred languages
calls for an encoder with sufficient capacity. In
this paper, we limit our study to a stacked BiLSTM
with 1 to 5 layers, each 512-dimensional. The

resulting sentence representations (after concate-
nating both directions) are 1024 dimensional. The
decoder has always one layer of dimension 2048.
The input embedding size is set to 320, while the
language ID embedding has 32 dimensions.

3.2 Training strategy

In preceding work (Schwenk and Douze, 2017;
Schwenk, 2018a), each input sentence was jointly
translated into all other languages. However, this
approach has two obvious drawbacks when trying
to scale to a large number of languages. First, it
requires an N-way parallel corpus, which is diffi-
cult to obtain for all languages. Second, it has a
quadratic cost with respect to the number of lan-
guages, making training prohibitively slow as the
number of languages is increased. In our prelimi-
nary experiments, we observed that similar results
can be obtained using only two target languages.2

At the same time, we relax the requirement for
N-way parallel corpora by considering separate
alignments for each language combination.

Training minimizes the cross-entropy loss on
the training corpus, alternating over all combi-
nations of the languages involved. For that pur-
pose, we use Adam with a constant learning rate of
0.001 and dropout set to 0.1, and train for a fixed
number of epochs. Our implementation is based
on fairseq,3 and we make use of its multi-GPU
support to train on 16 NVIDIA V100 GPUs with
a total batch size of 128,000 tokens. Unless other-
wise specified, we train our model for 17 epochs,
which takes about 5 days. Stopping training earlier
decreases the overall performance only slightly.

2Note that, if we had a single target language, the only
way to train the encoder for that language would be auto-
encoding, which we observe to work poorly. Having two tar-
get languages avoids this problem.

3https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq


af am ar ay az be ber bg bn br bs ca cbk cs da de
train sent. 67k 88k 8.2M 14k 254k 5k 62k 4.9M 913k 29k 4.2M 813k 1k 5.5M 7.9M 8.7M
en→xx err. 11.20 60.71 8.30 n/a 44.10 31.20 29.80 4.50 10.80 83.50 3.95 4.00 24.20 3.10 3.90 0.90
xx→en err. 9.90 55.36 7.80 n/a 23.90 36.50 33.70 5.40 10.00 84.90 3.11 4.20 21.70 3.80 4.00 1.00
test sent. 1000 168 1000 – 1000 1000 1000 1000 1000 1000 354 1000 1000 1000 1000 1000

dtp dv el en eo es et eu fi fr ga gl ha he hi hr
train sent. 1k 90k 6.5M 2.6M 397k 4.8M 5.3M 1.2M 7.9M 8.8M 732 349k 127k 4.1M 288k 4.0M
en→xx err. 92.10 n/a 5.30 n/a 2.70 1.90 3.20 5.70 3.70 4.40 93.80 4.60 n/a 8.10 5.80 2.80
xx→en err. 93.50 n/a 4.80 n/a 2.80 2.10 3.40 5.00 3.70 4.30 95.80 4.40 n/a 7.60 4.80 2.70
test sent. 1000 – 1000 – 1000 1000 1000 1000 1000 1000 1000 1000 – 1000 1000 1000

hu hy ia id ie io is it ja ka kab kk km ko ku kw
train sent. 5.3M 6k 9k 4.3M 3k 3k 2.0M 8.3M 3.2M 296k 15k 4k 625 1.4M 50k 2k
en→xx err. 3.90 59.97 5.40 5.20 14.70 17.40 4.40 4.60 3.90 60.32 39.10 80.17 77.01 10.60 80.24 91.90
xx→en err. 4.00 67.79 4.10 5.80 12.80 15.20 4.40 4.80 5.40 67.83 44.70 82.61 81.72 11.50 85.37 93.20
test sent. 1000 742 1000 1000 1000 1000 1000 1000 1000 746 1000 575 722 1000 410 1000

kzj la lfn lt lv mg mhr mk ml mr ms my nb nds nl oc
train sent. 560 19k 2k 3.2M 2.0M 355k 1k 4.2M 373k 31k 2.9M 2k 4.1M 12k 8.4M 3k
en→xx err. 91.60 41.60 35.90 4.10 4.50 n/a 87.70 5.20 3.35 9.00 3.40 n/a 1.30 18.60 3.10 39.20
xx→en err. 94.10 41.50 35.10 3.40 4.70 n/a 91.50 5.40 2.91 8.00 3.80 n/a 1.10 15.60 4.30 38.40
test sent. 1000 1000 1000 1000 1000 – 1000 1000 687 1000 1000 – 1000 1000 1000 1000

pl ps pt ro ru sd si sk sl so sq sr sv sw ta te
train sent. 5.5M 4.9M 8.3M 4.9M 9.3M 91k 796k 5.2M 5.2M 85k 3.2M 4.0M 7.8M 173k 42k 33k
en→xx err. 2.00 7.20 4.70 2.50 4.90 n/a n/a 3.10 4.50 n/a 1.80 4.30 3.60 45.64 31.60 18.38
xx→en err. 2.40 6.00 4.90 2.70 5.90 n/a n/a 3.70 3.77 n/a 2.30 5.00 3.20 39.23 29.64 22.22
test sent. 1000 1000 1000 1000 1000 – – 1000 823 – 1000 1000 1000 390 307 234

tg th tl tr tt ug uk ur uz vi wuu yue zh
train sent. 124k 4.1M 36k 5.7M 119k 88k 1.4M 746k 118k 4.0M 2k 4k 8.3M
en→xx err. n/a 4.93 47.40 2.30 72.00 59.90 5.80 20.00 82.24 3.40 25.80 37.00 4.10
xx→en err. n/a 4.20 51.50 2.60 65.70 49.60 5.10 16.20 80.37 3.00 25.20 38.90 5.00
test sent. – 548 1000 1000 1000 1000 1000 1000 428 1000 1000 1000 1000

Table 1: List of the 93 languages along with their training size, the resulting similarity error rate on Tatoeba, and
the number of sentences in it. Dashes denote language pairs excluded for containing less than 100 test sentences.

3.3 Training data and pre-processing

As described in Section 3.2, training requires bi-
texts aligned with two target languages. We
choose English and Spanish for that purpose, as
most of the data is aligned with these languages.4

We collect training corpora for 93 input languages
by combining the Europarl, United Nations, Open-
Subtitles2018, Global Voices, Tanzil and Tatoeba
corpus, which are all publicly available on the
OPUS website5 (Tiedemann, 2012). Appendix A
provides a more detailed description of this train-
ing data, while Table 1 summarizes the list of all
languages covered and the size of the bitexts. Our
training data comprises a total of 223 million par-
allel sentences. All pre-processing is done with

4Note that it is not necessary that all input languages are
systematically aligned with both target languages. Once we
have several languages with both alignments, the joint em-
bedding is well conditioned, and we can add more languages
with one alignment only, usually English.

5http://opus.nlpl.eu

Moses tools:6 punctuation normalization, remov-
ing non-printing characters and tokenization. As
the only exception, Chinese and Japanese were
segmented with Jieba7 and Mecab,8 respectively.
All the languages are kept in their original script
with the exception of Greek, which we romanize
into the Latin alphabet. It is important to note that
the joint encoder itself has no information on the
language or writing script of the tokenized input
texts. It is even possible to mix multiple languages
in one sentence.

4 Experimental evaluation

In contrast with the well-established evaluation
frameworks for English sentence representations
(Conneau et al., 2017; Wang et al., 2018), there
is not yet a commonly accepted standard to eval-

6http://www.statmt.org/moses
7https://github.com/fxsjy/jieba
8https://github.com/taku910/mecab

http://opus.nlpl.eu
http://www.statmt.org/moses
https://github.com/fxsjy/jieba
https://github.com/taku910/mecab


EN
EN→ XX

fr es de el bg ru tr ar vi th zh hi sw ur

Zero-Shot Transfer, one NLI system for all languages:
Conneau et al.
(2018c)

X-BiLSTM 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4
X-CBOW 64.5 60.3 60.7 61.0 60.5 60.4 57.8 58.7 57.5 58.8 56.9 58.8 56.3 50.4 52.2

BERT uncased∗ Transformer 81.4 – 74.3 70.5 – – – – 62.1 – – 63.8 – – 58.3

Proposed method BiLSTM 73.9 71.9 72.9 72.6 72.8 74.2 72.1 69.7 71.4 72.0 69.2 71.4 65.5 62.2 61.0

Translate test, one English NLI system:
Conneau et al. (2018c) BiLSTM 73.7 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3
BERT uncased∗ Transformer 81.4 – 74.9 74.4 – – – – 70.4 – – 70.1 – – 62.1

Translate train, separate NLI systems for each language:
Conneau et al. (2018c) BiLSTM 73.7 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6
BERT cased∗ Transformer 81.9 – 77.8 75.9 – – – – 70.7 – 68.9† 76.6 – – 61.6

Table 2: Test accuracies on the XNLI cross-lingual natural language inference dataset. All results from Conneau
et al. (2018c) correspond to max-pooling, which outperforms the last-state variant in all cases. Results involving
MT do not use a multilingual model and are not directly comparable with zero-shot transfer. Overall best results
are in bold, the best ones in each group are underlined.
∗ Results for BERT (Devlin et al., 2018) are extracted from its GitHub README10

† Monolingual BERT model for Thai from https://github.com/ThAIKeras/bert

uate multilingual sentence embeddings. The most
notable effort in this regard is arguably the XNLI
dataset (Conneau et al., 2018b), which evaluates
the transfer performance of an NLI model trained
on English data over 14 additional test languages
(Section 4.1). So as to obtain a more com-
plete picture, we also evaluate our embeddings
in cross-lingual document classification (MLDoc,
Section 4.2), and bitext mining (BUCC, Section
4.3). However, all these datasets only cover a sub-
set of our 93 languages, so we also introduce a new
test set for multilingual similarity search in 112
languages, including several languages for which
we have no training data but whose language fam-
ily is covered (Section 4.4). We remark that we
use the same pre-trained BiLSTM encoder for all
tasks and languages without any fine-tuning.

4.1 XNLI: cross-lingual NLI

NLI has become a widely used task to evaluate
sentence representations (Bowman et al., 2015;
Williams et al., 2017). Given two sentences, a
premise and a hypothesis, the task consists in de-
ciding whether there is an entailment, contradic-
tion or neutral relationship between them. XNLI
is a recent effort to create a dataset similar to
the English MultiNLI for several languages (Con-
neau et al., 2018b). It consists of 2,500 develop-
ment and 5,000 test instances translated from En-

glish into 14 languages by professional translators,
making results across different languages directly
comparable.

We train a classifier on top of our multilingual
encoder using the usual combination of the two
sentence embeddings: (p, h, p ·h, |p−h|), where p
and h are the premise and hypothesis. For that pur-
pose, we use a feed-forward neural network with
two hidden layers of size 512 and 384, trained with
Adam. All hyperparameters were optimized on
the English XNLI development corpus only, and
then, the same classifier was applied to all lan-
guages of the XNLI test set. As such, we did not
use any training or development data in any of the
foreign languages. Note, moreover, that the mul-
tilingual sentence embeddings are fixed and not
fine-tuned on the task or the language.

We report our results in Table 2, along with
several baselines from Conneau et al. (2018b)
and the multilingual BERT model (Devlin et al.,
2018).9 Our proposed method obtains the best re-
sults in zero-shot cross-lingual transfer for all lan-
guages but Spanish. Moreover, our transfer results
are strong and homogeneous across all languages:

9Note that the multilingual variant of BERT is
not discussed in its paper (Devlin et al., 2018).
Instead, the reported results were extracted from
the README of the official GitHub project at
https://github.com/google-research/bert/
blob/master/multilingual.md on June 17, 2019.

https://github.com/ThAIKeras/bert
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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de es fr it ja ru zh

Schwenk
and Li
(2018a)

MultiCCA + CNN 92.20 81.20 72.50 72.38 69.38 67.63 60.80 74.73
BiLSTM (Europarl) 88.40 71.83 66.65 72.83 60.73 - - -
BiLSTM (UN) 88.83 - 69.50 74.52 - - 61.42 71.97

Proposed method 89.93 84.78 77.33 77.95 69.43 60.30 67.78 71.93

Table 3: Accuracies on the MLDoc zero-shot cross-lingual document classification task (test set).

for 11 of them, the zero-short performance is (at
most) 5% lower than the one on English, including
distant languages like Arabic, Chinese and Viet-
namese, and we also achieve remarkable good re-
sults on low-resource languages like Swahili. In
contrast, BERT achieves excellent results on En-
glish, outperforming our system by 7.5 points, but
its transfer performance is much weaker. For in-
stance, the loss in accuracy for both Arabic and
Chinese is 2.5 points for our system, compared to
19.3 and 17.6 points for BERT.10 Finally, we also
outperform all baselines of Conneau et al. (2018b)
by a substantial margin, with the additional ad-
vantage that we use a single pre-trained encoder,
whereas X-BiLSTM learns a separate encoder for
each language.

We also provide results involving Machine
Translation (MT) from Conneau et al. (2018b).
This can be done in two ways: 1) translate the
test data into English and apply the English NLI
classifier, or 2) translate the English training data
and train a separate NLI classifier for each lan-
guage. Note that we are not evaluating multi-
lingual sentence embeddings anymore, but rather
the quality of the MT system and a monolingual
model. Moreover, the use of MT incurs in an
important overhead with either strategy: translat-
ing test makes inference substantially more expen-
sive, whereas translating train results in a separate
model for each language. As shown in Table 2, our
approach outperforms all translation baselines of
Conneau et al. (2018b). We also outperform MT
BERT for Arabic and Thai, and are very close for

10Concurrent to our work, Lample and Conneau (2019)
report superior results using another variant of BERT, out-
performing our method by 4.5 points in average. However,
note that these results are not fully comparable because 1)
their system uses development data in the foreign languages,
whereas our approach is fully zero-shot, 2) their approach re-
quires fine-tuning on the task, 3) our system handles a much
larger number of languages, and 4) our transfer performance
is substantially better (an average loss of 4 vs 10.6 points with
respect to the respective English system).

Urdu. Thanks to its multilingual nature, our sys-
tem can also handle premises and hypothesis in
different languages. As reported in Appendix B,
the proposed method obtains very strong results in
these settings, even for distant language combina-
tions like French-Chinese.

4.2 MLDoc: cross-lingual classification

Cross-lingual document classification is a typical
application of multilingual representations. In or-
der to evaluate our sentence embeddings in this
task, we use the MLDoc dataset of Schwenk and
Li (2018b), which is an improved version of the
Reuters benchmark (Lewis et al., 2004; Klemen-
tiev et al., 2012) with uniform class priors and a
wider language coverage. There are 1,000 training
and development documents and 4,000 test doc-
uments for each language, divided in 4 different
genres. Just as with the XNLI evaluation, we con-
sider the zero-shot transfer scenario: we train a
classifier on top of our multilingual encoder us-
ing the English training data, optimizing hyper-
parameters on the English development set, and
evaluating the resulting system in the remaining
languages. We use a feed-forward neural network
with one hidden layer of 10 units.

As shown in Table 3, our system obtains the
best published results for 5 of the 7 transfer lan-
guages. We believe that our weaker performance
on Japanese can be attributed to the domain and
sentence length mismatch between MLDoc and
the parallel corpus we use for this language.

4.3 BUCC: bitext mining

Bitext mining is another natural application for
multilingual sentence embeddings. Given two
comparable corpora in different languages, the
task consists in identifying sentence pairs that
are translations of each other. For that purpose,
one would commonly score sentence pairs by tak-
ing the cosine similarity of their respective em-
beddings, so parallel sentences can be extracted



TRAIN TEST

de-en fr-en ru-en zh-en de-en fr-en ru-en zh-en

Azpeitia et al. (2017) 83.33 78.83 - - 83.74 79.46 - -
Grégoire and Langlais (2017) - 20.67 - - - 20 - -
Zhang and Zweigenbaum (2017) - - - 43.48 - - - 45.13
Azpeitia et al. (2018) 84.27 80.63 80.89 76.45 85.52 81.47 81.30 77.45
Bouamor and Sajjad (2018) - 75.2 - - - 76.0 - -
Chongman Leong and Chao (2018) - - - 58.54 - - - 56
Schwenk (2018b) 76.1 74.9 73.3 71.6 76.9 75.8 73.8 71.6
Artetxe and Schwenk (2018) 94.84 91.85 90.92 91.04 95.58 92.89 92.03 92.57

Proposed method 95.43 92.40 92.29 91.20 96.19 93.91 93.30 92.27

Table 4: F1 scores on the BUCC mining task.

through nearest neighbor retrieval and filtered by
setting a fixed threshold over this score (Schwenk,
2018a). However, it was recently shown that
this approach suffers from scale inconsistency is-
sues (Guo et al., 2018), and Artetxe and Schwenk
(2018) proposed the following alternative score
addressing it:

score(x, y) = margin(cos(x, y),∑
z∈NNk(x)

cos(x, z)

2k
+

∑
z∈NNk(y)

cos(y, z)

2k
)

where x and y are the source and target sentences,
and NNk(x) denotes the k nearest neighbors of x
in the other language. The paper explores different
margin functions, with ratio (margin(a, b) = a

b )
yielding the best results. This notion of margin is
related to CSLS (Conneau et al., 2018a).

We use this method to evaluate our sentence
embeddings on the BUCC mining task (Zweigen-
baum et al., 2017, 2018), using exact same hyper-
parameters as Artetxe and Schwenk (2018). The
task consists in extracting parallel sentences from
a comparable corpus between English and four
foreign languages: German, French, Russian and
Chinese. The dataset consists of 150K to 1.2M
sentences for each language, split into a sam-
ple, training and test set, with about 2–3% of the
sentences being parallel. As shown in Table 4,
our system establishes a new state-of-the-art for
all language pairs with the exception of English-
Chinese test. We also outperform Artetxe and
Schwenk (2018) themselves, who use two sepa-
rate models covering 4 languages each. Not only
are our results better, but our model also covers
many more languages, so it can potentially be used
to mine bitext for any combination of the 93 lan-
guages supported.

4.4 Tatoeba: similarity search
While XNLI, MLDoc and BUCC are well estab-
lished benchmarks with comparative results avail-
able, they only cover a small subset of our 93 lan-
guages. So as to better assess the performance of
our model in all these languages, we introduce a
new test set of similarity search for 112 languages
based on the Tatoeba corpus. The dataset con-
sists of up to 1,000 English-aligned sentence pairs
for each language. Appendix C describes how the
dataset was constructed in more details. Evalu-
ation is done by finding the nearest neighbor for
each sentence in the other language according to
cosine similarity and computing the error rate.

We report our results in Table 1. Contrast-
ing these results with those of XNLI, one would
assume that similarity error rates below 5% are
indicative of strong downstream performance.11

This is the case for 37 languages, while there are
48 languages with an error rate below 10% and 55
with less than 20%. There are only 15 languages
with error rates above 50%. Additional result anal-
ysis is given in Appendix D.

We believe that our competitive results for many
low-resource languages are indicative of the ben-
efits of joint training, which is also supported by
our ablation results in Section 5.3. In relation to
that, Appendix E reports similarity search results
for 29 additional languages without any training
data, showing that our encoder can also generalize
to unseen languages to some extent as long as it
was trained on related languages.

5 Ablation experiments

In this section, we explore different variants of our
approach and study the impact on the performance

11We consider the average of en→xx and xx→en



Depth
Tatoeba BUCC MLDoc XNLI-en XNLI-xx
Err [%] F1 Acc [%] Acc [%] Acc [%]

1 37.96 89.95 69.42 70.94 64.54
3 28.95 92.28 71.64 72.83 68.43
5 26.31 92.83 72.79 73.67 69.92

Table 5: Impact of the depth of the BiLSTM encoder.

NLI Tatoeba BUCC MLDoc XNLI-en XNLI-xx
obj. Err [%] F1 Acc [%] Acc [%] Acc [%]

- 26.31 92.83 72.79 73.67 69.92
×1 26.89 93.01 74.51 73.71 69.10
×2 28.52 93.06 71.90 74.65 67.75
×3 27.83 92.98 73.11 75.23 61.86

Table 6: Multitask training with an NLI objective and
different weightings.

for all our evaluation tasks. We report average re-
sults across all languages. For XNLI, we also re-
port the accuracy on English.

5.1 Encoder depth

Table 5 reports the performance on the different
tasks for encoders with 1, 3 or 5 layers. We were
not able to achieve good convergence with deeper
models. It can be seen that all tasks benefit from
deeper models, in particular XNLI and Tatoeba,
suggesting that a single layer BiLSTM has not
enough capacity to encode so many languages.

5.2 Multitask learning

Multitask learning has been shown to be helpful
to learn English sentence embeddings (Subrama-
nian et al., 2018; Cer et al., 2018). The most im-
portant task in this approach is arguably NLI, so
we explored adding an additional NLI objective
to our system with different weighting schemes.
As shown in Table 6, the NLI objective leads to
a better performance on the English NLI test set,
but this comes at the cost of a worse cross-lingual
transfer performance in XNLI and Tatoeba. The
effect in BUCC is negligible.

5.3 Number of training languages

So as to better understand how our architecture
scales to a large amount of languages, we train a
separate model on a subset of 18 evaluation lan-
guages, and compare it to our main model trained
on 93 languages. We replaced the Tatoeba corpus
with the WMT 2014 test set to evaluate the multi-
lingual similarity error rate. This covers English,

#langs
WMT BUCC MLDoc XNLI-en XNLI-xx

Err [%] F1 Acc [%] Acc [%] Acc [%]

All (93) 0.54 92.83 72.79 73.67 69.92
Eval (18) 0.59 92.91 75.63 72.99 68.84

Table 7: Comparison between training on 93 languages
and training on the 18 evaluation languages only.

Czech, French, German and Spanish, so results be-
tween both models are directly comparable. As
shown in Table 7, the full model equals or outper-
forms the one covering the evaluation languages
only for all tasks but MLDoc. This suggests that
the joint training also yields to overall better rep-
resentations.

6 Conclusions

In this paper, we propose an architecture to learn
multilingual fixed-length sentence embeddings for
93 languages. We use a single language-agnostic
BiLSTM encoder for all languages, which is
trained on publicly available parallel corpora and
applied to different downstream tasks without any
fine-tuning. Our experiments on cross-lingual
natural language inference (XNLI), cross-lingual
document classification (MLDoc), and bitext min-
ing (BUCC) confirm the effectiveness of our ap-
proach. We also introduce a new test set of mul-
tilingual similarity search in 112 languages, and
show that our approach is competitive even for
low-resource languages. To the best of our knowl-
edge, this is the first successful exploration of gen-
eral purpose massively multilingual sentence rep-
resentations.

In the future, we would like to explore al-
ternative encoder architectures like self-attention
(Vaswani et al., 2017). We would also like to
explore strategies to exploit monolingual data,
such as using pre-trained word embeddings, back-
translation (Sennrich et al., 2016; Edunov et al.,
2018), or other ideas from unsupervised MT
(Artetxe et al., 2018c; Lample et al., 2018). Fi-
nally, we would like to replace our language de-
pendant pre-processing with a language agnostic
approach like SentencePiece.12

Our implementation, the pre-trained en-
coder and the multilingual test set are freely
available at https://github.com/
facebookresearch/LASER.

12https://github.com/google/
sentencepiece

https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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A Training data

Our training data consists of the combination of
the following publicly available parallel corpora:

• Europarl: 21 European languages. The size
varies from 400k to 2M sentences depending
on the language pair.

• United Nations: We use the first two million
sentences in Arabic, Russian and Chinese.

• OpenSubtitles2018: A parallel corpus of
movie subtitles in 57 languages. The corpus
size varies from a few thousand sentences to
more than 50 million. We keep at most 2 mil-
lion entries for each language pair.

• Global Voices: news stories from the Global
Voices website (38 languages). This is a
rather small corpus with less than 100k sen-
tence in most of the languages.

• Tanzil: Quran translations in 42 languages,
average size of 135k sentences. The style and
vocabulary is very different from news texts.

• Tatoeba: A community supported collection
of English sentences and translations into
more than 300 languages. We use this corpus
to extract a separate test set of up to 1,000
sentences (see Appendix C). For languages
with more than 1,000 entries, we use the re-
maining ones for training.

Using all these corpora would provide paral-
lel data for more languages, but we decided to
keep 93 languages after discarding several con-
structed languages with little practical use (Klin-
gon, Kotava, Lojban, Toki Pona and Volapük).
In our preliminary experiments, we observed that
the domain of the training data played a key role
in the performance of our sentence embeddings.
Some tasks (BUCC, MLDoc) tend to perform bet-
ter when the encoder is trained on long and formal
sentences, whereas other tasks (XNLI, Tatoeba)
benefit from training on shorter and more infor-
mal sentences. So as to obtain a good balance,
we used at most two million sentences from Open-
Subtitles, although more data is available for some
languages. The size of the available training data
varies largely for the considered languages (see
Table 1). This favours high-resource languages
when the joint BPE vocabulary is created and the
training of the joint encoder. In this work, we did

not try to counter this effect by over-sampling low-
resource languages.

B XNLI results for all language
combinations

Table 8 reports the accuracies of our system on the
XNLI test set when the premises and hypothesis
are in a different language. The numbers in the di-
agonal correspond to the main results reported in
Table 2. Our approach obtains strong results when
combining different languages. We do not have
evidence that distant languages perform consider-
ably worse. Instead, the combined performance
seems mostly bounded by the accuracy of the lan-
guage that performs worst when used alone. For
instance, Greek-Russian achieves very similar re-
sults to Bulgarian-Russian, two Slavic languages.
Similarly, combing French with Chinese, two to-
tally different languages, is only 1.5 points worse
than French-Spanish, two very close languages.

C Tatoeba: dataset

Tatoeba13 is an open collection of English sen-
tences and high-quality translations into more than
300 languages. The number of available transla-
tions is updated every Saturday. We downloaded
the snapshot on November 19th 2018 and per-
formed the following processing: 1) removal of
sentences containing “@” or “http”, as emails and
web addresses are not language specific; 2) re-
moval of sentences with less than three words, as
they usually have little semantic information; 3)
removal of sentences that appear multiple times,
either in the source or the target.

After filtering, we created test sets of up to
1,000 aligned sentences with English. This
amount is available for 72 languages. Limiting
the number of sentences to 500, we increase the
coverage to 86 languages, and 112 languages with
100 parallel sentences. It should be stressed that,
in general, the English sentences are not the same
for different languages, so error rates are not di-
rectly comparable across languages.

D Tatoeba: result analysis

In this section, we provide some analysis on the
results given in Table 1. We have 48 languages
with an error rate below 10% and 55 with less
than 20%, respectively (English included). The

13https://tatoeba.org/eng/

https://tatoeba.org/eng/


Hypothesis
en ar bg de el es fr hi ru sw th tr ur vi zh avg

Pr
em

is
e

en 73.9 70.0 72.0 72.8 71.6 72.2 72.2 65.9 71.4 61.5 67.6 69.7 61.0 70.7 70.3 69.5
ar 70.5 71.4 71.1 70.1 69.6 70.6 70.0 64.9 69.9 60.1 67.1 68.2 60.6 69.5 70.1 68.2
bg 72.7 71.1 74.2 72.3 71.7 72.1 72.7 65.5 71.7 60.8 69.0 69.8 61.2 70.5 70.5 69.7
de 72.0 69.6 71.8 72.6 70.9 71.7 71.5 65.2 70.8 60.5 68.1 69.1 60.5 70.0 70.7 69.0
el 73.0 70.1 72.0 72.4 72.8 71.5 71.9 65.2 71.7 61.0 68.1 69.5 61.0 70.2 70.4 69.4
es 73.3 70.4 72.4 72.7 71.5 72.9 72.2 65.0 71.2 61.5 68.1 69.8 60.5 70.4 70.4 69.5
fr 73.2 70.4 72.2 72.5 71.1 72.1 71.9 65.9 71.3 61.4 68.1 70.0 60.9 70.9 70.4 69.5
hi 66.7 66.0 66.7 67.2 65.4 66.1 65.6 65.5 66.5 58.9 63.8 65.9 59.5 65.6 66.0 65.0
ru 71.3 70.0 72.3 71.4 70.5 71.2 71.3 64.4 72.1 60.8 67.9 68.7 60.5 69.9 70.1 68.8
sw 65.7 64.5 65.7 65.0 65.1 65.2 64.5 61.5 64.9 62.2 63.3 64.5 58.2 65.0 65.1 64.0
th 70.5 69.2 71.4 70.1 69.6 70.2 69.6 65.2 70.2 62.1 69.2 67.7 60.9 70.0 69.6 68.4
tr 70.6 69.1 70.4 70.3 69.6 70.6 69.8 64.0 69.1 61.3 67.3 69.7 60.6 69.8 69.0 68.1
ur 65.5 64.8 65.3 65.9 65.3 65.7 64.8 62.1 65.3 58.2 63.2 64.1 61.0 64.3 65.0 64.0
vi 71.7 69.7 72.2 71.1 70.7 71.3 70.5 65.4 71.0 61.3 69.0 69.3 60.6 72.0 70.3 69.1
zh 71.6 69.9 71.7 71.1 70.1 71.2 70.8 64.1 70.9 60.5 68.6 68.9 60.3 69.8 71.4 68.7
avg 70.8 69.1 70.8 70.5 69.7 70.3 70.0 64.7 69.8 60.8 67.2 68.3 60.5 69.2 69.3 68.1

Table 8: XNLI test accuracies for our approach when the premise and hypothesis are in different languages.

ang arq arz ast awa ceb ch csb cy dsb fo fy gd gsw hsb
en→xx err. 58.96 58.62 31.24 12.60 63.20 81.67 64.23 54.55 89.74 48.64 28.24 46.24 95.66 52.99 42.44
xx→en err. 65.67 62.46 31.03 14.96 64.50 87.00 77.37 58.89 93.04 55.32 28.63 50.29 96.98 58.12 48.65
test sent. 134 911 477 127 231 600 137 253 575 479 262 173 829 117 483

jv max mn nn nov orv pam pms swg tk tzl war xh yi
en→xx err. 73.66 48.24 89.55 13.40 33.07 68.26 93.10 50.86 50.00 75.37 54.81 84.20 90.85 93.28
xx→en err. 80.49 50.00 94.09 10.00 35.02 75.45 95.00 49.90 58.04 83.25 55.77 88.60 92.25 95.40
test sent. 205 284 440 1000 257 835 1000 525 112 203 104 1000 142 848

Table 9: Performance on the Tatoeba test set for languages for which we have no training data.

languages with less than 20% error belong to 20
different families and use 12 different scripts, and
include 6 languages for which we have only small
amounts of bitexts (less than 400k), namely Es-
peranto, Galician, Hindi, Interlingua, Malayam
and Marathi, which presumably benefit from the
joint training with other related languages.

Overall, we observe low similarity error rates on
the Indo-Aryan languages, namely Hindi, Bengali,
Marathi and Urdu. The performance on Berber
languages (“ber” and “kab”) is remarkable, al-
though we have less than 100k sentences to train
them. This is a typical example of languages
which are spoken by several millions of people,
but for which the amount of written resources is
very limited. It is quite unlikely that we would be
able to train a good sentence embedding with lan-
guage specific corpora only, showing the benefit
of joint training on many languages.

Only 15 languages have similarity error rates
above 50%. Four of them are low-resource lan-
guages with their own script and which are alone
in their family (Amharic, Armenian, Khmer and

Georgian), making it difficult to benefit from joint
training. In any case, it is still remarkable that a
language like Khmer performs much better than
random with only 625 training examples. There
are also several Turkic languages (Kazakh, Tatar,
Uighur and Uzbek) and Celtic languages (Breton
and Cornish) with high error rates. We plan to fur-
ther investigate its cause and possible solutions in
the future.

E Tatoeba: results for unseen languages

We extend our experiments to 29 languages with-
out any training data (see Table 9). Many of
them are recognized minority languages spoken in
specific regions (e.g. Asturian, Faroese, Frisian,
Kashubian, North Moluccan Malay, Piemontese,
Swabian or Sorbian). All share some similarities,
at various degrees, with other major languages that
we cover, but also differ by their own grammar
or specific vocabulary. This enables our encoder
to perform reasonably well, even if it did not see
these languages during training.


