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Abstract

An image is worth a thousand words, conveying infor-
mation that goes beyond the mere visual content therein. In
this paper, we study the intent behind social media images
with an aim to analyze how visual information can facil-
itate recognition of human intent. Towards this goal, we
introduce an intent dataset, Intentonomy, comprising 14K
images covering a wide range of everyday scenes. These
images are manually annotated with 28 intent categories
derived from a social psychology taxonomy. We then sys-
tematically study whether, and to what extent, commonly
used visual information, i.e., object and context, contribute
to human motive understanding. Based on our findings, we
conduct further study to quantify the effect of attending to
object and context classes as well as textual information in
the form of hashtags when training an intent classifier. Our
results quantitatively and qualitatively shed light on how vi-
sual and textual information can produce observable effects
when predicting intent 1

1. Introduction
Why do we post images on social media platforms like

Facebook or Instagram? Are we expressing our feelings to
friends and family? Are we seeking to entertain a wide au-
dience? Or is it purely out of habit, or perhaps out of fear
of missing out? Images on social media embody more than
their explicit visual information, and they tend to be persua-
sive in commercial ads and even manipulative in the context
of political campaigns. Therefore, in the deluge of social
media, understanding the intent behind images is critical,
especially for tasks like fighting fake news and misinforma-
tion [16, 32] on social platforms.

However, understanding human intent behind images
from a computer vision point of view is particularly chal-
lenging, since it goes beyond standard visual recognition—
predicting a set of stuff and thing categories that physi-
cally exist in images such as objects [25, 12, 56, 51, 18]
and scenes [34, 58, 67]. Additionally, it is a psychological
task [41] inherent to human cognition and behavior. It is

1Intentonomy project page: github.com/kmnp/intentonomy
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Figure 1. Intent behind images: while (b) shows that the visual
motif of holding hands aligns with the common intent of “in love”,
(a) illustrates that similarity based on visual appearance alone of-
ten would lead to an incorrect match with respect to intent.

similar in spirit to visual commonsense reasoning [62, 43]
to derive an answer conditioned on the objects and scenes
present in images. In certain cases, intent can be inferred
rather directly from representative objects and scenes. For
example, a couple holding hands or making a heart symbol
clearly have the same motive “in love”(Fig. 1(b)). However,
the mapping from visual cue to intent is not always one-
to-one. Fig. 1(a) shows that two images with completely
different contents (a girl facing the ocean vs. a person relax-
ing on a rocky surface, with face covered) can represent the
same intent (“harmony”). This goes beyond the usual vari-
ability (pose, color, illumination, and other nuisances) tradi-
tionally addressed in object recognition pipelines [11, 37].
This brings us to the question: are objects and their image
context sufficient for recognizing the intent behind images?

In this paper, we introduce a human intent dataset, In-
tentonomy, containing 14K images that are manually an-
notated with 28 intent categories, organized in a hierar-
chy by psychology experts. To investigate the intangible
and subtle connection between visual content and intent,
we present a systematic study to evaluate how the perfor-
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mance of intent recognition changes as a a function of (a)
the amount of object/context information; (b) the properties
of object/context, including geometry, resolution and tex-
ture. Our study suggests that (1) different intent categories
rely on different sets of objects and scenes for recognition;
(2) however, for some classes that we observed to have
large intra-class variations, visual content provides negli-
gible boost to the performance. Furthermore, our study also
reveals that attending to relevant object and scene classes
brings beneficial effects for recognizing intent.

In light of this, we further study a multimodal frame-
work for intent recognition. In particular, given an intent
category, the framework localizes, in a weakly-supervised
manner, salient regions in images that are important for rec-
ognizing the class-of-interest. These discovered regions are
further reinforced during training using a localization loss
to guide the network to focus. In addition, we leverage
hashtags as a modality complementary to visual informa-
tion. We demonstrate through extensive evaluations that
properly ingesting visual and textual information helps to
boost the performance of intent prediction significantly.

Our work makes the following key contributions: (1) A
novel dataset of 14,455 high-quality images, each labeled
with one or more human intent. This dataset, which we call
Intentonomy, offers a total of 28 intent labels supported by
a systematic social psychological taxonomy [41] proposed
by experts; (2) A systematic study to show how commonly
used object and context information, as well as textual infor-
mation, contribute to intent recognition; (3) We introduce a
framework with the help of weakly-supervised localization
and an auxiliary hashtag modality that is able to narrow the
gap between human and machine understanding of images.

2. Related Work
Prior work on intent recognition has focused on com-

municative intents in different contexts. Joo et al. [19] de-
fine 9 dimensions of persuasive intents of a politician im-
plied through a photo (e.g., trustworthy). Other works [20,
38, 15, 45] also focus on persuasive intents in political im-
ages. Additional related work includes image and video
advertisement understanding including topics, sentiment
and intent [17, 64, 60], or the motivation behind the ac-
tions of people from images [31, 54]. Understanding in-
tent is also a key component in persuasive dialogue sys-
tems [35, 9, 61, 57]. In this work, we focus on the behavior
of the people who post on social media websites. While a
large body of work [23, 1, 24, 2, 42, 40] exists that study
the motivations behind the usage of social media, relatively
much fewer work exists in the area of computer vision.

The most similar work in terms of understanding human
motive in social media is from [22], which introduces a mul-
timodal dataset to understand the document intent in Insta-
gram posts. However, we differentiate our work in terms of

goals and methods: (1) we emphasize “visual intent” rather
than “textual intent”, meaning that we study human motive
mainly based on the perceived motives behind images rather
than textual data; (2) we systematically analyze how objects
and context contribute to the recognition of human motives
in the social media domain; (3) our dataset contains more
fine-grained categories (28 classes in total) with nine super-
categories compared to 8 categories from [22].

Our study on the relationship between intent and con-
tent is inspired by [65], which studied the effect of context
for object recognition. Other works also proposed context-
aware models in various tasks such as object recognition
and detection [48, 13, 49, 30, 6, 29, 14, 28, 3, 26, 4], scene
classification [59, 5], semantic segmentation [59, 29], scene
graph recognition [63], visual question answering [44]. Our
work utilizes both object- and scene-level information to
distinguish between different intent classes.

3. Intentonomy Dataset
Images Our dataset is built up of free-licensing high-
resolution photos from the website Unsplash2. We sample
images with common keywords that are similar to social
media hashtags, including “people”,“happy”, etc. The re-
sulting images cover a wide range of everyday life scenes
(e.g., from parties, vacations, and work).

Intent taxonomy The selection of intent labels is a non-
trivial exercise. The labels must form a representative set of
motives from social media posts, and it should occur with
high enough frequencies in the collection of the dataset.
Previous work on motive taxonomies [41] provide a solid
foundation for our study. However, not all of the 161 hu-
man motives presented in [41] are suitable in the context of
social media posts, or can be inferred from single-image
inputs. For example, one might need background infor-
mation about the person inside the image to judge if the
intent is “being spontaneous”, “to be efficient”, “to be on
time”. Some fine-grained motives in the taxonomy could be
merged. For instance, “social group” and “close friends”,
“making friends” and “having close friends”. Wherever
possible, we further divide certain motives into sub-motives
(“in love” and “in love with animal” for instance), for more
granularity. Fig. 2 illustrates our resulting ontology in full
with hierarchy information and annotated image examples.

Annotation details Amazon Mechanical Turk (MTurk) was
recruited to collect labels of perceived intent by employing a
similarity comparison task that we call “unsatisfactory sub-
stitutes”. We rely on the notion of “mental imagery” [46]
– a quasi-perceptual experience that maps example images
to a visual representation in one’s mind, along with games
with a purpose [52, 53, 8, 50] as our overall annotation ap-
proach. Fig. 3 displays the differences between a standard

2Unsplash Full Dataset 1.1.0

2

https://unsplash.com/data


“Inspire 
Others”

Virtues

Highly Regarded

Inspiring

“Teach 
Others”

Self-fulfill

Wisdom 
& 

Serenity

“Happy”

Openness to experience

Appreciating Beauty

"Fine
Design
Learn

Art-Arch"

"Fine
Design
Learn

Art-Art"

"Fine
Design
Learn

Art-Culture"

"Creative, 
Unique"

"Natural 
Beauty"

Embrace and Explore Life

Exploration

"Curious, 
Adventurous, 
Exciting Life"

Pursue Ideals & Passions

"Passionate 
About 

something"

Enjoy Life

"Playful"

"Enjoy 
Life"

Security and Belonging

Relate & Belong

Interpersonally 
Effective

"Commu-
nicate"

Social Life & 
Friendship

"Social Life, 
Friendship"

Intimacy

Emotional 
Intimacy

"In Love""In Love
Animal"

Stability

"Attractive"

Fastidious

Power

Dominate Others

Better than Others

"Beat other, Compete"

Health

Family

Good Family Life

"Good Parent, 
Emotionally 

Close to Child"

Ambition and Ability

Achievement

Mastery & 
Perseverance

"Hard-working"

Practical Competence

Organized & Efficient

"Manageable, 
Make Plan""Things 

In Order"

Financial and Occupational success

Finances

Financial Freedom

"Easy Life"

Occupational Success

Occupational Success

"Success In 
Occupation, Having 

a Good Job"

"Work 
I Like"

“Harmony”

Self-
knowledge & 
Contentment

Happiness

Intentonomy

"Share
Feelings"

Figure 2. Ontology visualization. We select 28 motive labels from a general human motive taxonomy used in psychology research [41].
There are 9 super-categories in total (in black box), namely “virtues”, “self-fulfill”, “openness to experience”, “security and belonging”,
“power”, “health”, “family”, “ambition and ability”, ”financial and occupational success”. See the Appendix ?? for dataset statistics.
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Figure 3. Annotation methods comparison. (a) A standard anno-
tation process: given a image, choose the desired labels from a
drop-down list; This approach is time-consuming and highly de-
pendent on the expertise of annotators. (b) Our approach: similar-
ity comparison using “unsatisfactory substitutes” so the annotators
can focus on the “swapabilities” of image pairs regarding the in-
tent. The task is to select all the images in the grid that clearly
have a different intent than the reference image on the left.

annotation process and ours. Due to space constraints, we
leave other details in the Appendix ??.

Although we have implemented strategies to ensure
quality (see the Appendix ??), we acknowledge that there
are inevitable inconsistencies in our training data. Differ-
ent people have different opinions of perceived intent. Prior
work [50] shows that there is at least 4% error rate in pop-
ular datasets like CUB-200-2011 [55] and ImageNet [7].
Yet these datasets are still effective for computer vision re-
search. Deep learning is robust to label noise in training
set [50, 36]. To this end, we create a highly curated test
set by enlisting a single domain-specific taxonomic expert
to provide the annotations for both validation (val) and test
sets. In our experiments, we regard this expert’s opinions
as the “gold standard,” which allows us to focus on self-

consistency in val and test sets, but we acknowledge that
challenges remain in terms of resolving matters of disagree-
ment among communities of experts. In the end, Intenton-
omy dataset has 12,740 training, 498 val, 1217 test images.
Each image contains one or multiple intent categories.

4. From Visual Content to Human Intent
Our goal is to investigate systematically how visual con-

tent within images contributes to the understanding of hu-
man intent. To this end, we disentangle the impact of vi-
sual content on intent classification by a series of controlled
experiments inspired by the methodology in [65]. More
specifically, we study the effect of visual content in terms
of object (O) and context (C), and focus on the following
fundamental aspects: (1) the amount of content informa-
tion; (2) three different content properties, including geom-
etry, resolution, and low-level texture. We then analyze the
relationships between intent classes and specific things and
stuff classes. Fig. 4 and 5 provide an overview of our study
under different control settings to analyze how visual infor-
mation affects intent recognition.

More formally, given an image I , we apply a perturba-
tion either to its objects or context to produce a modified
image: I(t)x = f(I, t, x), x ∈ X, t ∈ {O, C}, where f(·)
indicates a transformation function as will be introduced be-
low and X is a set of positive integers defining the level of
changes. The larger the value of index x, the closer the
I
(t)
x is to the original images. We now introduce different

transformation functions used to see how intent recognition
performance changes based on different visual contents.

Amount of content. We control the amount of object
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Figure 4. Example images with full content (far left), and image modifications used for the controlled conditions of our study.

Properties |X| I
(t)
x = f(·)

Geometry 6 jigsaw(g×g)(t),
g = 25−x, x ∈ [0, 5]

Resolution 6 blurσ(t),
σ = 25−x, x ∈ [0, 5]

Low-level 3 {
no t x = 0

1{texture(t)} x = 1, 2
texture features

Table 1. Content properties investigation. t ∈ {O, C}.

or contextual information by expanding (or decreasing for
context experiments) the bounding boxes (bbox) of detected
objects by e pixels:

I(t)x =


bbox(t) x = 0

bbox(t) ± e x ∈ [1, 7] e = 2x

full image x = 8

where bbox(t∈O) denotes the image area within the bound-
ing box, and bbox(t∈C) is the area outside the bounding box
(see two images in Fig. 4(d,e) for an example). A total of
9 variations for both objects and context are included. The
larger x indicates that the larger the amount of objects or
context are presented.

Content properties. We also study how visual proper-
ties impact intent recognition. We analyze the effect of the
following properties of O and C, including:

1. geometry: regions of objects or context are broken
down to g × g tiles and randomly re-arranged (we call
this operation jigsaw), while the other content compo-
nent remains intact;

2. resolution: convolving the selected content com-
ponent with a Gaussian function (zero-mean and vari-
ous values of standard deviation σ);

3. low-level texture features: visual tex-
tures are constructed using image statistics [33] for the
selected content component.

For all three properties, we only modify the selected regions
and paste other intact content components to their original
locations. Table 1 describes our method in detail.

Analysis and discussion. Given each transformation f ,
we finetune a pretrained CNN model and obtain the macro
F1 score on the modified validation set. Each model is run
multiple times to reduce variance. Fig. 5 shows results of
the 4 experiments focusing on content size and three prop-
erties. In general, we observe a positive correlation between
the amount of content and the macro F1 score. We can see
in Fig. 5(a) that recognition F1 score decreases when con-
text/object information is removed, for a majority of motive
labels (e.g. “BeatCompete” and “SocialLife*”), confirming
that context and objects clues are both important.

Interestingly, there are some exceptions to this trend
where either objects or context, on its own, yield compa-
rable results to the original images. For categories like “at-
tractive” or “in love”, object information alone offers com-
parable F1-scores to full images. In other cases, contextual
information achieves decent performance for motives like
“appreciate architecture”, “natural beauty”. Such motives
are usually associated with representative gestures that pro-
vide strong supervisory signals (e.g., see Fig. 1). These sig-
nals usually come from single content module, which we
further demonstrate in the next subsection.

In addition, Figs. 5(b)-5(d) demonstrate how content
properties affect intent recognition. We see that geome-
try, blurred effect, and texture features of the content com-
ponent decrease the intent recognition performance. See
macro F1 score and “beatCompete” in Figs. 5(b)-5(d) as
an example. Similar to the content size experiment previ-
ously, the impact of content properties is different for dif-
ferent classes. The bottom plots of Figs. 5(b)-5(d) show
that “Attractive” is sensitive to object manipulation. Mo-
tives like “Art-Arch*”, on the other hand, have an oppo-
site trend where context contributes more than objects. The
recognition results are robust to object manipulation, yet
sensitive to context modulation overall. These observations
are further illustrative of the varying importance of objects
or contextual information for different classes.

Relationship between intent and object/context
classes. The above analysis demonstrates different intent
categories have different preferences on objects and/or con-
text. We now examine whether there exists relationships be-
tween intent categories and specific objects/context classes.
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(a) Content size.

(b) Content geometry. (c) Content resolution. (d) Content texture.

Figure 5. A study on intent and content. Overall there are three trends among 28 classes, which are presented in Figs. 5(a)-5(d). F1 scores,
including average value and standard deviation over 5 runs, and random guess results, for selected classes and selected data variations are
displayed. Class names ends with “*” are abbreviated (e.g. “Art-Arch*” is short for “appreciate architecture”).
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Figure 6. A visualization of Π (Eq. 1), where each entry denotes
the correlation between a pair of intent and object/context class.

More specifically, given an image I with a intent la-
bel m and a trained intent recognition model, we use
class activation mappings [66], to produce a binary mask
CAMb(I,m, τcam) (τcam is a threshold value) to represent
the discriminate image regions for classm in the image. We
also feed the image to a segmentation model pretrained on
the COCO Panoptic dataset [21] to obtain a binary mask

Pano(I, p, τp) ( τp is a threshold value) for the class p in
the COCO dataset. We use the COCO Panoptic dataset [21]
because it contains widely used thing and stuff categories.
We then define the correlation between p and m as:

Πp,m =
CAMb(I,m, τcam) ∩ Pano(I, p, τp)

Pano(I, p, τp)
. (1)

Here, objects with high scores tend to be semantically
meaningful for the corresponding intent categories. Fig. 6
further validates our findings in the content modulation ex-
periments. While there are intent classes requiring both ob-
ject and context, certain classes are object-oriented while
others are context-oriented. Further, it can be observed that
certain intent classes are also more dependent on particular
object or context classes. For example, “person” is seman-
tically meaningful for intent like “Attractive” and “inHar-
mony”. It is also consistent that stuff classes like “building”,
“bridge” can help discriminate classes like “Architecture”.

It is worth mentioning that some intent classes (e.g. “ea-
syLife”, “socialLife”) have no or few correlated thing or
stuff classes. Indeed, the F1 score for some motive classes
are comparable to random guessing (see Fig. 5(a)). We sus-
pect that visual information only is not enough to represent
the inherent visual and semantic diversity in those classes.

5. Multimodal Intent Recognition
The study in Sec. 4 demonstrates that different intent

classes have different correlation with context and objects,
and so using a single “one-size-fits-all” network for intent
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Figure 7. Method overview. Given an image I , we localize important object and context regions for an intent of interest and additionally
use hashtags to complement visual information. See texts for more details.

recognition is sub-optimal. To mitigate this issue, we in-
troduce a localization loss that identifies, for each class, re-
gions in images that are important. In addition, as shown,
visual information alone is not sufficient for predicting cer-
tain classes of intent. To compensate, we also propose to use
an auxiliary channel to provide complementary semantic in-
formation. The overall framework is presented in Fig. 7.

Object/Context localization. Since different intent
classes rely on different visual content (either O or C), we
wish to guide the network to attend to these regions when
recognizing a class of interest. In particular, we first split
all intent categories into 3 groups based on our study in
§4: object-dependent (MO), context-dependent (MC ), and
others which depends on the entire image. We then use
CAM [66] to localize salient regions in a weakly-supervised
manner and minimize the overlap area between CAM and
the image area that is not a region of interest (Fig. 7).

Formally, given a motive class m and an image sam-
ple I , CAM(i,m) denotes the real-valued version of
CAMb(I,m, τcam) (see §4). Let MaskC(I) and MaskO(I)
be the aggregated binary masks in image I that represent
all detected thing (PT ) and stuff classes (PS ), respectively.
See examples of MaskO(I) and MaskC(I) in Fig. 7. The
localization loss is then defined as:

LO =
∑

m∈MO

(
CAM(I,m)�MaskC(I)

)
(2)

LC =
∑
m∈MC

(
CAM(I,m)�MaskO(I)

)
, (3)

where � is element-wise multiplication. The final loss Lloc
is the summation of all the entries in LO and LC .

Note that our approach is similar to previous work that
addresses contextual bias [39]. Both approaches use CAM
as weak annotations to guide training. However, our method
does not require a regularization term which grounds CAMs
of each category to be closer to the regions from a previ-

ously trained model. Therefore, our approach can be trained
with a single pass, in an end-to-end fashion.

Hashtags as an auxiliary modality. Visual information
is not sufficient for recognizing certain intent categories (see
“EasyLife” in Fig. 6). To further improve intent recognition,
we resort to language information as a complementary clue
for improved performance. Unfortunately, images from Un-
splash are not associated with any text information. We in-
stead leverage visual similarities of the Unsplash images to
a larger set of images, which do contain associated meta-
data that loosely describe the semantics within the images.
Instagram (IG) is a social media platform that contains bil-
lions of publicly available photos, often with user-provided
hashtags. This presents an opportunity to weakly relate im-
ages with vastly different visual appearances that contains
similar semantic information, by means of hashtags.

In particular, we first compute regional maximum activa-
tions of convolutions features [10, 47] from the last activa-
tion map of a pretrained Resnext-50 (32x4) model (trained
on ImageNet-22k [7]) on 7-days of public photos from IG
as well as all the images from our intent dataset. Using
these embeddings, we then perform a KNN query for each
Unsplash image to retrieve the top k matching IG images
for each of the images in our intent dataset. Finally, for
each matching IG photo, we collect all of the associated
hashtags (additional details are in the supplemental mate-
rial). The collection of all matched hashtags for a given
Unsplash image are represented as an unordered set HT .
See Fig. 7 for examples of fetched hashtags. However,
directly using hashtags are challenging because: 1) hash-
tags can be noisy, much like web-scale data tends to be; 2)
a hashtag is usually a concatenation of several words, in-
cluding multilingual phrases and emojis (e.g. #coffeme,
#landscapephotography). There are a large amount
of out of vocabulary words if one uses a pre-trained word
embedding for the entire hashtag. We thus first break the
hashtags down using a known dictionary of words (i.e.
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#coffeeme → “coffee” “me”). Subsequently, unusual
and noisy tokens/hashtags are automatically filtered out.

Formally, given HT for one image sample and a dictio-
nary V , we first segment each hashtag hs into a list of tokens
based on the given vocabulary : WordBreak(hs,V) = [w],
w ∈ V , hs ∈ HT . Separated tokens of one hashtag are
mapped to a dense embedding individually, and aggregated
into a single representation. Next, all of the resulting hash-
tag representations are averaged to compute a unified fea-
ture for all hashtags associated with a single image. Finally,
the hashtag features are concatenated with image features
into an integrated representation for classification.

Loss function. To capture the different opinions from
crowd annotators, we use cross-entropy loss with soft prob-
ability, denoted as LCE , inspired by [27]3. More for-
mally, our model computes probabilities ŷintent using a
softmax activation, and minimizes the cross-entropy be-
tween ŷintent and the target distribution yintent. yintent

is a target vector, where each position m contains the num-
ber of crowd workers who labeled the associated image to
motive class m, normalized by the total number of crowd
workers to indicate a probability distribution.

6. Experiments
In this section, we conduct extensive experiments to

evaluate the effectiveness of different components of the
multimodal framework. More specifically, we report the
performance of the following approaches: (1) RANDOM,
which is the success rates by random guessing; (2) VISUAL,
which finetunes a standard ResNet50 model to classify mo-
tives; (3) HASHTAGS (HT), which only uses hashtags to
predict intent; (4) VISUAL + HT, which combines visual
information and hashtags; (5) VISUAL + Lloc, which aug-
ments a visual model with the proposed localization loss;
(6) VISUAL + Lloc + HT, which denotes our full model.
Among them, (2)-(4) are trained using the standard cross-
entropy loss only, LCE . When the localization loss Lloc is
applied, we sum both Lloc and LCE : L = λLloc +LCE . λ
is a scalar to determine the contribution of each loss term.
Performance are measured using Macro F1, Micro F1, and
Samples F1 scores. We repeat each experiment 5 times and
report the mean and standard deviation (std).

Table 2 summarizes the results. We can see that the full
model achieves a 31.12 macro F1 score, outperforming the
VISUAL baseline by +7.76% percent difference, as well as
the HT baseline by +57.81% percent difference. Further-
more, compared to the VISUAL only approach, adding the
localization loss improves macro F1 score by 5.16%. We
also observe that visual and text information are comple-
mentary, offering 4.99% and 53.75% gain compared to vi-
sual and text only, respectively.

3Similar to [27], we also tried sigmoid cross-entropy loss but obtained
worse results.

Method Macro F1 Micro F1 Samples F1

RANDOM 6.94 ± 0.09 7.18 ± 0.10 7.10 ± 0.10

VISUAL 28.88 ± 0.56 37.08 ± 1.07 36.06 ± 1.51

HT 19.72 ± 0.88 29.30 ± 1.62 31.47 ± 1.64

VISUAL + Lloc
30.37 ± 0.51 38.64 ± 0.95 37.41 ± 1.51

(+1.49) (+1.56 ) (+1.35)

VISUAL 30.32 ± 0.62 37.61 ± 0.85 38.98 ± 1.70
+ HT (+1.44) (+0.53) (+2.92)

VISUAL + Lloc 31.12 ± 0.63 38.49 ± 0.88 38.77 ± 1.74

+ HT (+2.24) (+1.41) (+2.71)

Table 2. Experimental results of different approaches for intent
recognition measured in Micro F1, Macro F1, Samples F1 scores.
(+ ·) indicate the difference comparing to VISUAL. (+ ·) in green
denotes that the difference is larger than the std.

Method Content
O-classes C-classes Others

RANDOM 7.75 ± 5.47 12.53 ± 5.96 6.05 ± 5.23

VISUAL 34.92 ± 3.63 41.27 ± 3.53 25.34 ± 1.13

VISUAL + Lloc
38.82 ± 1.95 43.14 ± 3.00 25.90 ± 1.35

(+3.9) (+1.87) (+0.56)

VISUAL + 39.82 ± 1.56 42.09 ± 2.57 26.77 ± 1.13

Lloc + HT (+4.90) (+0.82) (+1.43)

Table 3. Results of different approaches in terms of how much
object/context information intent categories need. (+ ·) indicate
the difference comparing to VISUAL. (+ ·) in green denotes that
the difference is larger than the std.

To better understand why Lloc and HT improve visual
only model, we break down the intent classes into differ-
ent subsets based on their content dependency, i.e., object-
dependent (O-classes), context-dependent (C-classes), and
Others which depends on both foreground and background
information; (2) difficulty, which measures how much the
VISUAL outperforms achieves than the RANDOM results
(“easy”, “medium” and “hard”). More details are given in
the Appx.. Table 3-4 summarize the subset results.

The effectiveness ofLloc We see from Table 3 that when
adding the localization loss gains are more significant for
O-classes, compared to C-classes and Others. The local-
ization loss depends on the area of either object or context
regions in the images, and the objects’ region, which is used
in LC in Eq. 3, are typically small4. As a result, the Lloc has
no significant effect on the final score.

We also conduct a qualitative study to understand why
the localization loss helps intent recognition. Results are
shown in Fig. 8. We can see that the localization loss helps
the model to focus on the correct region of interest for both
O- and C-classes, especially when the image is scattered
with multiple objects and scenes. Fig. 8(a) confirms that

4Note that LC minimizes the overlap region between object area and
the salient region (CAM).
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(b)(a)

Original VISUAL VISUAL+ ℒ!"#

FineDesignLearnArt-
Art

Good Parent & 
Emotion Close to Child

Attractive;  
In Love 
(animal)

Original

Attractive;  
In Love 
(animal)

FineDesignLearnArt-
Arch

FineDesignLearnArt-
Art

VISUAL+ ℒ!"#VISUAL

Figure 8. Analysis of the proposed localization loss. (a) VISUAL + Lloc approach learns to isolate appropriate regions of interest,
comparing to VISUAL. For example, our method learn to focus on the dog and girl respectively for “In love (animal)” and “Attractive”
respectively, which are O-classes. (b) Examples for which both VISUAL + Lloc and VISUAL produce similar visualizations. Both methods
focus on the correct region, which are located in center and account for a larger area of the image.

Method Difficulty
Easy Medium Hard

RANDOM 19.86 ± 1.28 7.11 ± 3.40 2.81 ± 1.80

VISUAL 61.84 ± 4.90 33.71 ± 2.24 11.73 ± 1.74

HT 63.58 ± 1.79 19.68 ± 1.70 6.63 ± 1.43

VISUAL + HT
66.67 ± 2.12 32.93 ± 1.57 15.52 ± 0.98

(+4.83) (-0.78) (+3.79)

VISUAL + 66.18 ± 4.56 33.86 ± 1.08 16.50 ± 1.80

Lloc + HT (+4.34) (+0.15) (+4.77)

Table 4. Results of different approaches in terms of how difficult it
is for VISUAL to outperforms the RANDOM results. (+ ·) indicate
the difference comparing to VISUAL. (+ ·) in green denotes that
the difference is larger than the std.

VISUAL +Lloc works well when both object and context in-
formation are presented in the image (bottom 2 examples),
or the target region of interest is small (top example). We
also note in Fig. 8(b) that for images where the region of
interest is located in the center, or is relatively large, both
VISUAL and our method give good results.

The effectiveness of hashtags. From Table 4, we ob-
serve that the model using both images and hashtags out-
performs the uni-modal approaches over “easy” and “hard”
classes, without hurting the “medium” classes. This sug-
gests there is value in the auxiliary information to help close
the semantic gap. Therefore, our results suggest that im-
ages and hashtags do in fact complement each other in the
motive recognition task. For example, #love is directly
indicative of the intent label “in love”, as is #workout
of “health” (see Fig. 7 for more hashtag examples). In-
terestingly, for “easy” classes, HT model outperforms the
VISUAL model by 8.2%, however it struggles with the

“medium” and “hard” classes (Table 4). This suggests that
hashtags provided by users, while noisy, do still contain in-
formation about intent to some extent.

It is perhaps counter-intuitive that hashtags do not out-
perform visual signals entirely. While hashtags seem to cap-
ture the essence of human motives (see examples in Fig. 7),
careful inspection of the fetched hashtags shows that not all
hashtags are useful in practice. Obscurity and ambiguity
exist, including typos, slang, inside jokes, and irrelevant in-
formation. More effective modeling of hashtags remains an
open research problem.

7. Conclusion

In this work, we studied the problem of modeling hu-
man motives in social media posts. We introduced a new
dataset that taps into mental imagery in a novel annotation
game with a purpose to acquire labels from MTurk, and
collected a rich image dataset with 28 human motives sup-
ported by a social psychological taxonomy. We conducted
rigorous studies to explore the connections between content
and intent. Our results show that there is still much room
for improvement (for context-dependent, and hard classes
for example). We therefore hope that the new Intentonomy
dataset will facilitate future research to better understand
the cognitive aspects of images.
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