Design and analysis of hardware friendly pruning algorithms to
accelerate deep neural networks at the edge

Christin David Bose” Mostafa Elshoushi Syed Shakib Sarwar
chris241@purdue.edu melhoushi@meta.com shakib7 @purdue.edu
Purdue University Meta Al Meta Reality Lab Research
Indiana, USA Toronto, Canada Redmond, WA, USA
Yuecheng Li Reid Federick Pinkham Mia Kasperek

yuecheng.li@meta.com
Meta Reality Lab Research
Pittsburg, PA, USA

Ziyun Li
liziyun@meta.com
Meta Reality Lab Research
Redmond, WA, USA

ABSTRACT

Employing unstructured pruning is very popular to get state-of-the-
art model compression of convolutional neural network weights.
While unstructured pruning results in good model accuracy, it is
challenging for hardware architectures to exploit unstructured spar-
sity for speedups and power savings during model inference. Struc-
tured pruning, on the other hand, readily translates to model infer-
ence speedups and power reduction due to its hardware-friendly
nature but typically results in inferior model accuracy when com-
pared with unstructured pruning. Model pruning is performed by
removing network weights according to some criteria. As there
are several structured and unstructured pruning criteria being pro-
posed in literature, it is often unclear which criteria offers the best
performance in hardware. In this work, we generate the accuracy-
sparsity-latency pareto curve for several state-of-the-art filter prun-
ing criteria and generate insights based on an edge-based DNN
accelerator. We also propose combining various granularities of
pruning and evaluate the benefits. These insights will be useful to
prune deep learning workloads for inference at the edge subject to
a given accuracy and compute budget.

KEYWORDS
Pruning, deep neural networks, sparsity, edge hardware accelerator

ACM Reference Format:

Christin David Bose, Mostafa Elshoushi, Syed Shakib Sarwar, Yuecheng
Li, Reid Federick Pinkham, Mia Kasperek, Ziyun Li, and Barbara Da Salvo.
2022. Design and analysis of hardware friendly pruning algorithms to accel-
erate deep neural networks at the edge. In Proceedings of tinyML Research

“Work done during employment at Meta

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

tinyML Research Symposium’23, March 2023, San Jose, CA

© 2022 Copyright held by the owner/author(s).

pinkhamr@meta.com
Meta Reality Lab Research
Redmond, WA, USA

miaskomski22@meta.com
Meta Reality Lab Research
Redmond, WA, USA

Barbara Da Salvo
barbarads@meta.com
Meta Reality Lab Research
Burlingame, CA, USA

Symposium (tinyML Research Symposium’23). ACM, New York, NY, USA,
7 pages.

1 INTRODUCTION

Deep neural networks have seen an explosion of use cases over the
past decade and typically represent the state of the art solutions
for artificial intelligence at the edge in many fields. Convolutional
layers (CNNs) constitute a significant portion of these deep neu-
ral networks. However, CNNs have large compute and memory
footprint that restricts deployment in scenarios which resources
are limited. For example, many edge deployment scenarios need
to respect stringent form factor, computing, power and thermal
requirements. Novel distributed on-sensor compute architecture,
coupled with new semiconductor technologies and, most impor-
tantly, a full hardware-software co-optimization are the solutions
to achieve these strict requirements.

There are a plethora of solutions in literature that enable ag-
gressive hardware-algorithm co-optimization. For example, non-
traditional quantization and sparse model generation schemes have
been extensively studied to generate models with low memory
footprint and good accuracy. However, most hardware acceleration
platforms do not have support to adapt to these non-traditional
techniques. While some hardware platforms like NVIDIA A100
GPUs have sparse tensor cores to enable structured sparsity, the
onus is on the programmer to use necessary libraries and generate
model weights in a given format (for example 2:4 sparsity) in or-
der to utilize the hardware sparsity support. Even after employing
unstructured sparsity, the savings are sub-linear as the hardware
overhead associated with such techniques is non-negligible. For
example, NVIDIA’s 2:4 sparsity results in an end-to-end network
speedup of at most 1.5x [20] for common models despite having
50% sparsity. Hence, this work focuses on developing more hard-
ware friendly techniques that can be readily applied with minimal
assistance from the programmer or compiler. In short, this work
targets structured or semi-structured forms of pruning to accelerate
machine learning models at the edge.

tinyML Research Symposium’23, March 2023, San Jose, CA

In order to generate machine learning models with structured
sparsity, there exists several criteria in the literature to rank fil-
ters or kernels ([12],[8],[17],[18]). We note that while it is easy to
specify a filter or kernel ranking criteria, it is not clear which rank-
ing algorithm will be best (in terms of accuracy and/or hardware
friendliness) to generate such sparse models.

This paper makes the following contributions.

e We compare the hardware friendliness of several state of
the art filter pruning criteria subject to a given accuracy
degradation budget.

e We introduce a structured sparsity pruning algorithm that
learns a differential mask for pruning with a novel loss for-
mulation that aims to minimize the difference between the
output activations of the pruned and dense model in addition
to the task loss.

o We further demonstrate combining structured and semi struc-
tured pruning in order to get additional benefits in hardware
acceleration.

o Finally, we deploy the pruned models on an edge hardware
accelerator (ARM Ethos U55) and compare the inference la-
tency of various pruning criteria. As different pruning tech-
niques generate differently sized models (even for the same
model compression ratio), we generate accuracy-latency
curves for our proposed method as well as the other methods
from literature. Such a comparison yields insights into the
hardware friendliness of different pruning techniques for a
given compression ratio or latency budget.

2 PRELIMINARIES

In this section, we describe some common terminology used in
literature for structured pruning of CNNs.
Let I; and W; be the input features (or input activations) and

weights of a convolution layer I, respectively, where I; € R-1%W xh

W, € Rerxei-1¥kixki and ¢; is the number of filters in layer [. A typi-
cal CNN block consists of a convolution operation (), batch normal-
ization (BN), and an activation function (g) such as the commonly
used ReLU. Without loss of generality, we ignore the bias term due
to the bias term included in the BN, thus, the output feature map
O; (output activations) can be written as Oy = g(BN (I; = W))).

We note that the above example convolves the input activations
with ¢; filters each of size ¢;_; X k; X k; in order to get ¢; output
channels. By pruning away entire filters of size ¢;_; X k; X k;, we
realize that the corresponding output channel is also removed. We
define each filter of a CNN layer as consisting of different kernels. In
this example, we have ¢; filters each having c¢;_; kernels of size k; x
k;. In subsequent sections, we primarily refer to structured pruning
as removing different filters (filter pruning) and semi-structured
pruning as removing different kernels of a filter (kernel pruning).

As pruning of each filter removes an output channel, the corre-
sponding input channels of each filter of the next convolutional
layer can also be removed. This is depicted in the figure below:

We note this as filter pruning induced kernel pruning and this
will be one of our optimizations in generating smaller and more
compact models for hardware deployment.

Christin et al.

’\g Kernels of a filter

Input channels

Filters of CONV layer i

Output channels of
CONV layer i

Filters of CONV layer i+1

Figure 1: Filter pruning induced kernel pruning. Note: Greyed
out channels denote pruned filters/kernels

3 RELATED WORK
3.1 Pruning

=~ B N
=y 0 B
2= W N

Fine-grained pruning Kernel level pruning Filter level pruning

Figure 2: Overview of pruning granularity

Static pruning is the process of removing weights during the
offline training stage and applying the same model to all input
samples. Unstructured weight pruning ([12],[8],[17],[18]) is the
most fine-grained as it removes individual weights. While unstruc-
tured pruning could help in model compression, extensive hard-
ware/compiler support is needed to get speedup from the compres-
sion. Structured or semi-structured pruning is becoming a popular
alternative where whole filters or blocks of weights are being re-
moved based on a ranking criteria. Figure 2 depicts selected granu-
larities of pruning commonly deployed. Dynamic pruning on the
other hand proposes to skip irrelevant computations while perform-
ing inference. Thus, dynamic pruning processes different routes
per input sample ([11], [15], [5], [21])

3.2 Neural Architecture Search (NAS)

Recently, NAS has increasingly been used to find more efficient
sparse models. While filter pruning just involves the removal of
filters (or subsequent channels), NAS can optimize for a broader
set of parameters such as number of layers, kernel size, bitwidth,
number of neurons per layer, etc. Typically, when used for the same
filter pruning purpose, NAS is more computationally expensive
when compared to other filter pruning techniques. Sparse model
generation through pruning is particularly useful in low resource

Design and analysis of hardware friendly pruning algorithms to accelerate deep neural networks at the edge

settings where GPU hours are limited due to limited hardware or
time sharing requirements. For example, findings from [7] claim
that on average the GPU-hours incurred during pruning is about
4x less than that consumed by a full-scale NAS.

3.3 Quantization

Several works ([3], [6], [13], [14]) have employed various forms
of weight and activation quantization in order to reduce memory
footprint and improve speedup. We leave the joint optimization of
sparsity and quantization as future work.

4 HOW TO PRUNE A FILTER?
4.1 Pruning methods from Literature

In order to remove groups of weights such as a filter, many methods
have been proposed based on a filter selection criteria ([9], [10], [16],
[18], [19], [23]). Molchanov et al. [19] learns a global importance
measure of a filter and calculates the global importance score based
on a Taylor approximation on the network’s weights where a first
order approximation of a filter’s gradients and its norm are used
to calculate a filter’s importance metric. Other works such as [16]
and [22] propose to introduce a sparsity loss in addition to the task
loss as a regularization term and then prune filters whose criterion
are less than a threshold. Yu et al [23] uses the Hessian based trace
to find insensitive filters in a model. From a comparison across
several performance numbers reported in the literature, we mainly
compare our methods against the Taylor [19] and Hessian based
approach (HAP) for structured pruning [23].

4.2 Self learning pruning critera

In this section, we describe the mechanism for learning the impor-
tance of each filter (or kernel). The following description applies
to pruning of filters but the same methodology can be applied to
pruning at other granularities (for e.g.: kernel). We then describe
the design of filter selection based on the importance and the loss
formulation that enables the learning of the importance value.

Our proposed method learns a score value for each filter which
is then translated into a binary mask that depicts whether a filter
is chosen for pruning or not.

]

Trainable Filter Weights pruned filters
scores Binary mask < l/ | [frnedfiters
(so)]— — &) ©
[5_14’ - [ml]) I8 .
. g !~
Gn)— — @) ® 1

Figure 3: Supermask based filter pruning. Greyed-out filters
indicate pruned filters

Taking motivation from the selection approach used in [4], we
employ a cumulative sorting based selection of the filters based
on the trained score values. The k filters that are to be kept are

tinyML Research Symposium’23, March 2023, San Jose, CA

calculated based on a global hyperparameter r. For each CNN layer,
k is the number of filters kept such that the cumulative mass of
the sorted score values reaches r. The same hyperparameter r is
used for all layers. However, each layer will have a different prun-
ing ratio depending on the score values. The advantage of this
approach is to avoid manually setting the pruning ratio of each
layer without resorting to determining the layer sensitivity or a
global filter importance measure. Sensitivity analysis is known to
be computationally expensive as the layers grow deeper.

Input: sy, s2,...5p, 7
Output: my, ma,...,my
m[1:n] < ones(1,n);
scores «— sigmoid(scores);
normalize < scores/SUM(scores);
sorted, idx < SORT (normalize, descending = True);
cumulative «— CUMSUM(sorted);
pruneidx «— WHERE (cumulative > r);
m|pruneidx] « 0;
Algorithm 1: Binary mask generation

Loss function
In order to learn which filters are important, we augment the task
loss with an auxiliary loss that serves as a proxy for the usefulness
of a given filter. The overall training objective is as follows:

ml/\i/n Liotal = Lent (fu(x; W), yi) + Laux (1)

where Lens (fn(x; W), yg) denotes the cross-entropy task loss
and Lgyy is the auxiliary loss.
The auxiliary loss is calculated as:

Laux = RMSE(g(BN (I * Wp)), g(BN (I * mask(Wp)))) (2)

where RMSE is the root mean square error, g(BN(I; * W)))
denotes the output activations of a dense model and g(BN (I} *
mask(W;))) denotes the output activations after pruning the filters.

We train solely on the auxiliary loss during the initial 50 epochs
in order to distill the important filters from a pretrained model.
We then subsequently train the model only on the task loss (100
epochs).

5 EXPERIMENTS AND ANALYSIS

Pruning

We base our experiments on the ResNet20 models on CIFAR100
and the ResNet50 and MobileNetV2 models on ImageNet dataset.
We compare our pruning methods to other popular pruning meth-
ods in literature such as Taylor gate based pruning [19] and Hessian
aware pruning [23]. The points of comparison are on two fronts:
accuracy and inference latency. For all points of comparison, we
have used the same experimental settings (e.g., hyperparameters)
used in [19], [23] in order to get the best possible accuracy with
the respective pruning criteria. Regarding skip connections such as
commonly found in ResNet models, we pruned the both paths of
the skip connections by the same fraction so that tensor additivity
is satisfied (Figure 4).

tinyML Research Symposium’23, March 2023, San Jose, CA

- _.®_.

Pruning shortcut paths with the same ratio

Figure 4: Pruning of residual connections

Hardware deployment

The target hardware chosen is the ARM based Ethos U55 [2] which
is an inference accelerator. The latency estimates for the models are
obtained after compiling the models with the ethos-u-vela compiler
[1] provided by ARM in the open source community. We generated
the TFLite models from PyTorch using PyTorch-ONNX-TFLite flow
to generate required quantized network format for deploying in
the ARM NPU. As our target use case is for inference at the edge
(such as for AR/VR or IoT like workloads), we have used a batch
size of 1 for all our latency estimates. During the pruning phase of
the algorithm, the pruned filters are merely zeroed out while the
model architecture is unchanged. Naively, compiling this "pruned"
model using the ethos-u-vela compiler results in memory footprint
and read cycle savings as some of the zeroed out weights can now
be compressed. However, the NPU cycles remain unchanged (as
the weights are decompressed before the computation) and the
overall latency savings is limited. In order to evaluate the latency of
a truly pruned model, we indeed create a smaller model by totally
removing pruned filters and kernels (as illustrated in section 2).
Some of the key specifications of the hardware accelerator assumed
is shown in Table 1.

Metric Value

System clock 500Mhz

Number of Processing Elements (PEs) | 32-256
Design peak SRAM bandwidth 4.00GB/s
Design peak On-chip Flash 4.00GB/s

Table 1: Hardware accelerator specifications

It should be noted that the SRAM is used for runtime data storage
(like activations) while the on-chip flash memory is used for weight
storage. The PyTorch models are compiled with performance opti-
mization as an objective (least inference time) i.e. the compilation
process prioritises a higher runtime performance over a lower peak
SRAM usage. In order to maintain an acceptable frame rate for
edge inference, we have used 32 PEs for ResNet20 and 256 PEs for
ResNet50 and MobileNetV2.

5.1 Experiments on CIFAR100

5.1.1 ResNet20. We plot the accuracy-sparsity-latency curve for
ResNet20. At low levels of sparsity (<20%), we see that Taylor based

Christin et al.

pruning offers minimal accuracy degradation. However, at mod-
erate to high levels of sparsity (20%-50%), Taylor based pruning
has strong roll off in accuracy as compared to Hessian based prun-
ing. Hessian based pruning also offers better accuracy at similar
latency when compared to the self-learning filter pruning method
(Supermask)

Accuracy-latency-sparsity pareto curve(Resnet20)

g | B 5
& LI
as
6
a
z@ z
7)
FE k1
]]
H 3
& £
25
56
2
s
5 15
50 1
o 10 20 30 0 50 & o
Sparsity (%
parsity (%} W Accuracy
~W-Taylor ~@-~HAP ~B- Supermask M Dense baseline ® Latency
(2)
Aci y-latency pareto cur 20)
70
- []
& -
Ll P
6 5§ e
l .
, .
.
6 " i
wo
,
ge ;o
e R
L4 /
8]
255
56
st
52
50
25 3 35 a s s 55
Latency ms)
-M-Taylor -@-HAP -W- Supermask M Dense baseline

Figure 5: ResNet20 on CIFAR100

We notice that the same sparsity level results in a pruned model
with varied inference latencies depending on the pruning criteria.
This is because different pruning criteria may choose to remove
differently sized filters by different ratios. We also plot the accuracy-
latency tradeoff curve in Figure 5(b). At strict latency constraints,
Hessian based pruning is able to give the best model accuracy for a
given latency.

5.2 Experiments on Imagenet
5.2.1 ResNet50. We plot the accuracy-sparsity-latency curve for

the ResNet50 model on Imagenet for the pruning strategies as dis-
cussed earlier (Figure 6a). We first notice that for a given sparsity

Design and analysis of hardware friendly pruning algorithms to accelerate deep neural networks at the edge

level, there is a significant variance in the latency of the pruned mod-
els from different pruning criteria. Taylor pruning offers minimal
accuracy degradation at the expense of high latency compared to
other pruning methods in consideration. On comparing the pruned
models from Taylor and the other approaches, it was found that
Taylor pruning leaves a lot of 1x1 kernels intact. 1x1 kernels are
well known to be inefficient on accelerators. This explains the poor
latency behavior of Taylor based pruned models. Figure 6(b) com-
pares the layerwise wise pruning strategy (for selected ResNet50
layers) of the Taylor and the HAP methods at an iso-sparsity level.
While the Taylor based criteria hardly prunes the circled 1x1 ker-
nels, HAP strongly prunes away these filters. The Supermask based
method offers comparable latency as compared to the Hessian based
approach (as it prunes away 1x1 kernels as well) but results in in-
ferior model accuracy when compared to other approaches under
consideration.

Accuracy-latency-sparsity pareto curve(50)
® 0
3 | ., =
u® L M. S =
e .0 T--_ R 50
o g “H . ~m
s S =
@ e A 57
£ e h. z
Ses L ~ z
g S e g
g S O o3
a6 [N AN H
8 » h | £
S S B
0 e
58 L S
. ° B
56 ®
st
2
52
50 2
o 10 2 0 o 50 60 0 50 %0
Sparsity (%]
parsity (%) W Accuracy
—-M-Taylor --®-HAP ~—m Supermask M Dense baseline ® Latency
(@

Layer wise sparsity for ResNets0

Layer ID (ResNet50)

(b) Note: for the circled layers, the resultant sparsity of the Taylor
scheme is nearly 0.

Figure 6(c) depicts the accuracy per latency budget for ResNet50
on ImageNet. At strict latency budgets, Taylor pruned models per-
forms marginally better in terms of accuracy. It is to be noted
that proportional increases in sparsity levels may result in dispro-
portional increases in latency (depending on the model mapping
strategy, layerwise pruning ratio etc)

tinyML Research Symposium’23, March 2023, San Jose, CA

y-sparsity pareto curve(|

" ..m m
B
7 " m
e -n

» p -
g n® -
z [o
ge =3
a P
e w’

/
.
“ ,
,
& -
u
©
w
» = © s © 5 © 5 ©
Latency (ms)
—M-Taylor --#-HAP —B- Supermask B Dense baseline
©

Figure 6: ResNet50 on ImageNet

5.2.2 Mobilenetv2. In this section, we compare the performance
of the pruning algorithms on compact machine learning models
that are commonly used for deep learning on the edge. We plot the
accuracy-sparsity-latency curve for MobileNetV2 in Figure 7a. As
MobileNetV2 is already a compact model, we see steep accuracy
degradation even at low levels of sparsity (eg: >10%). We notice
pruned models using Taylor based criteria consistently underper-
form in accuracy when compared to the self-pruning criteria. As the
Taylor criteria is based on a global filter ordering of importance [19],
it was found that there is high variance in the inter-layer pruning
ratio (ie. some layers are pruned much more strongly than others).
This explains the drop in accuracy although at improved latency
for the Taylor-based pruned model. We tried generating pruned
models for MobileNetV2 based on [23] but their code base is old
and was not amenable to readily pruning new model architectures.
While Taylor based pruning results in a worse accuracy for a given
sparsity level, the accuracy per latency budget is higher than the
supermask method as shown in figre 7b.

y-latency-sparsity pareto curve(i 2)

Top 1 accuracy (%)
/
e
p
i
/
7
/
n
n

o B 1 15) 2 £ 3 o as 50
Sparsity (%)

-m- Supermask W Dense basaline —m -Taylor

(2)

tinyML Research Symposium’23, March 2023, San Jose, CA

y-latency pareto cur il 2)

7

7

7 - s
g - ,
Se8 - /
z /
g . .
H /
g u ,
e . .

,
H / .
g o
.
6 .
.
6
&
2 3 a s 3 7 s
Inference latency (ms)
-m- Supermask M Dense baseline B -Taylor

Figure 7: MobileNetV2 on ImageNet

5.3 Choice of pruning criteria

In this subsection, we summarize our findings on sparse model gen-
eration using different pruning criteria. The first key observation
is that no pruning criteria consistently outperforms the others for
all models on a given hardware platform. While Taylor based filter
pruning offers competitive accuracy at low levels of sparsity, the
accuracy degradation at moderate to high levels of sparsity depends
on the kind of model. Inference latency can also significantly vary
between models generated from different pruning criteria at the
same sparsity level. For instance, 1x1 kernels are pruned lightly
by the Taylor criteria which results in limited speedup on edge
hardware. On the other hand, compact models like MobileNetV2
results in some layers being more strongly pruned by the Taylor
criteria as compared to others which degrades accuracy. Hessian
based pruning offers good accuracy and latency at moderate levels
of sparsity. However, it is to be noted that since the calculation
of the Hessian is a second order method, the cost of sparse model
generation is higher than the other studied methods. Constraints
on model turn-around time are commonly found while applying
sparsification to production models.

5.4 Combining structured and semi-structured
filter pruning

In this section, we present a use case for combining various granu-
larities of pruning. For the sake of illustration, we use the super-
mask method discussed in section 4.2. However, the principle can
be extended to other pruning criteria as well. The motivation here
is to remove both filters (structured sparsity) and kernels (semi-
structured sparsity). While filter pruning can be readily translated
to speedup in hardware by creating a smaller model, getting hard-
ware speedup from kernel pruning requires changes to the model
representation and/or the hardware compute engine which may
not be a trivial change to the model user. In this example, we just
zero out the kernel weights and expect to see benefits in model
compression from the compiler. This optimization enables fewer
memory read cycles as the weights are read in the compressed
format and decompressed on-the-fly during the processing using
dense compute engine, As the memory and compute cycles are

Christin et al.

pipelined in the accelerator, savings due to the reduction in the
memory cycles may not be evident from the overall latency. How-
ever, since kernel pruning enables storing weights in a compressed
format, memory leakage and read energy savings can be expected
even with same overall latency. Since, the assumed vela compiler
does not provide such energy stats, we ignore the estimation of
potential energy savings from kernel pruning. While both filter
pruning and kernel pruning offers advantages, the joint exploration
of these two approaches for model optimization is left as future
work.

C;, kernels
—

Cifilters of |
layer i

Figure 8: Kernel pruning illustrated in layer i. 50% of the
kernels are pruned as an example.

Figure 8 illustrates an example of kernel level pruning (50% of
kernels of each filter are pruned away). Table 2 depicts the model
compression and accuracy by doing kernel level pruning in addition
to 10% filter pruning (ie. in each layer 10% of filters are pruned) for
the ResNet20 model on CIFAR100 dataset. We can see that weights
can be compressed by 15-25% with negligible drop in accuracy.
Further improvements in accuracy can be expected by pruning
filters and kernels non-uniformly (eg: different prune ratios in each
layer obtained through Algorithm 1).

Kernels pruned (%) | Accuracy (%) | Size (KiB) | Compression
0 67.180 252.64 0.893
10 67.250 235.73 0.834
20 66.100 214.56 0.759
30 66.475 192.20 0.680
40 65.475 172.67 0.611

Table 2: Mixed filter+kernel pruning. Baseline accuracy of
ResNet20 dense model on CIFAR100 is 68.81%

6 CONCLUSION

Model pruning is a very popular optimization that aims at minimiz-
ing model footprint such as latency/energy/memory while trying to
maintain accuracy. Structured pruning of deep neural networks can
be readily translated to speedup on hardware acceleration platforms
(such as GPUs, NPUs etc) while unstructured pruning requires hard-
ware modification and/or compiler support to get benefits. Filter
pruning of convolutional layers is an example of structured pruning
that has received immense attention in the research community.
While, there are several filter pruning criteria in the literature, it is

Design and analysis of hardware friendly pruning algorithms to accelerate deep neural networks at the edge

often unclear which pruning criteria is best suited for a given hard-
ware and accuracy budget. This works aims to study the hardware
friendliness of several state of the art filter pruning criteria subject
to a within sparsity level and accuracy degradation bucket. We find
that the choice of the optimal pruning criteria varies depending on
the model architecture, hardware platform and constraints such as
accuracy/latency budget. We also show benefits of kernel pruning
which can be applied in addition to filter pruning. These insights
will be useful to model optimization engineers to select a suitable
pruning criteria for a given model accuracy and latency budget.

REFERENCES

[1] ARM. [n.d.]. ethos-u-vela. https://review.mlplatform.org/plugins/gitiles/ml/

ethos-u/ethos-u-vela.

] ARM. [n.d.]. Ethos-U55. https://developer.arm.com/Processors/Ethos-U55.

[3] Mostafa Elhoushi, Farhan Shafiq, Ye Henry Tian, Joey Yiwei Li, and Zihao Chen.
2019. DeepShift: Towards Multiplication-Less Neural Networks. https://arxiv.org/
abs/1905.13298.

[4] Sara Elkerdawy, Mostafa Elhoushi, Hong Zhang, and Nilanjan Ray. 2022. Fire
Together Wire Together: A Dynamic Pruning Approach with Self-Supervised
Mask Prediction. CVPR (2022).

[5] Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins, and Cheng zhong
Xu. 2018. Dynamic channel pruning: Feature boosting and suppression. https:
//arxiv.org/abs/1810.05331.

[6] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and
Kurt Keutzer. 2021. A Survey of Quantization Methods for Efficient Neural Network
Inference. https://arxiv.org/abs/2103.13630.

[7] Sayan Ghosh, Karthik Prasad, Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Gra-
ham Cormode, and Peter Vajda. [n.d.]. Pruning Compact ConvNets For Efficient
Inference. https://openreview.net/forum?id=_gZ8dG4vOr9.

[8] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in Neural Information
Processing Systems (NIPS) (2015).

[9] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, , and Yi Yang. 2018. Soft filter
pruning for accelerating deep convolutional neural networks. https://arxiv.org/abs/
1808.06866.

[10] Yihui He, Xiangyu Zhang, and Jian Sun. [n. d.]. Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1389-1397 ([n.d.]).

[11] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G Edward Suh.
2018. Channel gating neural networks. https://arxiv.org/abs/1805.12549.

[12] Michael Carbin Jonathan Frankle. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. https://arxiv.org/abs/1803.03635.
[13] Edward H. Lee, Daisuke Miyashita, Elaina Chai, Boris Murmann, , and S. Simon

Wong. 2017. LogNet: Energy-efficient neural networks using logarithmic compu-
tation. In 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 5900-5904 (2017). https://doi.org/10.1109/ICASSP.2017.7953288.
Yuhang Li, Xin Dong, and Wei Wang. 2019. Additive Powers-of-Two Quantization.
https://arxiv.org/abs/1909.13144.
[15] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017. Runtime neural pruning. n
Proceedings of the 31st International Conference on Neural Information Processing
Systems (2017).
Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2736-2744 (2017).
Christos Louizos, Max Welling, and Diederik P Kingma. 2017. Learning sparse
neural networks through 10 regularization. https://arxiv.org/abs/1712.01312.
[18] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. A filter level pruning method
for deep neural network compression. In Proceedings of the IEEE international
conference on computer vision (2017).
Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. 2019.
Importance estimation for neural network pruning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11264— 11272 (2019).
[20] Jeff Pool. [n.d.]. Accelerating sparsity in the NVIDIA Ampere Architec-
ture. https://developer.download.nvidia.com/video/gputechconf/gtc/
2020/presentations/s22085-accelerating- sparsity-in-the-nvidia-ampere-
architecture%E2%80%8B.pdf.
[21] Yulong Wang, Xiaolu Zhang, Xiaolin Hu, Bo Zhang, and Hang Su. 2020. Dynamic
network pruning with interpretable layerwise channel selection. In Proceedings
of the AAAI Conference on Artificial Intelligence (2020).
Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. n Advances in neural information

[14

[16

[17

[19

[22

tinyML Research Symposium’23, March 2023, San Jose, CA

processing systems, pages 2074-2082 (2016).

[23] Shixing Yu, Zhewei Yao, Amir Gholami, Zhen Dong, Sehoon Kim, Michael W.
Mahoney, and Kurt Keutzer. 2022. Hessian-Aware Pruning and Optimal Neural
Implant. WACV (2022).

https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela
https://developer.arm.com/Processors/Ethos-U55
https://arxiv.org/abs/1905.13298
https://arxiv.org/abs/1905.13298
https://arxiv.org/abs/1810.05331
https://arxiv.org/abs/1810.05331
https://arxiv.org/abs/2103.13630
https://openreview.net/forum?id=_gZ8dG4vOr9
https://arxiv.org/abs/1808.06866
https://arxiv.org/abs/1808.06866
https://arxiv.org/abs/1805.12549
https://arxiv.org/abs/1803.03635
https://doi.org/10.1109/ICASSP.2017.7953288
https://arxiv.org/abs/1909.13144
https://arxiv.org/abs/1712.01312
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22085-accelerating-sparsity-in-the-nvidia-ampere-architecture%E2%80%8B.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22085-accelerating-sparsity-in-the-nvidia-ampere-architecture%E2%80%8B.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22085-accelerating-sparsity-in-the-nvidia-ampere-architecture%E2%80%8B.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related work
	3.1 Pruning
	3.2 Neural Architecture Search (NAS)
	3.3 Quantization

	4 How to prune a filter?
	4.1 Pruning methods from Literature
	4.2 Self learning pruning critera

	5 Experiments and Analysis
	5.1 Experiments on CIFAR100
	5.2 Experiments on Imagenet
	5.3 Choice of pruning criteria
	5.4 Combining structured and semi-structured filter pruning

	6 Conclusion
	References

