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Abstract
The large amount of audiovisual content being shared online
today has drawn substantial attention to the prospect of audio-
visual self-supervised learning. Recent works have focused on
each of these modalities separately, while others have attempted
to model both simultaneously in a cross-modal fashion. How-
ever, comparatively little attention has been given to leveraging
one modality as a training objective to learn from the other. In
this work, we propose Learning visual speech Representations
from Audio via self-supervision (LiRA). Specifically, we train
a ResNet+Conformer model to predict acoustic features from
unlabelled visual speech. We find that this pre-trained model can
be leveraged towards word-level and sentence-level lip reading
through feature extraction and fine-tuning experiments. We show
that our approach significantly outperforms other self-supervised
methods on the Lip Reading in the Wild (LRW) dataset and
achieves state-of-the-art performance on Lip Reading Sentences
2 (LRS2) using only a fraction of the total labelled data.
Index Terms: self-supervised learning, lipreading, visual speech
recognition, visual representations, conformer

1. Introduction
Self-supervised learning aims to leverage unlabelled data by
extracting the training objective directly from the input itself,
in an attempt to model meaningful representations of the pro-
posed modality which capture its content and structure. In works
adopting this methodology, this task is usually known as the
“pretext task” and this initial training procedure is known as the
“pre-training” stage. After pre-training, the network is trained
on the “downstream task”, which generally involves a smaller
set of manually labelled data. This methodology has received
substantial attention in recent years within the computer vision
community. Pretext tasks for visual self-supervision include
image colourisation [43], jigsaw puzzle solving [21], as well
as combinations of these and other tasks [12]. Self-supervised
learning has also been explored in the speech community through
works such as Contrastive Predicting Coding (CPC) [22] and
wav2vec [35], which predict/discriminate future segments of
audio samples; LIM (Local Info Max) [33], which maximises
mutual information for the same speaker; and, more recently,
PASE (Problem Agnostic Speech Encoder) [26, 34], which pre-
dicts established audio features such as STFT and MFCC.

Self-supervision has also been adopted in the audiovisual
domain. Recent approaches include audiovisual fusion [27, 28],
clustering [4], and distillation [32]; cross-modal discrimination
[23]; and cyclic translation between modalities [31]. Shukla

∗ denotes equal contribution to this work.

et al. [36] focus on learning audio representations by facial re-
construction from waveform speech. Conversely, [24] predict
frequency-based summaries of ambient sound from video, while
other recent works apply audio-visual synchronisation [5, 7,
13] to learn visual embeddings. A task that can benefit from
self-supervised learning is lipreading. Current state-of-the-art
lipreading models rely on annotating hundreds of hours of visual
speech data [18], which is costly. To solve this issue, Afouras
et al. [3] propose using a pre-trained Automatic Speech Recog-
nition (ASR) model to produce machine-generated captions for
unsupervised pre-training. This provides automatically labelled
data but still relies on an ASR model trained on large amounts
of labelled data.

In this work, we aim to leverage the vast amount of available
audiovisual speech data to learn generic visual speech features
and improve state-of-the-art lipreading models by predicting
audio features from visual speech. The targeted features are
extracted from waveform audio without the need for additional
labels using an established speech encoder (PASE+ [34]). After
this training procedure, we apply our model for lipreading on a
transcribed visual speech dataset. For both tasks, we employ a
2D ResNet-18 with a 3D front-end layer, as proposed in [38],
followed by the recently proposed conformer encoder [10].

Our research contributions are as follows: 1) We present
LiRA, which learns powerful visual speech representations by
predicting acoustic features from raw video taken from large
audio-visual datasets. 2) We demonstrate that LiRA provides
a good initialisation for fine-tuning lip reading models which
consistently outperforms training from scratch, and that this
method is particularly beneficial for smaller labelled datasets.
3) We show that LiRA outperforms previous self-supervised
methods for word-level lipreading, achieving an accuracy of
86.2% on LRW by pre-training on unlabelled data. 4) Finally,
we leverage our self-supervised approach towards sentence-level
lipreading, and find that our fine-tuned model achieves state-of-
the-art performance for LRS2.

2. Methodology
2.1. Pretext task

LiRA predicts PASE+ features from raw video and is composed
of three distinct components. The first is the spatial encoder,
which is a traditional 2D ResNet-18 preceded by a 3D front-end
layer. The second component is the temporal encoder – the
conformer – which receives as input the frame-wise features
produced by the spatial encoder and returns a set of features
of the same size. The conformer encoder combines traditional
attention-based transformer blocks, which excel at capturing
global temporal dependencies, with convolutional layers, which
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Figure 1: The high-level architecture of our model and our
methodology for audiovisual self-supervised training.

model local patterns efficiently [10]. The final component is the
projection head (based on the MLP – Multi-Layer Perceptron –
workers presented in [26]), which projects these representations
into the predicted PASE+ features. To train the model, we
apply an L1 loss between the generated embeddings and the
features extracted from the pre-trained (frozen) PASE+ model,
as pictured in Figure 1.

2.2. Downstream task

To evaluate the visual speech representations, we run three varia-
tions of end-to-end lipreading experiments. The training proce-
dure is illustrated in Fig. 2. LiRA-Supervised models are trained
from scratch based on the same encoder as in the self-supervised
training; LiRA-Frozen are trained using LiRA features from the
pre-trained encoder; and LiRA-FineTuned use the same model
as LiRA-Supervised but are initialised with the pre-trained en-
coder weights from the pretext task. For each of these methods,
we adopt a separate model for each lipreading task - six models
in total. For word-level lipreading, we apply a global average
pooling layer at the top of the conformer encoder to aggregate
the features along the temporal dimension, followed by a linear
classifier for classification. For sentence-level lipreading, we
follow the state-of-the-art lipreading model [16] on LRS2 and
build a hybrid CTC/attention model. We use the same conformer
encoder architecture as in the pre-training phase, followed by
the transformer decoder for sequence-to-sequence training [39].
We also perform fine-tuning experiments using the pre-trained
model.

LRW [6] is comprised of approximately 500 000 1.16 second
labelled utterances (173 hours in total) featuring a specific word
from a 500 word vocabulary. It features hundreds of different
speakers recorded in a variety of different backgrounds and
head poses. LRS2 [1] is composed of approximately 150 000
transcribed utterances of varying lengths (224.5 hours in total).
This corpus presents a greater challenge since it features a largely
unconstrained vocabulary of more than 40 000 words. Both
datasets are collected from BBC programs.

LRS3 [2] (Lip Reading Sentences 3) similarly contains ap-
proximately 150 000 utterances of varying lengths (438.9 hours
in total) taken from TED talks. However, these utterances are
substantially longer than the ones featured in LRS2, resulting
in effectively double the total amount of hours of video and a
larger vocabulary. This dataset guarantees no overlap between
the speakers featured in the train and test sets, meaning that the
test set is entirely comprised of speakers that were not seen in
other sets.

LiRA-Supervised LiRA-Frozen LiRA-FineTuned
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Figure 2: The variations of the end-to-end lipreading architec-
ture. The sub-figures in the top row ((a),(b),(c)) refer to the
word-level lipreading training procedures, while the sub-figures
in the bottom row ((d),(e),(f)) refer to sentence-level lipreading.
From left to right, (a) and (d) denote training from scratch (the
whole model is initialised randomly); (b) and (e) are feature
extraction experiments based on visual features extracted from
the pre-trained model; and (c) and (f) are fine-tuning experi-
ments. Blue coloured blocks are trained from scratch on the
downstream task; yellow coloured blocks are loaded from the
pre-trained model and kept frozen during the downstream task;
and green coloured blocks are loaded from the pre-trained model
and are then fine-tuned for the downstream task. TM denotes

“Transformer”, and FC denotes “Fully-Connected layer”.

3. Experimental Setup
3.1. Pre-processing

To crop the mouth Regions of Interest (ROIs), we start by de-
tecting the 68-point facial landmarks using dlib [11]. We then
normalise each frame using a neutral reference frame to remove
rotation and size differences. Given the transformed facial land-
marks, a fixed bounding box is used to crop mouth ROIs with a
size of 96× 96 .

3.2. Data augmentation

Following [15, 30], we produce augmented visual streams by
applying the techniques of horizontal flipping with a probability
of 0.5 and random cropping to a size of 88 × 88. During the
testing phase, instead of randomly cropping, we crop a patch of
size 88 × 88 from the centre of the image. For the word-level
classification, mixup [42] with a weight of 0.4 is employed.

3.3. Training settings in the pretext task

The 3D front-end module preceding our ResNet consists of a
convolutional layer with kernel size (5,7,7) followed by a max
pooling layer. The conformer, on the other hand, is comprised of
an initial embedding module – feed forward layer combined with
layer normalisation, dropout (0.1), activation (ReLU – Rectified
Linear Unit) and relative positional encoding (as proposed in
[9]) – followed by 6 conformer blocks, as defined in [10]. The
conformer blocks feature the following parameters: dff = 2048,



nhead = 4, dq = 512, dk = 512, dv = 512; where dff is
the hidden dimension of the feed-forward modules, nhead is the
number of self-attention heads, and dq, dk, dv are the dimensions
of the key (K), query (Q), and value (V) in the self-attention
layers respectively. The MLP consists of a linear layer with a
hidden dimension of 512 units, ReLU activation, dropout, and
a linear layer to project the representation to 512-dimensional
latent space. For prediction, we average the PASE+ features over
time to match the temporal dimension of our predicted features,
given their different temporal dimensions (100 Hz vs 25 Hz).
We optimise our model using Adam (β1 = 0.9, β2 = 0.98,
ε = 10−9) combined with the Noam scheduler [39] (25 000
warm-up steps). The model is trained on LRS3 with a batch
size of 32. For simplicity, we randomly sample 1 second from
each clip and use it as the input to our network, discarding any
utterances with less than 1 second in length.

3.4. Training settings in downstream tasks

LiRA-Supervised In LiRA-Supervised, we train word-level
(Fig. 2a) and sentence-level lipreading models (Fig. 2d) from
scratch. In particular, for the task of word-level lipreading, we
use a linear classifier with an output dimension of 500 at the end
of the conformer blocks. A cross-entropy loss is employed to
optimise the whole model using Adam with decoupled Weight
decay (AdamW) [14] with β1 = 0.9, β2 = 0.98, ε = 10−9 and
a L2 penalty of 0.01 for 80 epochs with a batch size of 32. The
initial learning rate is set to 0.0002. For the task of sentence-level
lipreading, we use 6 multi-head attention blocks (dff = 2048,
nhead = 4, dq = 512, dk = 512, dv = 512) together with a
linear layer on the top of conformer blocks. Following [20], we
use a combination of CTC and cross-entropy loss to train an
hybrid CTC/Attention architecture for 50 epochs with a batch
size of 8. In this case, we use Adam with β1 = 0.9, β2 = 0.98
and ε = 10−9 with the first 25 000 steps for warm-up. The initial
learning rate is set to 0.0008. At the decoding phase, we use a
beam size of 20 for beam search. To boost performance during
decoding, we apply a transformer-based model trained on LRS2,
LRS3, and Librispeech 960h [25] (16.2 million words in total).
Due to graphic memory limitations, we exclude utterances with
more than 600 frames during training.
LiRA-Frozen At the end of self-supervised training, the fea-
tures extracted from the pre-trained frozen encoder are fed to
a classifier for evaluation. For word-level lipreading, we use
6 conformer blocks, followed by a linear layer with an output
size of 500 for classification (Fig. 2b). For the sentence-level
lipreading, the LiRA features are first fed to 6 conformer blocks,
and then the encoded representations are used for CTC/attention
joint training (Fig. 2e).
LiRA-FineTuned We follow the same hyperparameter setting
as LiRA-Supervised, but instead of training from scratch, we
initialise the model with the pre-trained weights from the pretext
task and then fine-tune it for word-level lipreading (Fig. 2c) and
sentence-level lipreading (Fig. 2f).

4. Results
4.1. Word-level Lipreading

After self-supervised training, we first evaluate the performance
of LiRA-Supervised by using supervised training from scratch.
We use the same backbone (Conv3d + ResNet-18) as Ma et
al. [17] but replace the Temporal Convolutional Network (TCN)
with the conformer encoder. Although this change in temporal
encoder leads to a lower accuracy (85 %, as shown in Table 1)
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Figure 3: Accuracy of feature classification (LiRA-Frozen) on
LRW based on features extracted from different layers after
pre-training on LRS3 via self-supervision. “res-b3” and “res-
b4” refer to the output of blocks 3 and 4 from the ResNet-18
respectively; and “ce-b1” to “ce-b6” refer to the layers from
each conformer block from bottom to top.

Table 2: A comparison of the performance between the baseline
methods and ours (pre-trained on LRS3) on the LRW dataset.

Methods Strategy Acc. (%)

ResNet + BLSTM [38] Supervised 83.0
Two-stream 3D CNN [40] Supervised 84.1
ResNet + BLSTM [37] Supervised 84.3
ResNet + MS-TCN [19] Supervised 85.3
ResNet + DenseTCN [17] Supervised 88.4
PerfectMatch [7] Self-supervised 71.6
PT-CDDL [8] Self-supervised 75.9

LiRA-Supervised Supervised 85.6
LiRA-Frozen Self-supervised 83.0
LiRA-FineTuned Self-supervised 86.2

compared to [17], we found that the conformer was superior to
the TCN for the pretext task and for sentence-level lipreading,
and therefore we include it in all LiRA models for consistency.

For LiRA-Frozen, which is pre-trained on LRS3, the learnt
visual speech representations are evaluated on word-level lipread-
ing by training a classifier on top of the frozen representations,
as illustrated in Fig. 2b. Feature extraction performance (LiRA-
Frozen) for different layers is portrayed in Fig. 3. We observe
that the representations extracted from the last layer of the
ResNet-18 achieve a maximum accuracy of 83 %, which out-
performs the current state-of-the-art self-supervised method on
LRW [8] by a large absolute margin of 7.1 %, as seen in Table 1.
It is clear that the performance generally decreases as the layer
becomes deeper, which may indicate that the features extracted
in deeper layers are further tuned towards the pretext task and
therefore fail to generalise as well for other tasks.

The performance of the 3 downstream procedures while
varying the amount of training data on LRW is shown in Fig. 4a.
We use LRS3 for self-supervised pre-training. We observe that
the feature extraction approach leads to superior performance
compared to LiRA-Supervised when using smaller fractions
of the labelled training set (1-2 %) and achieves very similar
performance for larger amounts of labelled data. This indicates
that the pre-trained model learns useful visual features which
work well also on LRW. By adopting this methodology, we can
simply train the classification layers while the encoder remains
frozen, and hence significantly reduce the training time of our
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Figure 4: The effects of the scale of training data on downstream task performance. (a): Accuracy of the end-to-end model as a function
of the percentage of the training set on a logarithmic scale used for training on LRW. (b) WER achieved by the end-to-end model
as a function of the number of hours of labelled data used for training on LRS2. All LiRA-Frozen and LiRA-FineTuned models are
pre-trained on LRS3 via self-supervision. LiRA-Frozen models are trained using features extracted from the last layer of the ResNet-18
in the pre-trained model, since it achieves the best performance as demonstrated in Fig. 3. “CL” refers to the model is trained using
curriculum learning. LRW and LRS2 contain 165 and 222 hours of labelled training data respectively.

model. If we fine-tune the full model, including the encoder,
then the performance improves further as shown in Fig. 4a.

We also observe that the gap between the performance of
LiRA-FineTuned and LiRA-Supervised becomes smaller when
we increase the amount of labelled data for training. This demon-
strates that pre-training using the proposed self-supervised task
is particularly beneficial when the labeled training set is very
small. In the extreme case, where only 1 % of the labelled
training data is used, LiRA-Supervised achieves an accuracy
of 1.3 %. In contrast, we obtain 33.9 % accuracy when LiRA-
FineTuned is trained using the same amount of data. This is
mainly due to the fact that the self-supervised training provides
a good initialisation for network training. We also show that
LiRA-Finetuned provides an absolute improvement of 1.2 % in
accuracy over LiRA-Supervised when both are trained on full
LRW. This demonstrates that LiRA-FineTuned consistently out-
performs LiRA-Supervised, even for larger labelled training sets.

4.2. Sentence-level Lipreading

To investigate the performance of visual speech representations
in a more challenging task, we run training from scratch (Fig.
2d) and fine-tuning (Fig. 2f) experiments on LRS2 after pre-
training on LRS3. We present our results as a function of the
fraction of labelled data used during training. Specifically, every
10 000 utterances are cumulatively sampled from LRS2 without
replacement, and the first 30 hours of labelled data are sampled
solely from the train set. To collect more labelled data beyond 30
hours, we also sample from the pretrain set. Results are shown
in Fig. 4b. It is evident that the performance of self-supervised
training significantly outperforms the supervised baseline. We
also observe that the performance of LiRA-Supervised is hard
to optimise without a good initialisation despite the fact that
more utterances from the ‘pre-train’ set are included during
training. This is likely due to the large variance in length for the
videos in LRS2, which makes training from scratch especially
difficult. The same issue occurs when LiRA features are fed to a
classifier based on a random initialised conformer encoder plus
transformer decoder (LiRA-Frozen - Fig. 2e), leading to poor
performance with a WER above 75 % .

Table 3: A comparison of the Word Error Rate (WER) between
the baseline methods and ours (pre-trained on LRS3) on the
LRS2 dataset.

Methods Strategy WER. (%)

Hyb. CTC/Att. [29] Supervised 63.5
Conv-seq2seq [44] Supervised 51.7
TDNN [41] Supervised 48.9
TM-seq2seq [1] Supervised 48.3
KD-seq2seq [3] Unsupervised 51.3

LiRA-Supervised Supervised 39.1
LiRA-FineTuned Self-supervised 38.8

On the other hand, by fine-tuning the self-supervised model,
we raise the state-of-the-art on LRS2 from 48.3 % [1] to 46.8 %
WER while using 18× fewer labelled data (76 hours vs 1 362
hours), as reported in Table 2. Furthermore, it is clear that the
performance of LiRA-FineTuned consistently improves as the
amount of labelled data increases, as seen in Fig. 4b.

5. Conclusion
We presented LiRA, which learns visual speech representations
by cross-modal self-supervised learning. We train a visual model
by predicting acoustic features from visual speech, and observe
that it can be adapted for lipreading with remarkable success. By
fine-tuning our models for this new task, we achieve an accuracy
of 86.2 % on LRW and report a WER of 38.8 % on LRS2. Given
the extent of modern audiovisual corpora, we believe it would be
promising to leverage this method towards other visual tasks such
as emotion recognition and speaker recognition in the future.
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