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ABSTRACT

We design an online end-to-end speech recognition system based on Time-Depth Separable (TDS)
convolutions and Connectionist Temporal Classification (CTC). The system has almost three times
the throughput of a well tuned hybrid ASR baseline while also having lower latency and a better word
error rate. We improve the core TDS architecture in order to limit the future context and hence reduce
latency while maintaining accuracy. Also important to the efficiency of the recognizer is our highly
optimized beam search decoder. To show the impact of our design choices, we analyze throughput,
latency and accuracy and also discuss how these metrics can be tuned based on the user requirements.

1 Introduction

The process of transcribing speech in real-time from an input audio stream is known as online speech recognition. Most
automatic speech recognition (ASR) research focuses on improving accuracy without the constraint of performing
recognition in real time. For certain applications such as live video captioning or on-device transcription, however, low
latency speech recognition is essential. In these cases, online speech recognition with a limited time delay is needed to
provide a good user experience.

Furthermore, deployment of a real-time speech recognition system at scale poses a number of challenges. First, the
system must be computationally efficient to minimize the required hardware resources and to handle a large number of
concurrent requests. Second, the system needs to minimize the time between a spoken word appearing in the audio and
the corresponding text produced by the system. Third, the deployed recognizer should be competitive in accuracy with
an offline research-grade system. We measure the three aforementioned constraints using the following metrics: (i)
throughput, (ii) Real-Time Factor (RTF) and latency, and (iii) Word Error Rate (WER).

We discuss the design of a novel ASR system that achieves 3x better throughput compared to a strong hybrid baseline.
We use Time-Depth Separable convolutions [1] as the building block for our acoustic model and an efficient beam-search
decoder provided by the wav2letter++ [2]1 open-source ASR toolkit.

1https://github.com/facebookresearch/wav2letter
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Figure 1: Time-Depth Separable Convolutional Block, TDS(c, kw, w, rPad).

The rest of the paper is organized as follows. In Section 3, we review the design principles of our system, including
acoustic models, the decoder and present novel ideas to reduce latency and greatly improve computational efficiency. in
Section 4 we discuss our experimental setup: benchmarks for measuring throughput and accuracy, as well as hardware
configuration. In Section 5 we present out experimental results and ablative analysis. Finally, in Section 6 we discuss
future work and conclude.

2 Related Work

Taking an ASR system from research to a low-latency, high-throughput deployment while maintaining low WER
involves non-trivial changes to the implementation. For example, many research systems use bi-directional RNNs [3, 4]
or (self) attention [5, 6] which require unlimited future context and make low-latency deployment impossible. Fully
convolutional acoustic models can be very efficient to train, but are often used with large future context sizes [7]. Here,
we build on a large body of work in making research-grade ASR systems work in resource constrained low-latency
environments.

Our architecture uses Time-Depth Separable convolution (TDS) [1] as the core building block. Bi-directional RNNs
and Transformers [8] either require considerable changes for low-latency deployment [9, 10] or degrade rapidly when
limiting the amount of future context [11]. While latency controlled bi-directional LSTMs are commonly used in online
speech recognition [12], incorporating future context with convolutions can yield more accurate and lower latency
models [13]. We find that the TDS convolution can maintain low WERs with a limited amount of future context.

Some recent work in low-latency speech recognition uses the RNN Transducer (RNN-T) [14] as the core architecture [15,
16]. Unlike attention models, the RNN-T decoder is causal and can be easily streamed since it does not rely on future
context. Departing from prior work, we find that a CTC trained model can yield better WER than an RNN-T model
while being simpler and more efficient to deploy.

Depth-wise separable convolutions [17] have been used in domains such as computer vision [18] and machine
translation [19] yielding dramatic reductions in model size and computational throughput while maintaining accuracy.
The TDS architecture we use here also results in much lighter weight yet still low WER models. Other architectures,
such as the Time-Channel Separable convolution have also shown similar gains in computational efficiency with little if
any hit to accuracy [20].

3 Technical Details

In this section we describe the architectural design, algorithmic choices and various performance optimizations of our
speech recognizer.

3.1 Low-latency acoustic models

Our acoustic models are based on Time-Depth Separable (TDS) convolutions [1]. The reasons for choosing these
models is two-fold. First, TDS blocks make use of grouped convolutions which dramatically reduce the number of
parameters while still achieving low WER. This makes inference computationally efficient and keeps the model size
small. Second, limiting the future context for convolution operations in TDS, which is necessary for maintaining low
latency, leads to a small degradation in WER.
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Figure 1 shows the architecture of the TDS Block used in our work. The TDS block we use is modified from the
original TDS implementation to make the architecture streaming friendly. The changes are described below.

3.1.1 Asymmetrically padded convolutions

The latency of 1-D convolutions is impacted by the number of future inputs needed to generate the current output. In
order to minimize this, we use asymmetric padding for convolutions which adds more (zero) padding at the start of the
input. This reduces the dependency of the current output on the future input and hence reduces the latency of the model.

For example, consider a TDS(10, 9, 80, 4) block (See Fig. 1 for notation) which uses symmetric padding. In order to
generate the first output frame, the 1-D convolution with a filter size of 9 needs 5 input frames, since 4 frames will be
padded to the start of the input. We can reduce this future context dependency to just 2 frames if we use a TDS(10, 9,
80, 1) block which pads with 8 frames at the start of the input.

3.1.2 Removing time dependency of layernorm

The TDS Block in [1] performs layer normalization across all axes including time for a given sample. This makes the
output depend on the full sample which makes streaming impractical. We resolve this by performing standard layer
normalization [21] which normalizes across the width (w) and channels (C) axes. For an input x of shape T × w ∗ c,
we compute the layernorm output x̂ as

x̂[i, j] = g ∗ x[i, j]− µi√
σ2
i + ε

+ b i ∈ [0, T ), j ∈ [0, w ∗ c) (1)

where µi =
1

w∗c
∑

j x[i, j], σ
2
i = 1

w∗c
∑

j(x[i, j]−µi)
2, g and b are scalar affine transform parameters and ε is a small

constant added for numerical stability.
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Figure 2: Acoustic
Model Architecture.
Notation: dw = stride,
kw = filter size

Figure 2 shows the architecture of our acoustic model. The model consists of two 15-channel,
three 19-channel, four 23-channel and five 27-channel TDS blocks. They are separated by
1-D convolution layers which increase the number of output channels and optionally perform
subsampling. A final linear layer produces an N-dimensional output (N is the size of the
token set) which is later passed to a log-softmax layer prior to computing the CTC loss. The
model has a total of 104 million parameters and has a total subsampling factor of 8. It takes
80-dimensional log mel-scale filter bank features as input. The features are extracted with
a stride of 10ms so the model has a receptive field of ∼10 seconds per frame and a future
context of 250ms.

3.2 Online Beam Search Decoding

To integrate a language model, we develop an online version of the beam search decoder
based on wav2letter++ [2]. The online decoder consumes the encoded frames for the current
input audio chunk and extends the beam search graph. We output the most likely sequence
of words based on this extended beam search graph for every chunk. Since the best path can
change as we extend the beam search graph, we allow for correction of partial transcriptions
generated earlier. Also, in order not to have the history in memory grow infinitely with
incoming audio chunks, pruning is applied to the history buffer after consuming a certain
number of chunks.

Apart from the existing performance optimizations included in wav2letter++ decoder [7], we
introduce two further pruning techniques. First, we consider only top-K (e.g. K = 50) tokens
according to the acoustic model score, when expanding each hypothesis in the beam. This
is also commonly known as acoustic pruning. Second, we propose only the blank symbol
if its posterior probability is larger than 0.95 [22]. With these optimizations as well as the
8x reduction in the number frames from subsampling in the acoustic model, we find that
decoding time accounts for about 5% of the overall inference procedure.

3.3 Inference Implementation

We wrote a standalone, modular platform to perform the full online inference procedure. The
pipeline takes audio chunks as input and processes them in an online manner. To perform the
matrix multiplications and 1-D group convolutions required by the acoustic model, we use

3
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the 16-bit floating point FBGEMM2 implementation. We have carefully optimized memory use by relying on efficient
I/O buffers and extensively profiled to remove any excess computational overhead.

4 Experimental Setup

4.1 Data

The training set used for our experiments consists of around 1 million utterances (∼13.7K hours) of in-house English
videos publicly shared by users. The data is completely anonymized and doesn’t contain any personally-identifiable
information (PII). We report results on two test sets - vid-clean and vid-noisy consisting of around 1.4K utterances each
(∼20 hours). More information about the data set can be found in [23].

4.2 Training

All our experiments are run using wav2letter++ framework [2] with 64 GPUs for each experiment. We use 80-
dimensional log mel-scale filter banks as input features, with STFTs computed on 25ms Hamming windows strided by
10ms. For the output token set, we use a vocabulary of 5000 sub-word tokens generated from SentencePiece toolkit
[24]. We use local mean and variance normalization instead of global normalization on the input features prior to the
acoustic model so that the system can run in an online manner. Local normalization computes the summary statistics
over the prior n frames and uses them to normalizing the input features at the current frame. We use n = 300 for all of
our experiments which corresponds to a window size of approximately 3 seconds. We also use SpecAugment [3] for
data augmentation in all of the experiments.

4.3 Baseline Systems

We compare our work with two strong baselines. All the systems (including ours) use the same training, validation and
test sets.

Baseline 1 The first baseline [23] is a hybrid system based on context-dependent graphemes (chenones) and uses
multi-layer Latency Controlled Bidirectional Long Short-Term Memory layers (LC-BLSTM)[25] in the acoustic model.
The system is initially bootstrapped with cross entropy (CE) training and then fine-tuned with the lattice-free maximum
mutual information (LF-MMI) [26] loss function.

Baseline 2 The second system [15] is based on the RNN-T [14] architecture and uses Latency Controlled Bidirectional
Long Short-Term Memory layers (LC-BLSTM) [25] in the acoustic model. The token set consists of 200 sentence
pieces, constructed with the sentence piece library [24]. Unlike Baseline 1, the second baseline is trained in an
end-to-end manner.

4.4 Evaluation Benchmarks

For consistency in results, all the benchmarks, including baselines, are run on Intel Skylake CPUs with 18 physical
cores and 64GB of RAM. We describe the performance metrics evaluated in our experiments below

4.4.1 Real-Time Factor

Real-Time Factor (RTF) is the ratio between the time taken to process the input and the input duration. For a system to
be considered real-time, RTF should be ≤ 1. RTF is dependent on the number of concurrent streams being run by the
system. Further, we define “RTF@40” as the RTF using 40 concurrent streams.

4.4.2 Throughput

Throughput is defined as the rate at which audio is consumed. In other words, it is the number of audio seconds
processed per wall clock second.

4.4.3 User-perceived latency

As the name suggests, user-perceived latency is the latency metric most relevant to the end user. It is affected by chunk
size, RTF, acoustic model context, and decoder output delay. Quantifying latency as a function of these parameters is

2https://github.com/pytorch/FBGEMM
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difficult. Instead we compute this latency in an empirical and end-to-end manner by measuring the timestamp of when
a transcribed word is available to the user and compare this with the same word’s timestamp in the original audio.

More formally, we define user-perceived latency as the average delay between the end timestamp of the words in the
reference transcript and time when it is shown to the user by the system. As an example, consider a 1 sec audio file
with transcript “how are you” and the corresponding start and end word timestamps for the words as (100ms-200ms),
(300ms-400ms), (500ms-600ms) respectively. Lets consider an ASR system with RTF 0.2 which processes the audio
file and outputs the words “how”, “are” after consuming 500ms of audio and the word “you” after looking at 1000ms of
the audio.

For this system, word “the” will be produced at 600ms (500ms for audio chunk to be available and 100ms (500ms
* RTF) for processing it while the true timestamp of end of the word is 200ms which gives us a latency of 400ms.
Computing this for every word and taking the average, we can see that this system has average user-perceived latency
of (400ms + 200ms + 500ms) / 3 = 366.67 ms.

We have measured user-perceived latency on a set of 1000 samples from the TIMIT [27] corpus, which comes with
word alignments in advance. We note that all the ASR systems that we consider produce the correct transcript on these
samples (WER = 0), which is necessary for this latency analysis.

5 Results and Analysis

Table 1 shows the performance comparison of our system with the two baselines mentioned in 4.3. We use 750ms
chunk size for all the experiments with our system. We can see that our system is able to achieve better WER at a much
higher throughput even when using 16-bit floating-point precision as compared to the 8-bit fixed point precision used
by the baselines.

Baseline 1 Baseline 2 Our System
LC-BLSTM + CE + LF-MMI LC-BLSTM + RNN-T TDS + CTC

vid-clean WER 14.1 13.93 13.19
vid-noisy WER 22.15 22.58 21.16

Total Parameters 80 mil 60 mil 104 mil
Inference Precision INT8 INT8 FP16
Throughput 55 64 147
RTF@40 0.70 0.60 0.26
User-perceived latency 1.18 sec - 1.09 sec

Table 1: A comparison of our system with the baseline systems.

5.1 Effect of low-latency acoustic models

We performed an ablation study to observe the change in WER from the original TDS model [1] with global input
normalization to the low latency version we propose here. Table 2 shows that there is only a ∼4% relative increase in
WER because of the changes we make to decrease the latency of the model. We observe that limiting the future context
of the acoustic model contributes the most to the degradation in WER.

vid-clean vid-noisy
WER WER

Original TDS with input globalnorm 12.64 20.45
+ globalnorm → localnorm 12.72 20.46
+ remove time-axis for layernorm 12.71 20.44
+ 250ms future context limit 13.19 21.16

Table 2: The effect on WER when decreasing the latency of
the TDS model

future context vid-clean WER vid-noisy WER

250 ms 13.19 21.16
500 ms 13.07 20.81
1000 ms 12.92 20.46
2500 ms 12.80 20.73
5000 ms 12.65 20.44

Table 3: Effect of future context on WER performance

Table 3 shows the effect of WER with varying future context sizes. We have kept the receptive field of our convolutional
acoustic model fixed at 10 seconds, use local normalization and remove time from layer normalization axes for all the

5
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Figure 3: The acoustic model latency when varying the future context size. The transcript of input audio is “yes” and
end of this word is marked in the audio with <end>. Word timestamps generated by greedy decoding for different
future context sizes are marked at various locations in the input audio.
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Figure 5: Latency, throughput trade-off vs chunk size

experiments. We see that the WER almost always improves as the future context size is increases. Figure 3 shows the
word timestamps generated from greedy decoding on an input audio file with only one spoken word. We see that the
transcripts can be produced faster by using smaller future context sizes.

These results demonstrate that asymmetric padding is important for low latency convolutional acoustic models. We see
a significant reduction in latency with just∼ 4% relative drop in WER going from a model with symmetric convolutions
(5 sec future context) to a model with asymmetric convolutions (250ms future context).

5.2 Effect of concurrent streams

As discussed in Section 1, processing multiple audio streams in parallel is necessary to achieve higher throughput.
Figure 4 shows the effect of increasing the number of concurrent stream on throughput and RTF for a fixed chunk size
of 750ms. We see that throughput increases dramatically up to about 30 concurrent streams beyond which it no longer
improves. On the other hand, RTF consistently increases as we increase the number of concurrent streams. While any
setting with RTF < 1 is considered real-time, as discussed in Section 4.4.3, lower RTF improves the user-perceived
latency.

5.3 Effect of chunk size

For streaming speech recognition, we feed the acoustic model with audio in chunks every T milliseconds (where T is
the chunk size). The transcript is then generated in an online fashion. Figure 5 shows the effect of increasing the audio
chunk size on throughput and latency. We see that even though throughput can be increased by increasing chunk size,
the user-perceived latency also increases.

6
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6 Conclusion and Future Work

We present a convolutional online speech recognition system which outperforms two strong baselines in throughput,
WER and latency. We also demonstrate the trade-offs in improving one metric over another and how the metrics can
be fine-tuned according to the application requirements. In future work we plan to further improve throughput by
using 8-bit fixed precision quantization and techniques including reducing the model depth on demand [28] and weight
sparsity [29]. The above techniques may also help reduce the model size while speeding up inference time. We have
also deployed our models on-device, but we leave a full analysis with competitive benchmarks to future work.
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