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ABSTRACT

A natural question arising in Music Source Separation (MSS)
is whether long range contextual information is useful, or
whether local acoustic features are sufficient. In other fields,
attention based Transformers [1] have shown their ability to
integrate information over long sequences. In this work, we
introduce Hybrid Transformer Demucs (HT Demucs), an hy-
brid temporal/spectral bi-U-Net based on Hybrid Demucs [2],
where the innermost layers are replaced by a cross-domain
Transformer Encoder, using self-attention within one domain,
and cross-attention across domains. While it performs poorly
when trained only on MUSDB [3], we show that it outper-
forms Hybrid Demucs (trained on the same data) by 0.45 dB
of SDR when using 800 extra training songs. Using sparse at-
tention kernels to extend its receptive field, and per source
fine-tuning, we achieve state-of-the-art results on MUSDB
with extra training data, with 9.20 dB of SDR.

Index Terms— Music Source Separation, Transformers

1. INTRODUCTION

Since the 2015 Signal Separation Evaluation Campaign
(SiSEC) [4], the community of MSS has mostly focused
on the task of training supervised models to separate songs
into 4 stems: drums, bass, vocals and other (all the other
instruments). The reference dataset that is used to benchmark
MSS is MUSDBI18 [3, 5] which is made of 150 songs in two
versions (HQ and non-HQ). Its training set is composed of
87 songs, a relatively small corpus compared with other deep
learning based tasks, where Transformer [1] based architec-
tures have seen widespread success and adoption, such as
vision [6, 7] or natural language tasks [8]. Source separation
is a task where having a short context or a long context as in-
put both make sense. Conv-Tasnet [9] uses about one second
of context to perform the separation, using only local acoustic
features. On the other hand, Demucs [10] can use up to 10
seconds of context, which can help to resolve ambiguities
in the input. In the present work, we aim at studying how
Transformer architectures can help leverage this context, and
what amount of data is required to train them.

We first present in Section 3 a novel architecture, Hybrid
Transformer Demucs (HT Demucs), which replaces the in-
nermost layers of the original Hybrid Demucs architecture [2]

with Transformer layers, applied both in the time and spectral
representation, using self-attention within one domain, and
cross-attention across domains. As Transformers are usually
data hungry, we leverage an internal dataset composed of 800
songs on top of the MUSDB dataset, described in Section 4.

Our second contribution is to evaluate extensively this
new architecture in Section 5, with various settings (depth,
number of channels, context length, augmentations etc.). We
show in particular that it improves over the baseline Hybrid
Demucs architecture (retrained on the same data) by 0.35 dB.

Finally, we experiment with increasing the context dura-
tion using sparse kernels based with Locally Sensitive Hash-
ing to overcome memory issues during training, and fine-
tuning procedure, thus achieving a final SDR of 9.20 dB on
the test set of MUSDB.

We release the training code, pre-trained models, and
samples on our github facebookresearch/demucs.

2. RELATED WORK

A traditional split for MSS methods is between spectro-
gram based and waveform based models. The former in-
cludes models like Open-Unmix [11], a biLSTM with fully
connected that predicts a mask on the input spectrogram
or D3Net [12] which uses dilated convolutional blocks
with dense connections. More recently, using complex-
spectrogram as input and output was favored [13] as it pro-
vides a richer representation and removes the topline given
by the Ideal-Ratio-Mask. The latest spectrogram model,
Band-Split RNN [14], combines this idea, along with mul-
tiple dual-path RNNs [15], each acting in carefully crafted
frequency band. It currently achieves the state-of-the-art on
MUSDB with 8.9 dB. Waveform based models started with
Wave-U-Net [16], which served as the basis for Demucs [10],
a time domain U-Net with a bi-LSTM between the encoder
and decoder. Around the same time, Conv-TasNet showed
competitive results [9, 10] using residual dilated convolution
blocks to predict a mask over a learnt representation. Finally,
a recent trend has been to use both temporal and spectral
domains, either through model blending, like KUIELAB-
MDX-Net [17], or using a bi-U-Net structure with a shared
backbone as Hybrid Demucs [2]. Hybrid Demucs was the first
ranked architecture at the latest MDX MSS Competition [18],
although it is now surpassed by Band-Split RNN.


https://github.com/facebookresearch/demucs

Table 1: Comparison with baselines on the test set of
MUSDB HQ (methods with a * are reported on the non HQ
version). “Extra?” indicates the number of extra songs used
at train time, T indicates that only mixes are used. “fine tuned”
indices per source fine-tuning.

Test SDR in dB

Architecture Extra? All Drums Bass Other Vocals
IRM oracle N/A 8.22 8.45 7.12 7.85 943
KUIELAB-MDX-Net [17] X 7.54 7.33 7.86 5.95 9.00
Hybrid Demucs [2] X 7.64 8.12 8.43 5.65 8.35
Band-Split RNN [14] X 8.24 9.01 7.22 6.70 10.01
HT Demucs X 7.52 794 848 5.72 7.93
Spleeter* [19] 25k 591 6.71 5.51 4.55 6.86
D3Net* [12] 1.5k 6.68 736 6.20 5.37 7.80
Demucs v2* [10] 150 6.79 7.58 7.60 4.69 7.29
Hybrid Demucs [2] 800 8.34 9.31 9.13 6.18 8.75
Band-Split RNN [14] 17507 8.97 10.15  8.16 7.08 10.47
HT Demucs 150 8.49 9.51 9.76 6.13 8.56
HT Demucs 800 8.80 10.05 9.78 6.42 8.93
HT Demucs (fine tuned) 800 9.00 10.08  10.39 6.32 9.20
Sparse HT Demucs (fine tuned) 800 9.20 10.83 1047 6.41 9.37

Using large datasets has been shown to be beneficial to
the task of MSS. Spleeter [19] is a spectrogram masking U-
Net architecture trained on 25,000 songs extracts of 30 sec-
onds, and was at the time of its release, the best model avail-
able. Both D3Net and Demucs highly benefited from using
extra training data, while still offering strong performance
on MUSDB only. Band-Split RNN introduced a novel un-
supervised augmentation technique requiring only mixes to
improve its performance by 0.7 dB of SDR.

Transformers have been used for speech source separation
with SepFormer [20], which is similar to Dual-Path RNN:
short range attention layers are interleaved with long range
ones. However, its requires almost 11GB of memory for the
forward pass for 5 seconds of audio at 8 kHz, and thus is not
adequate for studying longer inputs at 44.1 kHz.

3. ARCHITECTURE

We introduce the Hybrid Transformer Demucs model, based
on Hybrid Demucs [2]. The original Hybrid Demucs model
is made of two U-Nets, one in the time domain (with tem-
poral convolutions) and one in the spectrogram domain (with
convolutions over the frequency axis). Each U-Net is made
of 5 encoder layers, and 5 decoder layers. After the 5-th en-
coder layer, both representation have the same shape, and they
are summed before going into a shared 6-th layer. Similarly,
the first decoder layer is shared, and its output is sent both
the temporal and spectral branch. The output of the spectral
branch is transformed to a waveform using the iSTFT, before
being summed with the output of the temporal branch, giving
the actual prediction of the model.

Hybrid Transformer Demucs keeps the outermost 4 lay-
ers as is from the original architecture, and replaces the 2 in-

nermost layers in the encoder and the decoder, including lo-
cal attention and bi-LSTM, with a cross-domain Transformer
Encoder. For the first encoder, we tried Co, = 32, 48, 64 and
retained 48. It treats in parallel the 2D signal from the spectral
branch and the 1D signal from the waveform branch. Unlike
the original Hybrid Demucs which required careful tuning of
the model parameters (STFT window and hop length, stride,
paddding, etc.) to align the time and spectral representation,
the cross-domain Transformer Encoder can work with hetero-
geneous data shape, making it a more flexible architecture.

The architecture of Hybrid Transformer Demucs is de-
picted on Fig.1. On the left, we show a single self-attention
Encoder layer of the Transformer [1] with normalizations
before the Self-Attention and Feed-Forward operations, it is
combined with Layer Scale [6] initialized to e=10~* in order
to stabilize the training. The two first normalizations are layer
normalizations (each token is independently normalized) and
the third one is a time layer normalization (all the tokens
are normalized together). The input/output dimension of the
Transformer is 384, and linear layers are used to convert to
the internal dimension of the Transformer when required.
The attention mechanism has 8 heads and the hidden state
size of the feed forward network is equal to 4 times the di-
mension of the transformer. The cross-attention Encoder
layer is the same but using cross-attention with the other
domain representation. In the middle, a cross-domain Trans-
former Encoder of depth 5 is depicted. It is the interleaving
of self-attention Encoder layers and cross-attention Encoder
layers in the spectral and waveform domain. 1D [1] and 2D
[21] sinusoidal encodings are added to the scaled inputs and
reshaping is applied to the spectral representation in order to
treat it as a sequence. On Fig. 1 (c), we give a representa-
tion of the entire architecture, along with the double U-Net
encoder/decoder structure.

Memory consumption and the speed of attention quickly
deteriorates with an increase of the sequence lengths. To fur-
ther scale, we leverage sparse attention kernels introduced in
the xformer package [22], along with a Locally Sensitive
Hashing (LSH) scheme to determine dynamically the sparsity
pattern. We use a sparsity level of 90% (defined as the pro-
portion of elements removed in the softmax), which is deter-
mined by performing 32 rounds of LSH with 4 buckets each.
We select the elements that match at least k times over all 32
rounds of LSH, with & such that the sparsity level is 90%. We
refer to this variant as Sparse HT Demucs.

4. DATASET

We curated an internal dataset composed of 3500 songs with
the stems from 200 artists with diverse music genres. Each
stem is assigned to one of the 4 sources according to the name
given by the music producer (for instance “vocals2”, ”fx”,
”sub” etc...). This labeling is noisy because these names are
subjective and sometime ambiguous. For 150 of those tracks,
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Fig. 1: Details of the Hybrid Transformer Demucs architecture. (a): the Transformer Encoder layer with self-attention and
Layer Scale [6]. (b): The Cross-domain Transformer Encoder treats spectral and temporal signals with interleaved Transformer
Encoder layers and cross-attention Encoder layers. (c): Hybrid Transformer Demucs keeps the outermost 4 encoder and decoder
layers of Hybrid Demucs with the addition of a cross-domain Transformer Encoder between them.

we manually verified that the automated labeling was correct,
and discarded ambiguous stems. We trained a first Hybrid De-
mucs model on MUSDB and those 150 tracks. We preprocess
the dataset according to several rules. First, we keep only the
stems for which all four sources are non silent at least 30% of
the time. For each 1 second segment, we define it as silent if
its volume is less than -40dB. Second, for a song z of our
dataset, noting x;, with ¢ € {drums, bass, other, vocals},
each stem and f the Hybrid Demucs model previously men-
tioned, we define y; ;=f(x;); i.e. the output j when separat-
ing the stem ¢. Theoretically, if all the stems were perfectly
labeled and if f were a perfect source separation model we
would have y; ; = x;0; ; with §; ; being the Kronecker delta.
For a waveform z, let us define the volume in dB measured
over 1 second segments:

V(z) = 10 - logy, (AveragePool(2?,1sec)) . (1)

For each pair of sources ¢, 7, we take the segments of 1 sec-
ond where the stem is present (regarding the first criteria)
and define P; ; as the proportion of these segments where
V(yi;) — V(z;) > —10dB. We obtain a square matrix
P € [0,1]**4, and we notice that in perfect condition, we
should have P = Id. We thus keep only the songs for which

for all sources i, P;; > 70%, and pairs of sources i # j,
P; ; < 30%. This procedure selects 800 songs.

5. EXPERIMENTS AND RESULTS

5.1. Experimental Setup

All our experiments are done on 8§ Nvidia V100 GPUs with
32GB of memory, using fp32 precision. We use the L1 loss
on the waveforms, optimized with Adam [23] without weight
decay, a learning rate of 3 - 1074, 8; = 0.9, 82 = 0.999 and
a batch size of 32 unless stated otherwise. We train for 1200
epochs of 800 batches each over the MUSDB18-HQ dataset,
completed with the 800 curated songs dataset presented in
Section 4, sampled at 44.1kHz and stereophonic. We use ex-
ponential moving average as described in [2], and select the
best model over the valid set, composed of the valid set of
MUSDB18-HQ and another 8 songs. We use the same data
augmentation as described in [2], including repitching/tempo
stretch and remixing of the stems within one batch.

Using one model per source can be beneficial [14], al-
though its adds overhead both at train time and evaluation. In
order to limit the impact at train time, we propose a procedure



where one copy of the multi-target model is fine-tuned on a
single target task for 50 epochs, with a learning rate of 10~4,
no remixing, repitching, nor rescaling applied as data aug-
mentation. Having noticed some instability towards the end
of the training of the main model, we use for the fine tuning a
gradient clipping (maximum L2 norm of 5. for the gradient),
and a weight decay of 0.05.

At test time, we split the audio into chunks having the
same duration as the one used for training, with an overlap
of 25% and a linear transition from one chunk to the next.
We report is the Signal-to-Distortion-Ratio (SDR) as defined
by the SiSEC18 [24] which is the median across the median
SDR over all 1 second chunks in each song. On Tab. 2 we
also report the Real Time Factor (RTF) computed on a single
core of an Intel Xeon CPU at 2.20GHz. It is defined as the
time to process some fixed audio input (we use 40 seconds of
gaussian noise) divided by the input duration.

5.2. Comparison with the baselines

On Tab. 1, we compare to several state-of-the-art baselines.
For reference, we also provide baselines that are trained with-
out any extra training data. Comparing to the original Hybrid
Demucs architecture, we notice that the improved sequence
modeling capabilities of transformers increased the SDR by
0.45 dB for the simple version, and up to almost 0.9 dB when
using the sparse variant of our model along with fine tuning.
The most competitive baseline is Band-Split RNN [14], which
achieves a better SDR on both the other and vocals sources,
despite using only MUSDB 18HQ as a supervised training set,
and using 1750 unsupervised tracks as extra training data.

5.3. Impact of the architecture hyper-parameters

We first study the influence of three architectural hyper-
parameters in Tab. 2: the duration in seconds of the excerpts
used to train the model, the depth of the transformer encoder
and its dimension. For short training excerpts (3.4 seconds),
we notice that augmenting the depth from 5 to 7 increases
the test SDR and that augmenting the transformer dimension
from 384 to 512 lowers it slightly by 0.05 dB. With longer
segments (7.8 seconds), we observe an increase of almost
0.6 dB when using a depth of 5 and 384 dimensions. Given
this observation, we also tried to increase the duration or the
depth but this led to Out Of Memory (OOM) errors. Finally,
augmenting the dimension to 512 when training over 7.8
seconds led to an improvement of 0.1 dB.

5.4. Impact of the data augmentation

On Tab. 3, we study the impact of disabling some of the data
augmentation, as we were hoping that using more training
data would reduce the need for such augmentations. How-
ever, we observe a constant deterioration of the final SDR as
we disable those. While the repitching augmentation has a

Table 2: Impact of segment duration, transformer depth and
transformer dimension. OOM means Out of Memory. Results
are commented in Sec. 5.3.

dur. (sec) depth dim. nb.param. RTF (cpu) SDR (All)
34 5 384 26.9M 1.02 8.17

34 7 384 34.0M 1.23 8.26

34 5 512 41.4M 1.30 8.12

7.8 5 384 26.9M 1.49 8.70

7.8 7 384 34.0M 1.68 OOM

7.8 5 512 41.4M 1.77 8.80

12.2 5 384 26.9M 2.04 OOM

Table 3: Impact of data augmentation. The model has a depth
of 5, and a dimension of 384. See Sec. 5.4 for details.

dur. (sec) depth remixing repitching SDR (All)
7.8 5 v v 8.70
7.8 5 v X 8.65
7.8 5 X v 8.00

limited impact, the remixing augmentation remain highly im-
portant to train our model, with a loss of 0.7 dB without it.

5.5. Impact of using sparse kernels and fine tuning

We test the sparse kernels described in Section 3 to increase
the depth to 7 and the train segment duration to 12.2 seconds,
with a dimension of 512. This simple change yields an ex-
tra 0.14 dB of SDR (8.94 dB). The fine-tuning per source
improves the SDR by 0.25 dB, to 9.20 dB, despite requiring
only 50 epochs to train. We tried further extending the recep-
tive field of the Transformer Encoder to 15 seconds during the
fine tuning stage by reducing the batch size, however, this led
to the same SDR of 9.20 dB, although training from scratch
with such a context might lead to a different result.

Conclusion

We introduced Hybrid Transformer Demucs, a Transformer
based variant of Hybrid Demucs that replaces the inner-
most convolutional layers by a Cross-domain Transformer
Encoder, using self-attention and cross-attention to process
spectral and temporal informations. This architecture benefits
from our large training dataset and outperforms Hybrid De-
mucs by 0.45 dB. Thanks to sparse attention techniques, we
scaled our model to an input length up to 12.2 seconds during
training which led to a supplementary gain of 0.4 dB. Finally,
we could explore splitting the spectrogram into subbands in
order to process them differently as it is done in [14].
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