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Figure 1: We present DeepFocus: a unified rendering and optimization framework, based on convolutional neural networks,
that enables real-time operation of accommodation-supporting head-mounted displays. (Top row) For varifocal displays, Deep-
Focus synthesizes physically-accurate defocus blur from a single RGB-D input, as shown in the simulated retinal images on
the right. (Middle row) For multifocal displays, the network solves the inverse problem to output a multilayer decomposition.
(Bottom row) For light field displays, DeepFocus generates dense multiview imagery from a sparse set of RGB-D images.

ABSTRACT

Reproducing accurate retinal defocus blur is important to correctly
drive accommodation and address vergence-accommodation con-
flict in head-mounted displays (HMDs). Numerous accommodation-
supporting HMDs have been proposed. Three architectures have
received particular attention: varifocal, multifocal, and light field
displays. These designs all extend depth of focus, but rely on com-
putationally expensive rendering and optimization algorithms to
reproduce accurate retinal blur (often limiting content complexity
and interactive applications). To date, no unified computational
framework has been proposed to support driving these emerging
HMDs using commodity content. In this paper, we introduce Deep-
Focus, a generic, end-to-end trainable convolutional neural network
designed to efficiently solve the full range of computational tasks for
accommodation-supporting HMDs. This network is demonstrated
to accurately synthesize defocus blur, focal stacks, multilayer de-
compositions, and multiview imagery using commonly available
RGB-D images. Leveraging recent advances in GPU hardware and
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best practices for image synthesis networks, DeepFocus enables
real-time, near-correct depictions of retinal blur with a broad set of
accommodation-supporting HMDs.
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1 METHOD

Figure 2 shows the architecture of the DeepFocus network. At a
high level, the network is a fully convolutional network augmented
with residual connections, where a layer is added together with a
preceding layer, and skip connections, where the next-to-last layer
is concatenated with the input layer. The number of layers and the
number of filters in each layer are selected to balance quality and
inference time for each of our target applications. In the following
subsections, we demonstrate that our network can be trained and
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Figure 2: Example DeepFocus network architecture. See the supplementary materials for details of the layer components.

applied to the core rendering and optimization tasks for a broad
class of accommodation-supporting HMDs. Most significantly, we
show that the DeepFocus network is generalizable: tailoring for
each application only involves changing the input and output layers.

1.1 Defocus Blur Rendering from RGB-D

Rendering accurate defocus blur is important for properly driving
accommodation in near eye displays. Traditional methods for faith-
fully rendering defocus blur are either computationally expensive
or fail to approximate the blur effects at partially occluded regions.
The DeepFocus network takes as input a single RGB-D (color and
depth) image and a circle-of-confusion (CoC) map (pixel-wise blur
size on the retina), and generates a high-quality retinal defocus blur
image as an output. Example results and comparisons are shown
in Figures 1 and 3. On our set of test scenes, DeepFocus signifi-
cantly outperforms state-of-the-art methods, including Nalbach et
al. [2017], and commercial software, such as Unity [2018], both in
peak signal-to-noise ratio (PSNR) and in structural similarity (SSIM).
More comparisons can be found in the supplementary materials.

1.2 Multilayer Decomposition from RGB-D

Multifocal displays represent 3D scenes with a limited number of
display layers. A multilayer decomposition algorithm must solve
for the set of displayed images. Akeley et al. [2004] depict each pixel
of the RGB-D input on the two nearest layers: a representation that
introduces artifacts at occlusion boundaries. Mercier et al. [2017]
first render a target focal stack and then solve for the decomposition
as an iterative optimization problem. While producing high visual
quality, this approach is computationally expensive.

The DeepFocus network directly generates the multilayer de-
composition from a single RGB-D image, avoiding both focal stack
rendering and iterative optimization. It significantly outperforms
previous work in both quality and run-time efficiency. Example
results are shown in Figure 1. More results and comparisons can be
found in the supplementary materials.

1.3 Light Field Rendering from RGB-D

Near-eye light field displays [Lanman and Luebke 2013] require
as input a large number of elemental images, each of which is
rendered from a distinct viewpoint to form a 4D light field. The
high-resolution 2D image shown on the underlying display panel
is generated from this light field. The resulting retinal image adapts
with the viewer’s accommodative state by superimposing multiple
projected images to approximate near-correct retinal defocus blur.

Rendering tens or even hundreds of views is computationally ex-
pensive. The DeepFocus network efficiently synthesizes dense light
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Figure 3: Comparison of defocus blur rendering using RGB-
D inputs only. DeepFocus significantly outperforms other
methods in both PSNR and SSIM.
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fields (e.g., 81 views in our examples) with a single-pass network
evaluation, when provided with a sparse set of RGB-D images (e.g.,
5 or 9 input views in our examples). As a result, we can synthesize
light fields that produce high-quality retinal images (see Figure 1).
More details can be found in the supplementary materials.

2 IMPLEMENTATION

The DeepFocus networks are trained using TensorFlow, providing
alarge set of path-traced scenes as the training data. Network infer-
ence is optimized with TensorRT [2018] and evaluated on a Nvidia
Titan V. Our networks currently achieve real-time performance on
1024x1024 color images for the applications in Section 1.1 (40.8 fps)
and Section 1.2 (37.3 fps), and on 81x512x512 color images for the
application in Section 1.3 (30.6 fps).
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