
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

The Move Prover?

Jingyi Emma Zhong1, Kevin Cheang2, Shaz Qadeer3, Wolfgang Grieskamp3, Sam
Blackshear3, Junkil Park3, Yoni Zohar1, Clark Barrett1, and David L. Dill3

1 Stanford University
2 UC Berkeley

3 Calibra

Abstract. The Libra blockchain is designed to store billions of dollars in as-
sets, so the security of code that executes transactions is important. The Libra
blockchain has a new language for implementing transactions, called “Move.”
This paper describes the Move Prover, an automatic formal verification system for
Move. We overview the unique features of the Move language and then describe
the architecture of the Prover, including the language for formal specification and
the translation to the Boogie intermediate verification language.

Keywords: Libra · blockchain · smart contracts · formal verification

1 Introduction

The ability to implement arbitrary transactions on a blockchain via so-called smart
contracts has led to an explosion in innovative services in systems such as Ethereum
[41]. Unfortunately, bugs in smart contracts have led to massive amounts of funds being
stolen or made inaccessible [5, 15]. In retrospect, the source of these disasters is fairly
obvious: smart contracts operate without a safety net. A fundamental requirement for
blockchains is that transactions be automatic and irreversible. Unlike traditional finan-
cial applications, there is little opportunity for humans to oversee or intervene in trans-
actions. Indeed, the design of the blockchain is intended to prevent human involvement.
The resulting potential havoc that can be caused by a bug in a smart contract makes it es-
sential for these contracts to be correct, without vulnerabilities. Not surprisingly, there
is great interest in formal verification and other advanced testing methods for smart
contracts, and several verification systems already exist or are under development.

The Libra blockchain [3, 38] is designed to be a foundation for supporting financial
services for billions of people around the world. If successful, it could store and manage
assets worth billions of dollars, with correspondingly stringent security requirements.
The code that modifies the state of the blockchain is especially important. The archi-
tecture of the Libra blockchain requires that all such modifications be performed by the
Move [12] virtual machine, which executes the well-defined Move instruction set. This
architecture means that verification efforts can focus on the correctness of bytecode
programs implementing smart contracts, including formally verifying those programs.
? This work was supported by the Stanford Center for Blockchain Research and Calibra, a Face-

book subsidiary whose goal is to provide financial services that let people participate in the
Libra network. The Libra Association manages the Libra network and is an independent, not-
for-profit membership organization, headquartered in Geneva, Switzerland.



2 J. E. Zhong et al.

Contributions

In this paper, we describe a specification language and formal verification system for
Move. If a programmer writes functional correctness properties for a procedure, the
Move Prover tool can automatically verify it. Although many similar Floyd-Hoare ver-
ifiers exist, widespread adoption has been a challenge because conventional software
is large, complex, and uses language features that present difficulties for even the sim-
plest verification tasks. However, we are hopeful that the Move Prover will be used by
the majority of Move programmers. There are three reasons for this optimism. First,
the Move language has been designed to support verification. Second, we are building
a culture of specification from the beginning: each Move module used by the Libra
blockchain is being written with an accompanying formal specification. Finally, we are
working to make the Move Prover as precise, fast, and user-friendly as possible.

The Move language, the Move Prover, Move programs, and their specifications,
have been evolving rapidly, so this description necessarily represents a snapshot of the
project at a particular time. However, we expect most of the changes to be improvements
and extensions to the basics described here. In the remainder of this paper, we will:

1. Present a brief overview of Move and explain the language design decisions that
facilitate verification (Section 2);

2. Describe how the Move Prover toolchain is implemented (Section 3);
3. Explain the model used to represent Move programs (Section 4);
4. Define the Move specification language and give examples of useful properties it

can encode (Section 5); and
5. Demonstrate that the Move Prover can verify important aspects of the Libra core

modules (Section 6).

2 Background: The Move Language

Move [12] is an executable bytecode language for writing smart contracts and cus-
tom transaction logic. Contracts in Move are written as modules that contain record
types and procedures. Records in modules may either be struct or resource types—the
most novel feature of Move. A resource type has linear [17] semantics, meaning that
resources cannot be created, copied, or destroyed except by procedures in its declaring
module. Resources allow programmers to encode safe, yet customizable assets that can-
not be accidentally (or intentionally) copied or destroyed by code outside the module.

Move is minimal in comparison to most conventional programming languages. The
only types besides records are primitives (Booleans, unsigned integers, addresses), vec-
tors, and references (which must be labeled as mutable or immutable, similar to Rust
[30]). Records can contain primitives and other records, but not references. Control-
flow constructs can be encoded via jumps to static labels in the bytecode.

Move programs execute in the context of a blockchain with modules and resources
published under account addresses. To interact with the blockchain, a programmer can
write a Move transaction script, a single-procedure program similar to a main proce-
dure in a conventional language, that invokes procedures of published modules. This
script is then packaged into a cryptographically signed transaction that is executed by



The Move Prover 3

module LibraCoin {
resource struct T { value: u64 }

public fun join(coin: &mut LibraCoin::T, to_consume: LibraCoin::T) {
let T { value } = to_consume; // MoveLoc(1); Unpack
let c_value_ref = &mut coin.value; // MoveLoc(0); MutBorrowField<value>; StLoc(0)
*c_value_ref = *c_value_ref + value; // CopyLoc(0); ReadRef; Add; MoveLoc(0); WriteRef
return; // Ret

}
}

Fig. 1. A Move module with its bytecode representation in comments.

validators in the Libra blockchain. As in Ethereum, transaction execution is metered,
meaning that computational resources (or “gas”) used when a Move program is exe-
cuted are measured and must be paid for by the submitter of a transaction (though we
note that the Move Prover does not yet reason about gas usage).

Verification-Friendly Design There are several aspects of Move’s design that facilitate
verification. The first is limited interaction with the environment: to ensure determinis-
tic execution, the language can only read data from the global blockchain state or the
current transaction (no file or network I/O). Second, many features that are challenging
for verification are absent from Move: concurrency, higher-order functions, exceptions,
sub-typing, and dynamic dispatch. The absence of the last feature is particularly notable
because it is present in Ethereum bytecode and has contributed to subtle re-entrancy
bugs (e.g., [14]). Third, Move has built-in safe arithmetic: overflows and underflows
are detected during execution and result in a transaction abort. Finally, many common
errors are prevented by the Move bytecode verifier (not to be confused with the Move
Prover), a static analyzer that checks each bytecode program before execution (similar
to the JVM [26] or CLR [31] bytecode verifier). The bytecode verifier ensures that:

1. Procedures and struct declarations are well-typed (e.g., linearity of resources)
2. Dependent modules and procedure targets exist (i.e., static linking)
3. Module dependencies are acyclic
4. The operand stack height is the same at the beginning and end of each basic block
5. A procedure can only touch stack locations belonging to callers via a reference

passed to the callee
6. The global and local memory are always tree-shaped
7. There are no dangling references
8. A mutable reference has exclusive access to its referent

Because these checks are run on every Move bytecode program, the prover can rely on
them in its own reasoning. Note that this would not be true if the checks were performed
by a source language compiler, since bad bytecode programs could be created by com-
piler bugs or by writing programs directly in the executable bytecode representation.

Limited Aliasing In the rest of this section, we present an example that explains the
memory-related invariants enforced by the Move bytecode verifier (6–8 above). The
example in Figure 1 is written in the Move source language, which can be directly com-
piled to the Move bytecode representation shown in the comments (note that the Move
Prover analyzes the bytecode itself). The join procedure accepts two arguments: coin
of type &mut LibraCoin::T (a mutable reference to a LibraCoin::T value stored



4 J. E. Zhong et al.

Move
Code

Move
Parser

Prover
Object
Model

Move
Compiler

Specification

Bytecode

Boogie
Translator Boogie

Boogie
Result
Analyzer

Diagnosis SMT
Model

Z3/CVC4
SMT
Solver

UNSAT

SAT

Fig. 2. The Move Prover architecture.

elsewhere) and to_consume of type LibraCoin::T (an owned LibraCoin::T value).
The purpose of this procedure is to destroy the LibraCoin::T resource stored in
to_consume and add its value to the LibraCoin::T resource referenced by coin.
The first line of the procedure performs the destruction by “unpacking” to_consume

(placing the program value bound to its field into the program variable value), and the
next two lines read the current value of c_value_ref and update it.

The careful reader might wonder: what will happen if c_value_ref is a reference
to to_consume? In a C-like language, the first line would make c_value_ref into a
dangling reference, which would lead to a memory error when it is subsequently used.
Fortunately, the Move bytecode verifier ensures that this cannot happen. An owned
value like to_consume can only be moved (either onto the operand stack or into global
storage) if there are no outstanding references to the value. In addition, the bytecode
verifier guarantees that no mutable reference can be an ancestor or descendant of an-
other (mutable or immutable) reference in the same local or global data tree. This is a
very strong restriction! It ensures that procedure formals that can be mutated (mutable
references or owned values) point to disjoint memory locations. For example, an addi-
tional formal of type &mut u64 in the code above could not point into the memory of
the other formals. Formals that are immutable references may alias with each other, but
not with mutable references or owned values. This means it is impossible for an up-
date to a reference to affect the value retrieved by a simultaneously existing reference.
These restrictions on the structure of memory enable greatly simplified reasoning about
aliased mutable data, a significant challenge for verification in conventional languages.

3 Tool Overview

Figure 2 shows the architecture of the Move Prover. The prover takes as input Move
source code annotated with specifications. The overall workflow consists of several
steps. First, the specifications are extracted from the annotated code, and the Move
source code is compiled into Move bytecode. Next, all stack operations are removed
from the bytecode and replaced with operations on local variables, and the stackless
bytecode is abstracted into a prover object model. Along a separate path, the specifica-
tions are parsed and added to the prover object model. The finalized model is translated
to a program in the Boogie intermediate verification language (IVL) [23, 24].



The Move Prover 5

The Boogie program is handed to the Boogie verification system, which generates
an SMT formula in the SMT-LIB format [10]. This can then be checked using an SMT
solver such as Z3 [32] or CVC4 [9]. If the result of this check is UNSAT, then the speci-
fication holds, which is reported to the user. Otherwise, a countermodel is obtained from
the SMT-solver, which gets translated back to Boogie. Boogie produces a Boogie-level
error report, and this result is analyzed and transformed into a source-level diagnosis
that is given back to the user. Using this diagnosis, the user can refine the implementa-
tion and/or specification and start the process again.

The prover is written in Rust and can be found in the language/move-prover

directory in the Libra repository on GitHub [25].4 We describe the Boogie model and
the specification language in more detail in the following sections.

4 Boogie Model

Boogie IVL is a simple imperative programming language that supports local and global
variables, branching and loops, and procedures and procedure calls. Boogie is designed
for verification, so it also supports pre- and post-conditions, loop invariants, and global
axioms. Boogie programs are not executable; instead, they are provided as input to the
Boogie verification system, which applies a verification strategy to generate verification
conditions (as SMT formulas) [8]. If all of the verification conditions hold, then each
procedure ensures its post-conditions, under the assumption that its pre-conditions hold.
The variable types supported by Boogie IVL match the sorts supported by SMT solvers,
e.g., Booleans, integers, arrays, bitvectors, and datatypes. This makes the translation of
Boogie verification conditions into SMT formulas fairly transparent. Boogie is used as
a back-end for a wide variety of verification tools. The general strategy is to model
the semantics of a source language in Boogie. Then, programs and specifications in
the source language can be translated into Boogie IVL and checked using the Boogie
verification system. For more details about Boogie, we refer the reader to [1, 7, 23, 24].

Following this pattern, we built a Boogie model for Move bytecode programs. A
few highlights of the model are shown in Figure 3 and described below. For a detailed
understanding of the model, we refer the reader to the full Boogie model, which can be
found in the Libra repository at language/move-prover/src/prelude.bpl and to
a formalization of the core Move bytecode language described in [13].

As mentioned above, in Move, a data value is either a primitive value (e.g., Boolean,
integer, address), a struct (i.e. a record) containing one or more data values, or a vector
of data values. Data values are represented in Boogie as the Value datatype, with one
constructor for each primitive type, plus a vector constructor (containing one field: a
finite array of Value), used to model both vectors and structs.

Because Move supports generic functions (i.e. type-parameterized functions), we
define a similar Boogie datatype for types called TypeValue (not shown). A type-
parameterized function can then be represented as a Boogie procedure whose initial
arguments are of type TypeValue (for the type parameters) and whose data arguments
are of type Value (regardless of their actual Move type). The bytecode verifier ensures

4 This paper reflects the state of the Move Prover at github commit
https://github.com/libra/libra/tree/6798b1cd50ac7d524d3e494783910b3d7e827eef.



6 J. E. Zhong et al.

type {:datatype} Value ;
function {:constructor} Boolean (b : bool) : Value ;
function {:constructor} In tege r ( i : int) : Value ;
function {:constructor} Address ( a : int) : Value ;
function {:constructor} Vector (v : ValueArray ) : Value ;

type {:datatype} ValueArray ;
function {:constructor} ValueArray (v : [int] Value , l : int) : ValueArray ;

type {:datatype} Path ;
function {:constructor} Path (p : [int]int, s i ze : int) : Path ;

type {:datatype} Location ;
function {:constructor} Global ( t : TypeValue , a : int) : Location ;
function {:constructor} Local ( i : int) : Location ;

type {:datatype} Reference ;
function {:constructor} Reference ( l : Location , p : Path ) : Reference ;

type {:datatype} Memory;
function {:constructor} Memory( domain : [ Location ]bool, conten ts : [ Location ] Value ) : Memory;
var $m : Memory;

Fig. 3. Highlights of the Boogie model for the Move Prover. The type {:datatype} syntax
is used to declare a new datatype, and the function {:constructor} syntax is used to
declare datatype constructors with their selectors. An array indexed by type T containing elements
of type V is denoted in Boogie as [T]V.

type-correctness, so we do not check that types are used correctly, but rather assume
this is the case (by using Boogie assume statements as needed).

The Value and ValueArray datatypes are mutually recursive, and thus a Value

can be thought of as a finite tree. A primitive Value is a leaf node of the tree, while a
struct or vector Value is an internal node. A position within the tree can be uniquely
identified by a path, which is a sequence of integers. A path specifies a node of the
tree by starting at the root node and then following children according to the indices
in the path. We model paths as finite arrays (also shown in Figure 3). This simplifies
the specification that two trees are disjoint, which is a necessary precondition in some
smart contract functions.

A Value can be stored in either local or global state, and references to data in either
are allowed as local variables. For simplicity and uniformity, we have a single memory
object which is a map from Location to Value (because memory is a partial function,
it also contains a map from Location to bool, which indicates whether a particular
location is present in memory). A Location is either global (indexed by an account
address and a type) or local (indexed by an integer). References are then represented
as a pair consisting of a location and a path. To model reading from or writing to a
reference, the global memory is accessed along the reference’s path. Note that this is
done by enumerating cases up to the maximum possible path depth (based on the data
structures in the modules being verified).5

5 As with most verification approaches based on generating verification conditions, verifying
recursive procedures or loops in Boogie requires writing loop invariants, which can be difficult
and may also introduce quantifiers, making the problem harder for the underlying SMT solver.
We have avoided this so far by relying on bounded iteration, but our roadmap includes full
handling of recursion and loops via loop invariants.



The Move Prover 7

public fun pay_from_sender(payee: address, amount: u64) acquires T
{
Transaction::assert(payee != Transaction::sender(), 1); // new!

if (!exists<T>(payee)) {
Self::create_account(payee);

};
Self::deposit(
payee,
Self::withdraw_from_sender(amount),

);
}

spec fun pay_from_sender {
// ... omitted aborts_ifs ...
aborts_if amount == 0;
aborts_if global<T>(sender()).balance.value < amount;
ensures exists<T>(payee);
ensures global<T>(sender()).balance.value

== old(global<T>(sender()).balance.value) - amount;
}

Fig. 4. A simplified version of an example where verification led to an insight about a function.
Without the assert marked “new,” the specification fails to hold if payee and sender are
the same, as explained in Section 6.

Finally, each bytecode instruction is modeled as a procedure modifying local or
global state in Boogie. A bytecode program is then translated to a sequence of procedure
calls, with goto statements handling control-flow.

5 Specifications

The Move Prover has a basic specification language for individual functions. Specifica-
tions include classical Floyd-Hoare pre-conditions, post-conditions, and a new condi-
tion specifying when a function aborts. (We are expanding this functionality to include
ghost variables and global invariants for modules.) These conditions are separated from
the actual code, in “spec blocks,” which are linked by name to the structure or function
being specified, or to the containing module. Specifications never affect the execution
of a module. A simplified example based on verifying a real Libra module appears in
Figure 4.

Pre-conditions and post-conditions are standard. Pre-conditions are introduced by
the reserved word requires and post-conditions are introduced by ensures, and each
is followed by a Boolean expression, in a syntax that is very similar to Move, which
includes the usual relational and arithmetic operators, record field access, etc. A sub-
expression after ensures can be enclosed in old(...), causing the expression to be
evaluated using the variable values in the program state immediately after entry to the
function, instead of using the program state just before exit from the function. Move
functions can return multiple values, so the expressions return_1, return_2, etc.
represent those return values.

Formal verifiers for conventional programming languages treat run-time errors as
bugs to be reported. However, as in most smart contract languages, performing an un-
defined operation in Move, such as division by zero, cancels the entire transaction with
no effect on the state except the consumption of some currency to pay for the computa-
tional resources consumed by the code that was executed before the error occurred. In



8 J. E. Zhong et al.

Libra, this event is called an abort. Aborts are not necessarily run-time errors in Move.
They are the standard way to handle illegal transactions, such as trying to perform an
operation that is not authorized by the sender of the transaction.

Instead of treating all possible abort conditions as bugs, the Move Prover allows the
user to specify the conditions under which a function is expected to abort. This type
of specification is introduced by the reserved word aborts_if, which is followed by
the same kind of expressions that can appear after requires. When aborts_if P
appears in the specification of a function, the Move Prover requires that the function
aborts if and only if P holds. If multiple aborts_if conditions are specified, there is
an error unless the function aborts if and only if the disjunction of all their conditions
holds. (This current semantics of aborts_if is subject to change.)

There are two expressions that are specific to the Libra blockchain. The expression
exists<M::T>(A) is true iff there is an instance of the type T from module M ap-
pearing under account A in the global state tree. In the example of Figure 4, the first
post-condition asserts that the payee account exists after a payment transaction (the
payee account might not exist before the payment, in which case it is created). The ex-
pression global<M::T>(A) represents the value of type T from module M stored at
account A. In the example, this construct accesses the balance values of the sender (the
payer), to make sure that the balance covers the payment, and to assert that the payer
account balance has decreased by the payment amount if the payment is successful.

Specification Translation Specifications are translated into requires and ensures

statements in Boogie and combined with the prelude (the Boogie model, see Section 4)
and the translated Move bytecode for the program.

A global Boolean variable $abort_flag is introduced and assumed to be false at
the beginning of each procedure. The Boogie code for each instruction sets this flag to
true for conditions that cause abort, such as undefined operations or failures of explicit
Move assert statements.

The specification translator combines, using logical disjunction, the conditions of
all aborts_if statements into a single expression (called condition here), which is
translated into the Boogie specifications ensures condition ==> $abort_flag

and ensures !condition ==> !$abort_flag.

6 Evaluation

In this section, we report on our experience using the Move Prover. We first demonstrate
that it can successfully be used on core modules in the Libra codebase.

Verifying Core Modules We wrote specifications for all of the functions (25/25) in the
Libra module and most of the functions (34/38) in the LibraAccount module (4 func-
tions use features that are not yet supported: non-linear arithmetic and referencing data
in the spec that does not appear in the code).6 These are core modules of the Libra sys-
tem, and their correct execution is crucial. The Move Prover was able to prove all of

6 Two additional functions in LibraAccount are “native” which means that they are built-in and
don’t have any Move code. These are modeled directly in Boogie and are not included in the
count here.



The Move Prover 9

these specifications in under a minute, as shown below. The modules with their spec-
ifications are available in the Move Prover source tree.7 The Libra and LibraAccount
modules comprise nearly 1300 lines (including specifications). The total size of the gen-
erated Boogie files is a little over 14000 lines, and the generated SMT files are around
52,000 lines. Writing these specifications was quite natural, thanks to the tree-based
memory model and to the support for type-generics. Experiments were run on a ma-
chine with an Intel Core i9 processor with 8 cores @2.4GHz and 32GB RAM, running
macOS Catalina.

Move Module LoC Boogie LoC SMT LoC Functions Verified Runtime
Libra 420 3875 11688 25 25 2.99s
LibraAccount 867 10362 40293 38 34 46.66s

Impact of Move Prover The Move Prover is co-developed with the Move language itself
(which is relatively stable) to ensure that contracts remain correct as the entire toolset
evolves. The prover is used in continuous integration, and is beginning to be used to
verify contracts in production. As of this writing, the Move Prover hasn’t exposed any
serious bugs. However, it has had an impact on how we understand code. An example
is a function called pay_from_sender (a version with some specifications and com-
ments omitted appears in Figure 4). This function simply pays money from the account
of the sender (who signed the transaction) to payee. In a previous version of the func-
tion, the Prover reported errors for two of the “obvious” specification properties shown.
The first specification says that the function always aborts when paying zero Libra, be-
cause deposit aborts unless the amount is positive. However, in the earlier version,
create_account handled the payment to deposit the amount in the account when the
account did not yet exist, and that payment was allowed to be zero, violating the spec-
ification. The function was rewritten as it appears now, so that the same deposit code
is called regardless of whether the payee account was newly created. The last specifi-
cation says that the payer’s account decreases by amount after a successful payment.
This condition was violated when the payer and payee were the same, resulting in no
decrease. Adding an assert (marked “new!” in the figure) to abort in that useless case
makes the specification simpler.

7 Related Work

The only other formal verification framework for Move that we are aware of is de-
scribed in [36], where a high-level approach and some case studies are described, but
no implementation details are provided.

The closest work in the literature has been done in the context of verification of
solidity smart contracts using Boogie. VERISOL [22] is one tool which formally ver-
ifies solidity smart contracts via a translation to Boogie. Its specification language is
designed for the specific context of application policies, but general specifications can

7 To reproduce, run cargo run -- -s . -- <libra|libra_account>.move
from tests/sources/stdlib/modules in the move-prover source tree.



10 J. E. Zhong et al.

be given by using solidity assertions. SOLC-VERIFY [20, 19] also uses Boogie to per-
form formal verification for solidity. It includes an annotation-based specification lan-
guage and supports a larger feature-set of solidity than VERISOL. Interestingly, the
formalization of the solidity persistent memory model presented in [20] is similar to
our tree-based memory model for Move, though they were developed independently.
One novelty of our model in comparison to theirs is its ability to handle generic func-
tions as discussed in Section 4 (generics are supported in Move but not in solidity).
Both VERISOL and SOLC-VERIFY target contracts written in solidity, and not in the
Ethereum bytecode. In contrast, the Move Prover operates on the Move bytecode.

The solidity compiler itself includes a formal verification framework that works via
a direct translation to SMT [2]. Several other tools have focused on specific vulnera-
bility patterns, rather than user-defined specifications [16, 28, 34, 40]. Other theoretical
foundations have also been employed for the verification of solidity smart contracts.
These include the K framework [35] (see, e.g., [21]), F* [29] (see, e.g., [11, 18]), and
proof assistants such as Coq [37] (see, e.g., [42, 43]).

Formal verification of Rust [30] programs is also related to the Move Prover, as
Move’s type system has similar characteristics to Rust [30]. Prusti [4] is a tool that
leverages Rust’s type system information to verify Rust programs. It is based on a
higher-level intermediate framework called Viper [33] (that internally uses Boogie in
some scenarios). Other verification efforts for Rust employ a translation to LLVM and
then leverage LLVM-based verification techniques (see, e.g., [6, 27, 39]).

8 Conclusion

In this paper, we introduced the Move Prover, a formal verification tool designed to be
an integral part of the process of smart contract development for the Libra platform.
Though our initial experience with the Move Prover is positive, there are many avenues
for future work that we plan to pursue.

As Move continues to evolve, we expect that some constructs may be easier and
more efficient to model by using custom SMT constructs. An example of this is the
built-in vector type. Our current model requires the use of quantifiers to compare two
vector objects. However, an SMT theory of sequences could be used to model vectors
without needing to use quantifiers to define equality. We plan to investigate the use of
richer (and possibly custom) SMT theories in our model.

The specifications we have written so far are local in the sense that they deal with
only a single execution of a single Move function. However, some properties of the
Libra blockchain are inherently global in nature, such as the fact that the total amount
of currency should remain constant. We plan to investigate techniques for creating and
checking such global specifications.

The current Prover is still in a prototype phase. But the goal is for it to be a product
that is usable by everyone who is writing contracts for the Libra platform. We expect
that there will be many challenges in producing a user-friendly, industrial-strength tool,
but we also look forward to a future where formal specification and verification is a
routine part of the development process for Move modules on the Libra blockchain.



The Move Prover 11

References

1. Boogie, https://github.com/boogie-org/boogie
2. Alt, L., Reitwießner, C.: SMT-Based Verification of Solidity Smart Contracts. In: ISoLA (4).

Lecture Notes in Computer Science, vol. 11247, pp. 376–388. Springer (2018)
3. Amsden, Z., Arora, R., Bano, S., Baudet, M., Blackshear, S., Bothra, A., Cabrera, G., Catal-

ini, C., Chalkias, K., Cheng, E., Ching, A., Chursin, A., Danezis, G., Giacomo, G.D., Dill,
D.L., Ding, H., Doudchenko, N., Gao, V., Gao, Z., Garillot, F., Gorven, M., Hayes, P., Hou,
J.M., Hu, Y., Hurley, K., Lewi, K., Li, C., Li, Z., Malkhi, D., Margulis, S., Maurer, B.,
Mohassel, P., de Naurois, L., Nikolaenko, V., Nowacki, T., Orlov, O., Perelman, D., Pott,
A., Proctor, B., Qadeer, S., Rain, Russi, D., Schwab, B., Sezer, S., Sonnino, A., Venter, H.,
Wei, L., Wernerfelt, N., Williams, B., Wu, Q., Yan, X., Zakian, T., Zhou, R.: The Libra
Blockchain. https://developers.libra.org/docs/the-libra-blockchain-paper (2019)

4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for modular speci-
fication and verification. PACMPL 3(OOPSLA), 147:1–147:30 (2019)

5. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (sok).
In: POST. Lecture Notes in Computer Science, vol. 10204, pp. 164–186. Springer (2017)

6. Baranowski, M.S., He, S., Rakamaric, Z.: Verifying rust programs with SMACK. In: ATVA.
Lecture Notes in Computer Science, vol. 11138, pp. 528–535. Springer (2018)

7. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: International Symposium on Formal Meth-
ods for Components and Objects. pp. 364–387. Springer (2005)

8. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: Proceed-
ings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering. pp. 82—-87. Association for Computing Machinery, New York, NY,
USA (2005). https://doi.org/10.1145/1108792.1108813

9. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,
Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification (CAV ’11). Lecture Notes in Computer
Science, vol. 6806, pp. 171–177. Springer (Jul 2011), Snowbird, Utah

10. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroen-
ing, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theo-
ries (Edinburgh, UK) (2010)

11. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi, N.,
Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Béguelin, S.Z.: Formal verification
of smart contracts: Short paper. In: PLAS@CCS. pp. 91–96. ACM (2016)

12. Blackshear, S., Cheng, E., Dill, D.L., Gao, V., Maurer, B., Nowacki, T., Pott, A., Qadeer,
S., Rain, Russi, D., Sezer, S., Zakian, T., Zhou, R.: Move: A language with programmable
resources. https://developers.libra.org/docs/move-paper (2019)

13. Blackshear, S., Dill, D.L., Qadeer, S., Barrett, C.W., Mitchell, J.C., Padon, O., Zohar, Y.:
Resources: A safe language abstraction for money (2020), https://arxiv.org/abs/2004.05106

14. Buterin, V.: Critical update re DAO (2016), https://ethereum.github.io/blog/2016/06/17/critical-
update-re-dao-vulnerability

15. Chen, H., Pendleton, M., Njilla, L., Xu, S.: A survey on ethereum systems security: Vulner-
abilities, attacks and defenses. CoRR abs/1908.04507 (2019)

16. ConsenSys: Mythril Classic: Security analysis tool for Ethereum smart contracts,
https://github.com/skylightcyber/mythril-classic

17. Girard, J.: Linear logic. Theor. Comput. Sci. (1987)
18. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the security anal-

ysis of ethereum smart contracts. In: POST. Lecture Notes in Computer Science, vol. 10804,
pp. 243–269. Springer (2018)



12 J. E. Zhong et al.

19. Hajdu, Á., Jovanovic, D.: solc-verify: A modular verifier for solidity smart contracts. CoRR
abs/1907.04262 (2019)

20. Hajdu, Á., Jovanovic, D.: SMT-Friendly Formalization of the Solidity Memory Model. In:
ESOP. Lecture Notes in Computer Science, vol. 12075, pp. 224–250. Springer (2020)

21. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore, B.M.,
Park, D., Zhang, Y., Stefanescu, A., Rosu, G.: KEVM: A complete formal semantics of the
ethereum virtual machine. In: CSF. pp. 204–217. IEEE Computer Society (2018)

22. Lahiri, S.K., Chen, S., Wang, Y., Dillig, I.: Formal specification and verification of smart
contracts for azure blockchain. CoRR abs/1812.08829 (2018)

23. Leino, K.R.M.: This is boogie 2 (2008), https://www.microsoft.com/en-
us/research/publication/this-is-boogie-2-2/, manuscript KRML 178

24. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and
logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS. pp. 312–327. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

25. Libra: https://github.com/libra/libra
26. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley (1997)
27. Lindner, M., Aparicius, J., Lindgren, P.: No panic! verification of rust programs by symbolic

execution. In: INDIN. pp. 108–114. IEEE (2018)
28. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In:

ACM Conference on Computer and Communications Security. pp. 254–269. ACM (2016)
29. Maillard, K., Ahman, D., Atkey, R., Martı́nez, G., Hritcu, C., Rivas, E., Tanter, E.: Dijkstra

monads for all. In: 24th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP) (2019), https://arxiv.org/abs/1903.01237

30. Matsakis, N.D., Klock, II, F.S.: The rust language. Ada Lett. 34(3), 103–104 (Oct 2014).
https://doi.org/10.1145/2692956.2663188, http://doi.acm.org/10.1145/2692956.2663188

31. Meijer, E., Wa, R., Gough, J.: Technical overview of the common language runtime (2000)
32. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. Lecture Notes in

Computer Science, vol. 4963, pp. 337–340. Springer (2008)
33. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for

permission-based reasoning. In: Dependable Software Systems Engineering, NATO Science
for Peace and Security Series - D: Information and Communication Security, vol. 50, pp.
104–125. IOS Press (2017)

34. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodigal, and
suicidal contracts at scale. In: ACSAC. pp. 653–663. ACM (2018)

35. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Log. Algebr. Program.
79(6), 397–434 (2010)

36. Synthetic Minds Blog: Verifying smart contracts in the move language (2019),
https://synthetic-minds.com/pages/blog/blog-2019-09-11.html

37. The Coq development team: The coq proof assistant reference manual version 8.9 (2019),
https://coq.inria.fr/distrib/current/refman/

38. The Libra Association: An Introduction to Libra. https://libra.org/en-us/whitepaper (2019)
39. Toman, J., Pernsteiner, S., Torlak, E.: Crust: A bounded verifier for rust (N). In: ASE. pp.

75–80. IEEE Computer Society (2015)
40. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M.T.: Secu-

rify: Practical security analysis of smart contracts. In: ACM Conference on Computer and
Communications Security. pp. 67–82. ACM (2018)

41. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2014),
https://ethereum.github.io/yellowpaper/paper.pdf

42. Yang, Z., Lei, H.: Formal process virtual machine for smart contracts verification. CoRR
abs/1805.00808 (2018)



The Move Prover 13

43. Yang, Z., Lei, H.: Fether: An extensible definitional interpreter for smart-contract verifica-
tions in coq. IEEE Access 7, 37770–37791 (2019)


