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ABSTRACT
Randomized experiments, or “A/B” tests, remain the gold standard

for evaluating the causal effect of a policy intervention or product

change. However, experimental settings such as social networks,

where users are interacting and influencing one another, violate

conventional assumptions of no interference needed for credible

causal inference. Existing solutions include accounting for the frac-

tion or count of treated neighbors in a user’s network, among other

strategies. Yet, most current methods do not account for the local

network structure beyond simply counting the number of neigh-

bors. Capturing local network structures is important because it can

account for theories, such as structural diversity and echo chambers.

Our study provides an approach that accounts for both the local

structure in a user’s social network via motifs as well as the assign-

ment conditions of neighbors. We propose a two-part approach.

We first introduce and employ “causal network motifs”, which are

network motifs that characterize the assignment conditions in local

ego networks; and then we propose a tree-based algorithm for iden-

tifying different network interference conditions and estimating

their average potential outcomes. We test our method on a real-

world experiment on a large-scale network and a synthetic network

setting, which highlight how accounting for local structures can

better account for different interference patterns in networks.
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1 INTRODUCTION
Randomized control trials, or “A/B tests”, have been fundamental

to understanding the impact of an intervention, such as a new pol-

icy [34, 36], product intervention [7, 13], or medical treatment [5,

44]. A/B tests can estimate the causal effect of a treatment interven-

tion by ensuring that treatment and control assignments are inde-

pendent of other variables. Increasingly, causal inference methods

have had to adapt to modern A/B test settings where there are high-

dimensional features [26, 28, 49, 56], computational and algorithmic

considerations [69], and network interference concerns [6, 27, 55].
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Traditional causal inference methods rely on a critical assump-

tion called the “stable unit treatment value assumption” (SUTVA) [29,

59]. SUTVA is in fact a strong assumption, requiring that a unit’s

outcome is only affected by its own assignment conditions, regard-

less of the assignment conditions of all other observations. However,

this can be an unrealistic assumption in many settings such as social

networks where user’s are influenced by one another [11, 17, 46],

which we refer to here as network interference [6].
An increasing number of approaches are aimed at dealing with

network interference [8, 15, 37, 40, 50, 55, 61, 63, 70]. Existing meth-

ods for addressing networked interference can be categorized into

two main strategies. The first one is to improve the random as-

signment strategy. Cluster random assignment treats observations

at the level in which observations have strong interdependence

(e.g., assigning on the class or city level) [15, 33, 50]. Graph cluster

randomization is a special case for social networks [27, 63]. It first

runs a graph clustering algorithm and then randomizes treatment

assignment on the graph cluster level. Recent work proposes ran-

dom clustering instead of a fixed clustering [64]. Another type of

approach, including ours, relaxes SUTVA by allowing the potential

outcome to be defined as a function of the assignment conditions

of the ego observation and its (𝑛-hop) neighbors [42, 65]. However,

few studies have utilized the network structure in the 𝑛-hop neigh-

bors (i.e. local network structure) to further characterize different

interference conditions.

From the empirical end, many social network studies have high-

lighted why local structures should be considered to address net-

work interference. For example, the structural diversity hypothesis

[60, 62] claims the likelihood of product adoption is largely depen-

dent on the degree to which a unit’s neighbors who have adopted

are disconnected. By contrast, complex contagion theory [18, 19]

or the “echo chamber” effect [14, 30], suggest an individual is most

likely to adopt a behavior when she is clustered in the network of

multiple neighbors who have adopted this behavior. Figure 1 illus-

trates four examples of network interference that could be captured

by the local networks structure and treatment assignment. The first

two conditions are simply the cases where all neighbors are treated

or non-treated, followed by the important network interference

conditions suggested by structural diversity and complex contagion,

respectively. In the case of structural diversity and echo chamber

settings, the ego node in c) and d) has 1/2 neighbors treated but

exhibit very different local structures and the ego’s outcome may

be different in these settings; and we do not know which one is the

dominant factor that drives most variance in the outcome.

Our study provides a tool for experimenters and practitioners

to account for important network interference conditions without

necessarily specifying a particular dominant social science theory.

We rely on network motifs [3, 45] (or graphlets [53]) to characterize
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Figure 1: Examples of network interference conditions across dif-
ferent local network structures. The star indicates a user and a circle
represents a user’s friends. Solid circles indicate that a friend is in
treatment and hollow circles indicate a friend is in control. For stars,
the shaded indicates that it could be treated or control.

both the local structure and treatment assignment conditions to

account for the different types of (network interference) exposure

conditions. We can think of network motifs as “label-independent

structure” since the features do not depend on treatment labels and

network motifs with treatment assignment conditions as “label-

dependent structure” since they depend on labels [32]. We refer to

network motifs with treatment assignment labels as causal network
motifs. Prior work has considered label-dependent network motifs

for use in protein function prediction applications [21] and has

developed computationally tractable ways for detecting labeled

motifs [48]. Another example is [9], which uses network features

such as transitivity in a propensity score matching framework, with

a focus on observational data. Our proposal is distinct in that we

focus on experimental settings where causal network motifs can

quantify the causal impact of different interference conditions.

In this paper, we provide an approach to automatically cate-

gorize network interference conditions based on local network

neighborhood structures. We develop our approach based on the

framework in [8], where the authors regard different network in-

terference conditions
1
as unique treatments. However, it is unclear

how experimenters or practitioners should a priori define different

network interference conditions that are suitable for specific data

and experiment. Moreover, manually determining different network

interference conditions may make the issue of a large number of

researcher degrees of freedom more severe.

The following sections will describe our two-step solution to

identify different network interference conditions. First, we con-

struct network motifs with assignment labels, referred to as causal
network motifs, to characterize complex network interference condi-

tions. In our study, we not only characterize the network structure

by the number of different network motifs, but also characterize the

assignment conditions in the local network neighborhood by the

causal network motifs. Second, using these network motif features,

we develop a tree-based algorithm to cluster different exposure

conditions. Each leaf or terminal node in the tree corresponds to

a network interference condition and can be used to estimate the

average potential outcome given that condition. We cannot directly

apply conventional decision trees or other machine learning algo-

rithms, since we need to adjust those algorithms to address issues

such as selection bias and positivity as will be explained [22, 23, 68].

1
In this paper, we use exposure conditions and network interference conditions

interchangeably.

Moreover, as a common goal in causal inference, we aim to estimate

the average potential outcome given an interference condition to

quantify causal impacts, rather than predicting the potential out-

come and the treatment effect for every observation [52].

The rest of the paper is organized as follows. Section 2 provides

a broad review on the graph mining and causal inference literature.

Section 3 provides preliminaries of causal inference, the potential

outcomes framework, and why the SUTVA may fail in network

experiments. Then we illustrate our two-part approach: Section 4

presents how we construct the “causal network motifs,” which char-

acterize the treatment assignment conditions of each observation

as well as their network neighborhood; and Section 5 discusses our

tree-based algorithm that regards the “causal network motifs” as

input and then labels each observation as an exposure condition.

Section 6 empirically shows the validity of our approach using a

synthetic experiment and a real-world experiment. Section 7 con-

cludes.

2 GRAPH MINING AND CAUSAL INFERENCE
Our work falls at the intersection of graph mining and causal in-

ference. Graph mining methods are aimed at analyzing network

properties such as the average number of connections, the number

of communities, and more [20, 24]. We will focus on one type of

graph property called a motif. A motif is a simple way to char-

acterize subgraph patterns on a set of nodes [2, 45]. Motifs can

also account for the node label or attribute [1], which is a type of

label-dependent structure that accounts for both the node label and

network topology [32]. However, we are not aware of any appli-

cations that have used labeled network motifs in causal inference

applications, which is the focus of this work. There is also a grow-

ing literature on adapting machine learning algorithms for causal

inference applications [10, 66]. Our work also builds closely on

the causal inference literature and the potential outcomes frame-

work [39, 52] as will be discussed in more detail in the following

sections.

3 CAUSAL INFERENCE SETUP
Let 𝑖 (or 𝑗 ) index individuals in a social network. U is the set of

nodes in the population.N𝑖 be the neighbor set of 𝑖 , and this can be

extended beyond immediate neighbors. 𝑌𝑖 is the observed potential

outcome. 𝑍𝑖 ∈ {0, 1} denotes the random treatment assignment

for 𝑖 . Whenever applicable, we use upper-case letters to represent

variables or vectors that could be intervened by experimenters

or affected by the intervention; and we use lower-case letters for

other variables that are not affected by the intervention. Sets are in

calligraphy.

Potential outcomes framework for network interference. We employ

the potential outcomes framework for this set-up [52]. The potential

outcomes framework defines that a unit’s outcome is a function of

assignment conditions.

𝑌𝑖 = 𝑦𝑖 (𝑍𝑖 ). (1)

𝑦𝑖 (1) and 𝑦𝑖 (0) are called potential outcomes and we only ever

observe one of them. This function implies no interference, mean-

ing the potential outcome 𝑌𝑖 does not depend on the treatment

assignment of other users. However, this is often an unrealistic
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assumption in network settings, since the unit’s outcome can be

dependent on the treatment assignment conditions of neighbors or

even any other unit, through, for example, social contagion.

To overcome this unrealistic assumption, our approach is based

on [8] which introduces exposure mapping. An exposure mapping

is defined as a function that maps the treatment assignment vector

to a value; the fraction of treated friends is an example of a simple

exposure mapping. Each exposure mapping corresponds to a condi-

tion that considers both treatment assignment conditions of the ego

node and her (𝑛-hop) neighbor. Under this framework, researchers

or practitioners usually need to define a priori a set of network

interference conditions (also known as exposure conditions). We

denote this set byD. Then in this framework, the outcome variable

is expressed by

𝑌𝑖 =
∑
𝑑∈D

𝑦𝑖 (𝑑)1[𝐷𝑖 = 𝑑] . (2)

Each 𝑑 corresponds to a pre-specified exposure condition (inter-

ference condition). 𝐷𝑖 is a random variable indicating 𝑖’s exposure

condition. Analyzing different exposure conditions can offer in-

sights into how observations react to different interference settings,

such as comparing (with selection bias corrected) users in control

with treated friends to users in control with only control friends.

Let us introduce three examples. First, SUTVA is a special case

under this exposure mapping framework (where𝐷 = {𝑒𝑔𝑜_𝑡𝑟𝑒𝑎𝑡𝑒𝑑,
𝑒𝑔𝑜_𝑐𝑜𝑛𝑡𝑟𝑜𝑙}). Another example is the existence of direct and in-

direct effects. A simple example introduced in [8] is that 𝐷 =

{𝑛𝑜_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ,𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡
_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒}. Direct effect means the ego or user is treated and indi-

rect effect means any neighbor is treated; thus we have four condi-

tions in total. In our study, we use direct effect to refer to the effect

of changing 𝑍𝑖 from 0 to 1 on the outcome variable; and indirect

effect refers to any consequence that result from the assignment

conditions besides ego node 𝑖 , i.e. 𝑍−𝑖 .2

Finally, note that the 𝑘 (or 𝑞-fractional) neighborhood conditions

in [63] fits this framework, with (2 × 2) four different exposure

conditions — whether the ego node is treated × whether more

than 𝑘 (or 𝑞-fractional) of her neighbors are assigned to the same

treatment condition with the ego node.

Distinguishing between correlation and causation. The indirect effect
may contain a large degree of heterogeneity based on how many

(𝑛-hop) neighbors are treated and how they are connected. Some

of these conditions are theorized in [19, 62] while other cannot. It

is usually challenging to distinguish between what is the causal

impact of certain exposure conditions, versus what is usually con-

founded by ego’s local network structure (for example, users with

more friends tend to have their friends less clustered) [60]. In other

words, selection bias may result from simply taking average over

observations within a certain interference condition. For example,

imagine that we want to quantify the impact of an indirect effect,

so simply taking the average over observations who have at least

one treated friend versus taking average over observations with no

treated friends. This may be biased towards observations who have

more friends. We illustrate this selection bias issue in Figure 4.

2
Indirect effects will be further specified by X𝑖 in later sections.

Mathematically, our goal is to estimate the average potential out-

come (𝑦 (𝑑) = 1

|U |
∑
𝑖 𝑦𝑖 (𝑑), for all 𝑑 ∈ D). This is one of the core

goals in [8]. To correct the aforementioned selection bias, we em-

ploy inverse probability weighting, such as Horvitz–Thompson es-

timator and Hajek estimator [57] Although the Horvitz–Thompson

estimator is an unbiased estimator for the average potential out-

come, it empirically has unaffordably high variance. Therefore,

following [8, 27], we use the Hajek estimator to estimate the aver-

age potential outcome for exposure condition 𝑑 since its small bias

can usually be ignored in a large sample:

ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘 (𝑑) =
∑
𝑖∈U

1𝑖 (𝑑)𝑦𝑖 (𝑑)
𝜋𝑖 (𝑑)∑

𝑖∈U
1𝑖 (𝑑)
𝜋𝑖 (𝑑)

=

∑
𝑖∈U,𝐷𝑖=𝑑

𝑦𝑖 (𝑑)
𝜋𝑖 (𝑑)∑

𝑖∈U,𝐷𝑖=𝑑
1

𝜋𝑖 (𝑑)
, (3)

where we denote 𝜋𝑖 (𝑑) = P[𝐷𝑖 = 𝑑] and 1𝑖 (𝑑) = 1[𝐷𝑖 = 𝑑]. 𝜋𝑖 (𝑑)
is the inclusion probability that the exposure condition of 𝑖 is 𝑑 ,

and is a generalization of propensity scores [51]. It can also be un-

derstood as a weighted average over observations with 1𝑖 (𝑑) = 1,

where the weight is 1/𝜋𝑖 (𝑑). Therefore, it can be estimated through

weighted linear regressions: the coefficient for the constant is the

Hajek estimator. Its variance can be estimated via Taylor lineariza-

tion [54].

The probability 𝜋𝑖 (𝑑) is often challenging to compute analyti-

cally. We therefore use Monte Carlo for sufficiently large replicates

to approximate 𝜋𝑖 (𝑑). Specifically, we re-run the treatment assign-

ment procedure for 𝑅 replicates to obtain the empirical distribution

of (𝑍𝑖 ,Xi).3 Therefore, we can derive the estimated inclusion prob-

ability 𝜋𝑖 (𝑑) for any exposure condition 𝑑 . For example, we can

let 𝜋𝑖 (𝑑) =
∑

𝑟 1[𝐷
(𝑟 )
𝑖

=𝑑 ]+1
𝑅+1 ; and we substitute the 𝜋𝑖 (𝑑) in Equa-

tion 3 with 𝜋𝑖 (𝑑). The relative bias ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘 (𝑑) to 𝑦 (𝑑) diminishes

exponentially as 𝑅 increases. The details have been discussed in

[8].

While the exposure mapping framework introduces a tractable

way to take into account network interference, it is an open ques-

tion how we should then account for the treatment assignment

conditions of the 𝑛-hop neighbors and their network connections in

Figure 1. We hope to provide an approach that generates exposure

conditions that are suitable for a given experiment and dataset, and

that avoids manually defining exposure conditions a priori. Our

study provides a two-step solution to automatically identify differ-

ent exposure conditions while overcoming selection bias concerns,

as will be explained in more detail in the next sections. First, for an

A/B test on a network, we construct network motif features with

treatment assignment conditions to provide a fine-grained charac-

terization of the local network structure and potential interference

conditions. Second, using the network motif characterization as

input, we develop a tree-based algorithm to perform clustering and

define the set D rather than allowing practitioners to explore that.

4 CAUSAL NETWORK MOTIFS
Network motifs are a way to characterize all patterns of smaller

network features among a set of nodes [45]. We introduce “causal

network motifs” which differ from conventional network motifs

3
It is challenging to derive this distribution analytically, especially when the random

assignment is deployed on the individual level.
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Figure 2: Examples of causal network motifs. Stars represent egos
and circles represent alters. Solid indicates the node being treated,
hollow indicates control, and shaded indicates that it could be
treated or control. The first patterns in each row are conventional
network motifs without assignment conditions, or just called net-
work motifs, followed by corresponding network motifs. Our inter-
ference vector is constructed by dividing the count of a causal net-
workmotif by the count of the corresponding causal networkmotif.
The labels below each networkmotif indicate the naming: for exam-
ple, an open triad where one neighbor is treated is named 3o-1.

in two primary aspects. First, we focus on 1-hop ego networks

that include the ego node, with the methods generalizing to higher

𝑛-hop ego networks for 𝑛>1. Second, we consider the treatment

assignment conditions of the user and their 𝑛-hop connections.

We use the terminology “network motifs” to refer to conventional

motifs without treatment assignment labels (or assignment condi-

tions) and causal network motifs to refer to ones with assignment

conditions. Examples of network motifs are illustrated in Figure 2.

We use these counts on a 𝑛-hop ego network to characterize the

exposure condition of each observation.

Experimenters and practitioners need to determine a priori the

region of ego networks (the 𝑛 for 𝑛-hop ego networks which means

the path length between an ego node and another node is no greater

than 𝑛) and the network motifs that matter. For example, Figure 2

specifies 1-hop ego network and only the assignment conditions of

dyads, triads, and open tetrads matter.

Using causal network motifs implies the following two assump-

tions:

(1) (𝑛-hop ego networks)We assume that an ego node’s out-

come can only be affected by its own assignment condition

and its (𝑛-hop) neighbors’ assignment conditions. This is a

common assumption in the prior network interference lit-

erature, and is sometimes called the stable unit treatment on
neighborhood value assumption [31, 42]. A larger 𝑛 implies a

more relaxed assumption.

(2) (Specified network motifs) Given the specified 𝑛-hop ego

networks and the subgraph size for computing motifs, we

assume that only the assignment conditions of specified

network motifs affect the outcome of the ego observation.

This assumption implies that we do not distinguish two

ego networks with identical counts of specified network

motifs. Considering more and higher-order would mitigate

this issue.

Ideally, we should consider an infinitely large 𝑛 and network mo-

tifs with more nodes because these are more relaxed assumptions.

However, two issues may arise. First, it is typically computation-

ally expensive to count network motifs of many nodes in an ego

network of large 𝑛. There are many possible network motif pat-

terns and potentially large counts. Second, related to the positivity

requirement in the next section, we need all (or almost all) obser-

vations to contain all specified network motifs. Specification of

too many network motifs may exclude a significant proportion of

samples from the analysis.

Note that although all our examples are in the undirected set-

ting, it can be easily extended to directed networks (e.g., a directed

edge from 𝑖 to 𝑗 indicates that 𝑖 reached 𝑗 ). In either undirected

or directed networks, we should be cautious that the networks

are pre-treatment so that the network structure is not affected by

the treatment assignments. For example, when we use a network

where edges represent whether the two nodes have interactions,

the interactions used should have happened before the treatment

was assigned; otherwise this would bring about an issue known as

post-treatment bias [4].

After counting causal network motifs for each ego node in our

network, our next step is to convert the counts to features which

will be used in the next section. Let X𝑖 denote an𝑚-dimensional

random vector, referred to as interference vector. The interference
vector has an important requirement: Each element of the random

vector is “intervenable” — that is, the random treatment assignment

affects the value of each element of the vector. The requirement

addresses the selection bias issue when we estimate the average

potential outcomes.

We construct the interference vector in the following way. For

each observation, for the count for each causal network motif (e.g.,

2-1, 2-0, ..., 3o-2, 3o-1, ...), we normalize it by the count of the cor-

responding network motifs (e.g., dyads, open triads, closed triads,

...)
4
. In this way, each element of X𝑖 is intervenable and the sup-

port for each element is then [0, 1]. Note that when considering

a network motif with many nodes, some observations may not

have certain network motifs, and normalization cannot be done.

In these scenarios, we can either exclude this network motif from

the interference vector, or drop these observations if they take a

really small proportion. Please refer to Figure 3 for an illustration

of constructing the interference vector.

We combine the ego node’s own assignment condition 𝑍𝑖 and

interference vector X𝑖 as the features for our tree-based algorithm

described in the next section to determine exposure conditions.

(𝑍𝑖 ,X𝑖 ) ∈ [0, 1]𝑚+1. Related to [8], our approach is mathematically

equivalent to, 𝐷 = 𝑓 (𝑍𝑖 ,X𝑖 ) such that 𝑦 (𝐷) = 𝑦 (𝑓 (𝑍𝑖 ,X𝑖 )). D
is equivalent to partitioning [0, 1]𝑚+1 to X1 ∪ X2 ∪ ... ∪ X|D | . 𝑍𝑖
impacts direct effects, and X𝑖 corresponds to indirect effects.
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Figure 3: An example of ego network with treatment assign-
ments and the corresponding interference vector. Stars rep-
resent egos and circles represent alters. Solid indicates the
node being treated,hollow indicates control, and shaded in-
dicates that it could be treated or control.

Figure 4: Illustration of selection bias and positivity. 𝑥-axis and 𝑦-
axis represent the fraction of the given causal networkmotif among
the corresponding network motifs. The positions of nodes indicate
observed values for each observation (not the probability distribu-
tion). Π1, Π2, Π3 or Π′

1
, Π′

2
, Π′

3
represent a plausible partitioning.

Imagine green and yellow nodes represent two types of observa-
tions (e.g. green for observations with fewer neighbors and yellow
for observations with more neighbors). In independent random as-
signments, green nodes are more likely to have extreme values in
the 𝑥- or 𝑦- axis, while yellow nodes are more likely to be centered
around the mean. The left partitioning may violate positivity be-
cause yellow nodes may have zero or very small probability to be-
long in Π1; by contrast, the right partitioning is feasible. In the right
partitioning, simply taking the average is still problematic because
yellow nodes have smaller probability to belong in Π′

𝑖
. Therefore,

we need inverse probability weighting to correct this selection bias.

5 A TREE-BASED PARTITIONING
APPROACH

The next question is how to design an algorithm to determine expo-

sure conditions by (𝑍𝑖 ,X𝑖 ) (i.e. partitioning its support [0, 1]𝑚+1).
By an abuse of notation we replace any exposure condition 𝑑 by

the corresponding partition X (where X ⊂ [0, 1]𝑚+1): 𝜋𝑖 (X) =
P[(𝑍𝑖 ,X𝑖 ) ∈ X] = P[𝑓 (𝑍𝑖 ,X𝑖 ) = 𝑑] = 𝜋𝑖 (𝑑), and similarly

1𝑖 (X) = 1[(𝑍𝑖 ,X𝑖 ) ∈ X] = 1𝑖 (𝑑), or the potential outcome𝑦𝑖 (X) =
𝑦𝑖 (𝑑).

4
The𝑞-fractional neighborhood conditions are considered special cases in our approach

where only dyad motifs are used.

Our approach partitions [0, 1]𝑚+1 and determines exposure con-

ditions based on a decision tree regression [16].
5
Decision trees can

be used for clustering [43] and typically have good interpretability

[47]. Thus, it is a proper machine learning algorithm to solve the

partitioning problem. Each leaf of the decision tree will determine a

unique exposure condition (partition). Compared with conventional

decision tree regression, we need to have the following revisions:

(1) (Positivity) Positivity ensures observations have a non-zero
chance of being in an exposure condition [68]. In our setting,

it means that for all 𝑖 ∈ U, 𝑑 ∈ D, 𝜋𝑖 (X) > 0.

If any partition 𝑑 would lead to the existence of any obser-

vation 𝑖 that 𝜋𝑖 (𝑑) = 0, we would be unable to estimate the

average potential outcomes. Mathematically, it would make

the denominator in Equation 3 zero. Note that the require-

ment is for the set all observations (U), rather than just the

observations that are randomly assigned to X.
This is also part of the reason why we normalize the inter-

ference vector. Imagine we use the number of each causal

network motif as the elements of the interference vector. If

we decided a partition in which the number of 3c-1 (closed

triads with fully treated neighbors) is greater than 10, then

all observations with fewer than 10 open triads would have

zero probability of belonging to this partition. The necessity

of positivity is illustrated in Figure 4.

The tree algorithm should not split a node if such splitting

will lead to any child node corresponding to a potential expo-

sure condition in which any observation has zero probability

to belong. Since 𝜋𝑖 (X) is sometimes not solvable analytically,

we use Monte Carlo to approximate it (𝜋𝑖 (X)). Moreover, we

adjust the positivity requirement to non-trivial probability

which allows a very few observations to have zero or near-

zero probability; non-zero 𝛿 and 𝜖 introduce a small bias but

allow partitioning more features.∑
𝑖∈U

1[𝜋𝑖 (X) ≤ 𝜖] ≤ 𝛿 |U|. (4)

It means that the fraction of observations with 𝜋𝑖 (X) ≤ 𝜖 is

smaller than 𝛿 .

(2) (Honest splitting) One pitfall is that when we estimate the

variance, the algorithm is choosing a threshold to partition

so that it would minimize its objective function; however, it

may overfit the training data, selecting an improper thresh-

old when splitting, and eventually overestimating the dif-

ference between the average potential outcomes indicated

by the two child nodes. We thus split the original training

set into training and estimation sets — the training set is

used for tree partitioning and a separate estimation set is

used for estimating the mean and variance. This is a com-

mon approach to correcting confidence intervals when using

machine learning for causal inference [12, 41].

(3) (Weighted sum of squared errors) Hajek estimator can

be derived by minimizing weighted sum of squared errors

given a candidate exposure condition, which corresponds to

a subset of [0, 1]𝑚+1 (denoted by X).

5
We use regressions because it also covers binary outcome variables, but our approach

could be easily extended to classification.
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ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘 (𝑑) = argmin

𝑦

∑
𝑖∈U,1𝑖 (X)=𝑋

1

𝜋𝑖 (X)
(𝑌𝑖 − 𝑦)2 . (5)

In conventional decision tree regression, one common crite-

rion that determines whether the algorithm will continue to

split a node is the reduction in sum of square errors. Since

Hajek estimators can be solved through weighted linear re-

gressions, it is sensible to use a weighted sum of squared

errors (WSSE). It can be computed through a weighted linear

regression where the weight is 1/𝜋𝑖 (X).

WSSE(X) =
∑

𝑖∈U,1𝑖 (X)=1

1

𝜋𝑖 (X)
(𝑌𝑖 − ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘 (X))2 . (6)

When considering splitting the partition X to sub-partitions

X𝑙 andX𝑟 , we cannot simply compareWSSE(X𝑙 )+WSSE(X𝑟 )
versus WSSE(X). This is becauseE[∑𝑖∈U,1𝑖 (X)=1

1

𝜋𝑖 (X) ] =
E[∑𝑖∈U,1𝑖 (X𝑙 )=1

1

𝜋𝑖 (X𝑙 ) ] =E[
∑
𝑖∈U,1𝑖 (X𝑟 )=1

1

𝜋𝑖 (X𝑟 ) ] = |U|,
WSSE(X𝑙 ) +WSSE(X𝑟 ) is generally greater than WSSE(X).
We thus adjust the splitting criterion by taking a weighted

average between WSSE(X𝑙 ) and WSSE(X𝑟 ):

(X∗
𝑙
,X∗𝑟 ) =arg min

𝑋𝑙 ,𝑋𝑟

∑
𝑖 1𝑖 (X𝑙 )∑
𝑖 1𝑖 (X)

WSSE(X𝑙 )+∑
𝑖 1𝑖 (X𝑟 )∑
𝑖 1𝑖 (X)

WSSE(X𝑟 ),

where

∑
𝑖 1𝑖 (X𝑙 )∑
𝑖 1𝑖 (X)

WSSE(X𝑙 ) +
∑
𝑖 1𝑖 (X𝑟 )∑
𝑖 1𝑖 (X)

WSSE(X𝑟 )

< WSSE(X) − 𝛾

and

∑
𝑖

1𝑖 (X𝑙 ) ≥ 𝜅 and

∑
𝑖

1𝑖 (X𝑟 ) ≥ 𝜅.

(7)

𝛾 is a hyper-parameter used to require non-trivial reduc-

tion in WSSE. Similar to conventional decision trees, we can

also set the minimum leaf size (𝜅) to prevent the tree from

growing unnecessarily deep.
6
However, if the constraints

cannot be satisfied, (X∗
𝑙
,X∗𝑟 ) is an empty set and the algo-

rithm would not further split X.
Our algorithm is implemented by recursion (see Algorithm 1).

Split is a procedure used to partition a given space. One can use

Split([0, 1]𝑚+1) to start the recursion algorithm. The data used

for the algorithm is a random half of the original training set. We

then use the separate half to estimate the mean and variance. Em-

pirically, direct effects (the impact of 𝑍𝑖 ) are usually larger than

indirect effects X𝑖 (the impact of X𝑖 ). Thus, the first partition is

more inclined to split on 𝑍𝑖 : that is, it splits into two trees, in which

one corresponds to treated observations and the other corresponds

to non-treated observations.

The bottleneck for computational efficiency is Line 7 — the loop

that iterates every element inU. An improvement is to replace this

for-loop by randomly choosing 𝜂 observations inU. This may not

6
An empirically effective alternative is to require

∑
𝑖∈U,1𝑖 (X)=1

1

𝜋̂𝑖 (X)
to be very close

to |U |; e.g., (1 − 𝜀) |U | ≤ ∑
𝑖∈U,1𝑖 (X)=1

1

𝜋̂𝑖 (X)
≤ (1 + 𝜀) |U |, where 𝜀 is a small

number. This helps us to avoid partitions with a small number of observations, which

may have a high degree of randomness in

∑
𝑖∈U,1𝑖 (X)=1

1

𝜋̂𝑖 (X)
and consequently,

ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘 (X) .

Algorithm 1 Implementation for the tree-based algorithm

1: procedure Split(X)
2: X∗

𝑙
, X∗𝑟 = ∅

3: Compute ˆ̄𝑦 (X) and its variance using estimation set

4: Compute WSSE(X) using training set
5: WSSE

∗ (X) = WSSE(X)
6: for 𝑘 ∈ [1,𝑚 + 1] do
7: for 𝑖 ∈ U do
8: 𝜃 ← X𝑖𝑘

9: X𝑙 ← { 𝑗 |X𝑗𝑘 ≤ 𝜃 & 𝑗 ∈ X}
10: X𝑟 ← { 𝑗 |X𝑗𝑘 > 𝜃 & 𝑗 ∈ X}
11: if Eq 4 is true for both X𝑙 and X𝑟 then
12: Compute WSSE(X𝑙 ), and WSSE(X𝑟 ) using training set

13: if Constraints in Eq. 7 are satisfied then
14: X∗

𝑙
← X𝑙

15: X∗𝑟 ← X𝑟
16: Update WSSE

∗ (X) using Equation 7

17: end if
18: end if
19: end for
20: end for
21: if 𝑋 ∗

𝑙
≠ ∅ and 𝑋 ∗𝑟 ≠ ∅ then ⊲ If find any satisfy Eq. 7, choose the

one with minimum WSSE.

22: Split(X∗
𝑙
)

23: Split(X∗𝑟 )
24: else
25: Add new exposure condition to D, corresponding to X
26: end if
27: end procedure

help select the optimal cutoff but would provide good cutoffs if 𝜂 is

not too small. We also have several hyperparameters — 𝛾 , 𝜅, 𝛿 , 𝜖 ,

and 𝜂. To tune those parameters, we can apply cross-validation to

find the best choice that minimizes WSSE
∗ ( [0, 1]𝑚+1).

In addition to estimating the average potential outcome, our

approach can also be applied to estimating global average treatment

effects and heterogeneous direct effects with indirect effects fixed

as explained:

(1) Global average treatment effects.The global average treat-
ment effect of an experiment is the difference between the

average outcome in a counterfactual world where everyone

is treated versus that in a counterfactual world where every-

one is non-treated [63]. This is fundamentally unsolvable

unless assumptions such as SUTVA or our assumptions are

made. In our approach, these two counterfactual worlds be-

long to two separate partitions. We can just identify these

two partitions and compare the difference in the two average

potential outcomes to compute the global average treatment

effect.

When the tree algorithm terminates, we have two special

subsets of [0, 1]𝑚+1, denoted by X0 and X1 respectively. X0

is the partition that contains the cases where 𝑍𝑖 = 0, all ele-

ments of X𝑖 that represent fully non-treated neighborhood

(2-0, 3o-0, 3c-0, 4o-0, ...) are equal to 1, and the rest equal 0;

X1 is the partition that contains the cases where 𝑍𝑖 = 1 and

all elements of X𝑖 that represent fully treated neighborhood

(2-1, 3o-2, 3c-2, 4o-2, ...) are equal to 1, and the rest equal

0. Then we can use ˆ̄𝑦 (X1) − ˆ̄𝑦 (X0) to estimate the global
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treatment effect. Variance can be estimated by the method

proposed in [8].

(2) Heterogeneous direct effectswith indirect effects fixed.
As discussed, our algorithm tends to split on 𝑍𝑖 first if direct

effects are larger than indirect effects. Once the tree grows

to two sub-trees that correspond to treated and non-treated

observations, respectively, the further partitioning is not syn-

chronized in these two trees. However, what if we want to

understand how direct effects vary across different network

interference conditions? LetX (1) andX (0) be the two spaces
such that 𝑍

(1)
𝑖

= 1 for all (𝑍 (1)
𝑖

,X(1)
𝑖
) ∈ X (1) ; and 𝑍 (0)

𝑖
= 0

for all (𝑍 (0)
𝑖

,X(0)
𝑖
) ∈ X (0) . X (1) and X (0) are complemen-

tary if for all (0,X(0)
𝑖
) ∈ X (0)

𝑖
, we have (1,X(0)

𝑖
) ∈ X (1)

𝑖
, and

for all (1,X(1)
𝑖
) ∈ X (1)

𝑖
, we have (0,X(1)

𝑖
) ∈ X (0)

𝑖
.

We can then revise our tree algorithm by only partitioning on

a space [0, 1]𝑚 (i.e., onX𝑖 ) and not partitioning on𝑍𝑖 . In each

node, including leaves, the goal is no longer estimating the

potential outcome. Instead, we estimate the heterogeneous

direct effects (
˜X = {X| (1,X) ∈ X (1) })

𝜏𝑑𝑖𝑟𝑒𝑐𝑡 ( ˜X) = 𝑦𝐻𝑎𝑗𝑒𝑘 (X (1) ) − 𝑦𝐻𝑎𝑗𝑒𝑘 (X (0) ) (8)

X (1) indicates the cases where neighborhood assignment

conditions are in a given region (e.g., high structural diversity,

high echo chamber, or any other interference conditions)

and the ego is treated; andX (0) indicates the cases where the
ego is non-treated but neighborhood interference conditions

are the same. In this case, 𝜏𝑑𝑖𝑟𝑒𝑐𝑡 ( ˜X) represents the average
direct effect under that interference conditions.

If estimating heterogeneous direct effects with indirect ef-

fects fixed, two main revisions in Algorithm 1 are made.

First, we adjust the weighted linear regressions. Remember

that the coefficient for the constant variable represented the

Hajek estimator; in this case, we need to add the 𝑍𝑖 into

the regression, and report the coefficient for this variable

to estimate 𝜏𝑑𝑖𝑟𝑒𝑐𝑡 ( ˜X). WSSE is still derived from the error

term for the weighted linear regression. Second, the variance

of the estimator is more complicated to estimate. Essentially,

the variance estimation is similar to the methods proposed

in [12].

6 EXPERIMENTS
We evaluate our algorithm in a synthetic Watts-Strogatz network

where we can verify our approach recovers the ground-truth which

we know, and a real-world A/B test of a new product feature on

Facebook to illustrate the scalability of our approach.

Watts-Strogatz Simulation Network. In studies of causal inference,

a common challenge is that the ground-truth potential outcomes

under both treatment and control for a given unit 𝑖 is missing — that

is, for each observation, we can only observe one single potential

outcome given either a treatment or control assignment. Therefore,

we rely on a simulation study which is often used to verify the

effectiveness of causal inference methods.

We generate a Watts-Strogatz network [67] with |U|=200,000.
The Watts-Strogatz model is a random graph generator that pre-

serves network properties such as clustering and the “small-world

phenomenon”. To ensure a large variation in the local structure of

individuals’ neighborhood, we have a high rewiring rate for edges

— 50%.

To be as general as possible and also complement the real-world

independent assignment experiment, we use graph cluster random-

ization [63] in the simulation study. We use a simple clustering

approach — we cluster every 10 nodes on the ring of the WS net-

work, and we assign the treatment randomly and independently

on the cluster level. We consider the following four different data-

generating processes for outcomes, assuming that 𝜀𝑖 is randomly

drawn from Gaussian distribution with the mean of 0 and the vari-

ance of 1:

(1) Cutoff Outcome.

𝑌
(1)
𝑖

= 0.1|N𝑖 | + 𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 2𝑍𝑖 × 1[𝑋𝑖,3𝑐−2 > 0.7] + 𝜀𝑖 . (9)

𝑔𝑒𝑛𝑑𝑒𝑟𝑖 is a covariate independent of any other variables,

which is randomly assigned to 1 or 0. Since this function has

clear cutoffs, we can use it to validate that our tree-based

algorithm splits on the corresponding cutoff.

(2) Causal Structural Diversity Outcome.

𝑌
(2)
𝑖

= 0.1|N𝑖 | + 𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑜 𝑓 _𝑡𝑟𝑒𝑎𝑡𝑒𝑑+
𝑍𝑖 × 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑜 𝑓 _𝑡𝑟𝑒𝑎𝑡𝑒𝑑 + 𝜀𝑖

(10)

Structural diversity is the number of disjointed components

in an observation’s neighborhood. “structural_diversity_of_treated”
is the structural diversity given the set of treated neighbors.

Although it was found that structural diversity predicts a

higher product adoption rate [62], it is unclear whether this

is a causal impact or just correlation. A causal impact means

it is actually the structural diversity for the treated neighbors

that matters, while correlation means that the behavior is

reflected by network structure, regardless of assignment con-

ditions [60]. Our approach can analyze whether the causal

impact of structural diversity exists in experimental data. Es-

pecially, the numbers of fully treated open triads or tetrads

indicate the structure diversity of treated neighbors (3c-2 or

4o-3), and we expect our algorithm to split on these features.

(3) Correlational Structural Diversity Outcome.

𝑌
(3)
𝑖

= 0.1|N𝑖 | + 𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦+
𝑍𝑖 × 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝜀𝑖

(11)

“structural_diversity” is the structural diversity given all neigh-
bors, regardless of their assignment conditions. Therefore,

we do not expect the tree algorithm to split on any features.

(4) Validation Under Null Effect.

𝑌
(4)
𝑖

= |N𝑖 | + 𝜀𝑖 . (12)

As a sanity check, we use a covariate — the number of neigh-

bors as the outcome variable. We do not expect the tree

algorithm to split on any features.
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Results are presented in Figure 5 and summarized below:

(1) Cutoff Outcome (𝑌 (1)
𝑖

): As expected, after splitting treated

versus control, it splits on fully treated closed triads (3c-2),

with a threshold of 69%. This is consistent with the param-

eter 0.7 set in Equation 9. Also, as expected, it does not

further split on control groups. However, the algorithm has

an unexpected split on 3o-1, although the difference between

the resulting 𝑑1 and 𝑑2 is not statistically significant. With

further investigation, we find that this is because when par-

titioning the tree using the training set, it overfits the noise;

however, since we use the estimation set for the average

potential outcome and its variance (i.e. honest splitting), the

resulting tree does not show this significant difference. This

result also demonstrates the importance of honest splitting.

(2) Causal Structural Diversity Outcome (𝑌 (2) ): The result
is presented in the right panel in Figure 5. It first splits on

treated versus control. For treated observations, it first splits

on fully treated open tetrad (4o-3), which is positively cor-

related with the degree of structural diversity of treated

neighbors. When the fraction of fully treated open tetrad is

greater than 6.6%, the algorithm terminates splitting, giving

a partition (exposure condition) with the largest average

potential outcome. If the fraction of fully treated open tetrad

is smaller than 6.6%, it further splits on open triads (3o-1). If

the fraction of 3o-1 is greater than 40%, the resulting expo-

sure condition gives the smaller average potential outcome

within treated observations. For control observations, par-

tially because the structural diversity plays a smaller effect

in the outcome function, it simply splits on the dyad level

and terminates.

(3) Correlational Structural Diversity Outcome (𝑌 (3) ) and
Validation Under Null Effect (𝑌 (4) ): As expected, it termi-

nates after splitting samples into treated and control groups.

Note these examples have nothing to illustrate.

We compare our results with a baseline method used in [8].

The paper provides an examine of four exposure conditions: no

effect, direct effect, indirect effect, and direct + indirect effects. For
example, when 𝑌

(1)
𝑖

is the outcome, most observations belong to

either “indirect effect” (1.4981 ± 0.0035, 48.1%) or “direct + indirect
effects” (2.9182 ± 0.0034, 50.0%). Similar results are derived in other

outcomes. Therefore, this specification approach is not suitable for

our experimental data. Moreover, such a partition cannot reveal

the effects of specific network motifs or understand theories such

as structural diversity.

We also compare our result the specification of the fractional

𝑞-neighborhood exposure condition in [63], which is equivalent

to the proposed algorithm using dyad features only. This compari-

son can help highlight the importance of accounting for network

motifs rather than simply counting treated friends. . When using

only dyad features, the algorithm splits treated observations on

2-1 (i.e. fraction of treated neighbors), resulting in an average of

potential outcome of 2.0233 (±0.0192) and 3.2133 (±0.0084) for less

than or greater than 60%, respectively. It does not split the control

observations either.

We use estimated global treatment effects [23, 63] as a reference

for the advantage of using causal network motif over simply ac-

counting for proportions of treatment neighbors. Here we use 𝑌
(1)
𝑖

but similar results are derived in other settings. Using dyads features

only (i.e., the proportion of treated neighbors, see Figure 6) gives

(3.2137 − 1.4976 =) 1.7161 (±0.0112) while using all proposed motif

features give (3.5038 − 1.5057 =) 1.9981 (±0.0102); as a baseline,

the true global treatment effect is 2.0000, and the average treat-

ment effect under SUTVA is (2.9262 − 1.5057 =) 1.4205 (±0.0118).

In sum, using network motifs helps reduce more bias than using

dyads features only when we estimate the global treatment effects

because it characterizes network complex structure rather than

purely counting the fraction of treated neighbors.

We also investigate heterogeneous direct effects given different

network interference conditions. As shown in Figure 7, for both

𝑌 (1) and 𝑌 (2) , it splits on the correct threshold: for 𝑌 (1) , 𝑍𝑖 only
matters then the fraction of 3c-2 is greater than 69%. For 𝑌 (2) , it
splits on important feature (4o-3), and the heterogeneous direct

effect is larger when this fraction is greater.
7
As expected, no effect

is observed for 𝑌 (3) and 𝑌 (4) .

Care Reaction Rollout. Finally, we apply our approach on a real-

world A/B test of a product launch at Facebook. Facebook launched

the 7th reaction, “Care”.
8
When the reaction was launched, users in

the control group (50%) could not use the Care reaction but could

still observe other users reacting with care. The treated group (the

other (50%), could both use and see the Care reaction. The sample

size is approximately 5% of the Facebook population, and we only

take into account users and neighbors who are in this 5% sampled

users. Note that we cannot compare treated users in this 5% versus

all the rest of Facebook population because the database does not

log non-compliance: those who were assigned to the 5% rollout but

did not activate the treatment assignment (non-active users who did

not attempt to use Care) are not recorded in the database and thus

such a comparison is biased by non-compliance. Another reason is

that a 50:50 test/control ratio would provide more variation in the

proportion of each causal network motif.

In this experiment, we expect a user’s use of reactions to be

impacted by the number of their Facebook friends who could use

Care and how those friends are connected which might impact

their usage with each other. If a user has more friends using Care,

or a group of friends able to use Care, she might use more Care

reactions. There are two main outcome variables in this A/B test:

(1) the number of Care reaction uses during the week after the

experiment was launched. In the control group, the number of Care

reaction uses is always zero; and (2) the number of other reaction

uses. To prevent the impact from extreme points, outcome variables

are set on the log scale (log
10
(𝑥 + 1)).

We randomly split our observations into approximately equal

training and estimation sets of sufficiently large sample sizes. We

compute only dyad and triad network motifs, which is mainly

restricted by computational resources.

7
For the tasks of heterogeneous direct effects with indirect effects fixed, the average

direct effect for a parent node does not necessarily lies between the values of its two

child nodes.

8
https://www.facebook.com/careers/life/the-story-of-facebooks-care-

reaction

https://www.facebook.com/careers/life/the-story-of-facebooks-care-reaction
https://www.facebook.com/careers/life/the-story-of-facebooks-care-reaction
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3c-2 >

Figure 5: The result trees for the simulation experiment using all specified network motifs. The two trees represent 𝑌 (1) or the Validation
Cutoff Outcome (left) and 𝑌 (2) or the Causal Structural Diversity Outcome (right), respectively. The numbers in each leaf represents the
average potential outcome and standard error (square root of variance) of the corresponding partition (exposure condition).
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Figure 6:The result trees for the simulation experiment using dyad
networkmotifs only. The two trees represent𝑌 (1) or the CutoffOut-
come (top) and𝑌 (2) or the Causal Structural Diversity Outcome (bot-
tom), respectively. The numbers in each leaf represents the average
potential outcome and standard error (square root of variance) of
the corresponding partition (exposure condition).

The results are presented in Figure 8. There are 8 exposure con-

ditions determined by the algorithm when the outcome is other

reactions, and 4 when outcome is use of Care. Again, we observe

heterogeneity among different network interference conditions.

For example, on the right panel, 𝑑1 and 𝑑2 have a difference of

(1.1601 − 1.1365 =) 0.0236. As a reference, directly comparing the

averages between treated and control groups gives −0.0293, which

shows the importance of distinguishing between different network

interference conditions.

Again, we also compare the results using all specified network

motifs (Figure 8) versus the results using only dyads (Figure 9) to the

importance of using network motifs beyond dyads. In the left panel

of Figure 8, 𝑑3 contains the scenario of a fully treated neighborhood

and 𝑑5 the scenario of a fully non-treated neighborhood. Therefore,

we can estimate the global average treatment as −0.0394 (±0.0049).

The baseline average treatment effect by directly comparing the

avg=1.4258
se=0.0119

avg=0.0158
se=0.0130

avg=2.0464
se=0.0343

3c-2 < 70% 3c-2 > 70%

𝑌(")

𝑌($)

d2d1

avg=5.6277
se=0.0271

avg=3.0620
se=0.0276

avg=4.9369
se=0.0323

4c-3 < 3.8% 4c-3 > 3.8%

d2d1

Figure 7: The result trees for heterogeneous direct effects for
the simulation experiment using all specified network motifs. The
numbers in each node or leaf represents the average direct ef-
fect given the network interference condition and standard error
(square root of variance) of the corresponding partition (exposure
condition).

averages between treated and control groups is −0.0293 (±0.0021).
Thus, simply comparing the difference in means between treated

and control groups could underestimate the true treatment effect by

25%. By contrast, in the left panel of Figure 9, comparing 𝑑2 and 𝑑3

only gives (1.1516 − 1.1690 =) −0.0174 (±0.0022). Similar analysis

and conclusions also apply when the outcome is Care.

We also examine heterogeneous direct effects under different

network interference conditions. Since use of Care is always zero

for the control group, this analysis is only meaningful when the

outcome is other reactions. The algorithm splits on 3o-2 at 23%

but does not provide significant differences between the two child

nodes.

7 DISCUSSION
Network interference is much more complicated than simply being

described as the indirect effect. To examine and analyze heterogene-

ity of the causal impact of neighbors in experimental datasets, we

provide a two-step solution. We first employ causal network mo-

tifs to characterize the network interference conditions, and then

develop a tree-based algorithm for partitioning. Our tree-based

algorithm is interpretable in terms of highlighting which exposure
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Figure 8: The result trees for the Care experiment using all specified network motifs. The left panel presents the result for the use of other
reactions, and the right panel presents the result for the use of Care. The numbers in each leaf represents the average potential outcome and
standard error (square root of variance) of the corresponding partition (exposure condition).
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Figure 9: The result trees for the Care experiment using dyads only.
The left panel presents the result for the use of other reactions, and
the right panel presents the result for the use of Care. The numbers
in each leaf represents the average potential outcome and standard
error (square root of variance) of the corresponding partition.

conditions matter for defining potential outcomes, addresses selec-

tion bias and positivity issues, and avoids incorrect standard error

concerns via honest splitting.

Given the large number of researcher degrees of freedom in

existing approaches for network interference such as choosing

the threshold for an exposure condition, our approach provides a

simple way to automatically specify exposure conditions. In this

way, researchers no longer need to define exposure conditions a

priori, and the exposure conditions generated by the algorithm

are suitable for the given data and experiment. We believe that

methodological innovation for addressing network interference

concerns in A/B tests on networks will continue to be an important

area for development, and accounting for network motifs with

treatment assignment conditions provides a useful way to detect

heterogeneous network interference effects.

We also highlight our approach should not be confused with

the Causal Tree and relevant methods [12, 66]. The goal of our

approach is to partition on the space of random assignments, while

the Causal Tree and similar methods partition only on the covariate

space. The critical difference in our setting is that in each parti-

tion of the treatment space, all observations should have a (almost)

non-zero probability of belonging to that partition. In this way,

we can construct certain unbiased estimators, such as Hajek, to

estimate the average outcome under certain treatment regions and

thus quantify a causal impact. By contrast, in Causal Tree and rel-

evant methods, covariates are not intervened by the experiment

and each observation has only probability of zero or one of belong-

ing to each partition. Therefore, these methods are only used to

identify heterogeneous treatment effects in subsets of exposure con-

ditions determined by covariates, but not for the causal impact of

heterogeneous network interference conditions for all population.

Practitioners using our approach may obtain important insights.

For example, they could understand how to utilize social contagion

for product promotionwhen they have constraints on the number of

promos. Researchers may identify important network interference

conditions that are not theorized in certain experimental settings.

There remain many open questions directions based on our ap-

proach. First, we can incorporate covariates into the algorithm such

as demographic features. One way is to also allow partitioning on

the covariate space as well as the treatment space as in this work.

However, once the algorithm splits on a covariate, all the descen-

dants of that node only estimate the average potential outcome

for the subsample that satisfies the criterion. The other way is to

incorporate covariates in the weighted linear regressions in our

algorithm. This helps reduce the variance for the estimators and

improve the precision when estimating average potential outcomes.

We may also want to account for tie strength as well.

Second, we may consider alternative algorithms. Decision trees

are not the only choice in our setting. We use a decision tree par-

tially because it is an interpretable machine learning algorithm and

does not involve functional form specification, except for assuming

constant potential outcome. Our tree-based algorithm can in fact

be improved by the Hoeffding tree [25], which provides a stream-

ing algorithm to perform the partitioning efficiently. Instead of
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using sample split, we may improve our methods by the conformal

prediction theory [58]. Moreover, we can imagine using nearest

neighbor based algorithms and local regression instead to estimate

the potential outcome given any point or region in [0, 1]𝑚+1. In
addition, parametric methods can also be used when the goal is

specific about estimating the potential outcome at certain points

(e.g., fully treated neighbors) or estimating the global treatment

effect [23].

Finally, our approach can be extended to any experimental data

with multiple variables or continuous treatment variables, which

are not necessarily experiments on social networks. While existing

causal inference literature has primarily studied single binary or

categorical treatments, fewer studies have approached continuous

or multiple variables [35, 38]. Our approach provides a way to au-

tomatically convert multiple or continuous treatment variables to

categorical treatments. It would be interesting to further investi-

gate how machine learning can be applied to causal inference for

continuous or multiple treatments as well as adapting this approach

to observational causal inference settings.
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