
Hardware Remediation At Scale

Fan (Fred) Lin, Matt Beadon, Harish Dattatraya Dixit, Gautham Vunnam, Amol Desai, Sriram Sankar

Facebook Inc.

Abstract—Large scale services have automated hardware re-
mediation to maintain the infrastructure availability at a healthy
level. In this paper, we share the current remediation flow at
Facebook, and how it is being monitored. We discuss a class
of hardware issues that are transient and typically have higher
rates during heavy load. We describe how our remediation system
was enhanced to be efficient in detecting this class of issues. As
hardware and systems change in response to the advancement
in technology and scale, we have also utilized machine learning
frameworks for hardware remediation to handle the introduction
of new hardware failure modes. We present an ML methodology
that uses a set of predictive thresholds to monitor remediation
efficiency over time. We also deploy a recommendation system
based on natural language processing, which is used to recom-
mend repair actions for efficient diagnosis and repair. We also
describe current areas of research that will enable us to improve
hardware availability further.

I. INTRODUCTION

Large scale services are hosted on servers that are dis-

tributed across multiple datacenters in different regions. There

are several thousands of servers in each datacenter, and to

manage them effectively there are distributed management sys-

tems [1]–[4]. An important piece of the management system

is to detect when there are hardware issues and react to the

failure. Remediation actions for typical failures include actions

such as migrating services, rebooting, reimaging or off-lining

the machine for manual repair. To make sure our servers are

supporting the services properly, we have been continuously

working on improving our hardware remediation efficiency

and extracting insight for hardware health at scale. In 2011, we

introduced an auto-remediation tool named Facebook Auto-

Remediation (FBAR) [3], [4] to automate remediation routines

for fixing servers in the datacenters. FBAR is now performing

automatic remediations on our servers every day, and addi-

tional tools have been developed to improve the effectiveness

of our remediation flow.

The effectiveness of any system designed to handle failures

at scale starts with its ability to diagnose issues when they

happen. In order to detect hardware failures at scale, we run a

set of checks periodically on each server. Whenever a check

fails, FBAR picks up the failure and tries to remediate the

issue based on the configuration specified by the owner of the

service that this particular server supports. If no automatic

remediation is available for FBAR to fix the issue, FBAR

passes the failure to a repair engine for trying lower-level

system fixes such as firmware update or reimaging. If none

of the attempts could fix the issue, a repair ticket is created

for datacenter technicians to manually repair the server.

To ensure that we remediate the server failures correctly and

efficiently, we track all the failures throughout the remediation

process. One challenge we have observed in the remediation

flow is that transient failures such as processor and memory

overheating are not persistent, i.e. when the server is drained

to stop receiving production workload, these transient failures

would often disappear. Later when FBAR tries to remediate

these failures, it may not see all of the failure signals and

therefore treat the original failure detection as false alarms.

To capture and remediate the transient failures effectively, we

focused on hardware error reproducibility. We added a set of

benchmarks for processor, memory, and network to act as a

proxy for the production workload and traffic behavior, and

this helps reproduce the transient failures during remediation.

Another challenge in system health management is to keep

up with the changes in technology, such as the introduction

of new components, which changes production behavior. As

distributed system changes occur, we see issues that our detec-

tion system has not been designed to diagnose. It might detect

a symptom of an issue happening, but would need additional

improvements to diagnose accurately. For this aspect, we use

machine learning approaches to automatically identify areas

of opportunities. Facebook has a well-developed infrastructure

for developing and deploying machine learning applications in

production quickly [5]. From a pool of developed algorithms,

teams can easily reuse the machine learning code developed

by other teams in different disciplines. For monitoring the

efficiency of the remediation flow, we monitor the results of

each tool in the flow (e.g. percentage of failures closed as

false alarms by FBAR), with anomaly detection on time series

signals. Deploying the automatic anomaly detection helps us

scale the monitoring to a large number of metrics and notify

stakeholders immediately upon anomaly detection.

We also focus on improving the repair diagnostics for

issues introduced by new hardware and software. We apply

machine learning techniques to learn from past repair data,

and then recommend actions for undiagnosed repair tickets.

Undiagnosed tickets require datacenter technicians to manually

debug the issue and would sometimes need to be escalated

for further investigation. The application of machine learning

results in much easier hardware debugging, and reduces the

time the server is unavailable to serve production load. We

apply a natural language processing machine learning model

fastText [6], developed by Facebook AI Research (FAIR), to

learn from the text logs populated for each repair ticket and

recommend repair actions.

The rest of the paper is structured as follows: Section II

covers the hardware remediation architecture, Section III de-

scribes the challenges in handling transient errors, the error

reproducibility enhancements for detecting transient errors,



and the delay induced by logging events to System Event

Log (SEL). We discuss our machine learning applications for

anomaly detection in the remediation flow in Section IV, and

for improving repair diagnosis in Section V. Section VI con-

cludes with current and future areas of research for applying

machine learning for hardware remediation at scale.

II. HARDWARE REMEDIATION AT FACEBOOK

In this section, we explain the hardware remediation flow

and the tools involved, and present how the results are being

monitored.

A. Remediation Flow and Tooling

• MachineChecker: Hardware remediation begins with

failure detection. On each server, a tool called Ma-

chineChecker [7] runs a set of checks periodically to

check for server failures. A non-exhaustive list of the

server checks includes checks for host ping, out-of-

band (OOB) ping, power status check, memory error

check, sensor check, secure shell (SSH) access, network

interface card (NIC) speed, dmesg check, S.M.A.R.T.

check, and power supply check.

• FBAR: Once a check fails, i.e. a potential hardware

failure is detected, an alert is created with detailed failure

information. Facebook Auto-Remediation (FBAR) [3],

[4], a tool that automates remediation routines, then picks

up the alert, processes the information logged in the

alert, and executes the necessary remediation, e.g. reboot

or custom-made scripts, if possible. Service owners can

write customized remediation for different syndromes

based on the specific needs of the service, and set proper

rate limits for remediation to make sure there are always

sufficient servers running to keep the service up.

• Cyborg: When none of its remediations could fix the

issue, FBAR passes the case to a repair engine named

Cyborg [7]. In addition to FBAR’s remediations, Cyborg

is designed to execute low-level software fixes such as

firmware updates and reimaging. If Cyborg’s attempted

fix also fails, it will create a repair ticket for a datacenter

technician to manually debug the server and potentially

carry out a physical hardware repair.

During the remediation flow, FBAR and Cyborg both run

MachineChecker again to verify the failure. The entire detec-

tion and remediation flow for server failure is demonstrated in

Fig. 1.

B. Monitoring the Auto-Remediation

We track all the failures through the remediation flow for

evaluating the effectiveness of our remediations. Fig. 2 shows

the remediation results of motherboard failures within two

weeks in 2017. (Note: we have abstracted the count of failures

to make the discussion agnostic of actual failure numbers). The

percentages marked on each branch indicate the proportion of

failures coming from the previous remediation stage. For all of

the motherboard alerts, which were created once server check

!"#$%&

'"()*&#+)#(,#-

./#-01

'"&"2#-

34.5

+67%-2

5#8"*-1

9*(,#0*&2

!"#$%&!'()'*+,,-$
+#)$*(,,&*.$(".%".

*!&+.&$+,&!.$'/$+$
0&!1&!$*2&*3$/+',0

Fig. 1. The hardware failure detection and remediation flow.

failures were detected, 38.6% were cleared by FBAR’s auto-

remediation, 32.0% were closed as false alarms by FBAR,

10.9% fell into the other categories (e.g. remediation rate-

limited by the service owner to maintain sufficient capacity

for running the service, remediation blocked by an existing

repair ticket created against the server, or exceptions caused

by improper manual interactions during the remediation flow).

Only 18.5% of the failures were sent to repair by FBAR. For

the failures that FBAR decided to send to repair, Cyborg also

attempted to remediate the issue with low-level system fixes

and ran MachineChecker to validate if the issue had been

resolved. Out of all the failures that were sent to Cyborg,

45.6% were successfully resolved by the low-level software

fix attempt, 28.2% could not be remediated and ended up as

repair tickets, and 26.2% fell into the other categories. Overall,

only 5% of the motherboard alerts ended up as repair tickets.

III. CHALLENGES FOR HARDWARE REMEDIATIONS

While the above-mentioned remediation flow is designed for

each hardware failure to be fixed either by a hardware repair

(e.g. component swap/reseat) or a software repair (e.g. custom-

made script, firmware update, reimage), we have observed that

there are failures that fall out of the expected remediation flow.

These affected servers were not remediated properly before

they were released back to production, and some of them have

a high likelihood of having the same failures in the near future.

In the example of motherboard alerts shown in Fig. 2, 32%

of the failures were closed as false alarms by FBAR because

FBAR did not see the failures when running MachineChecker

again. As we investigated further, we found that many of

these false alarms were failures that only occurred when the

servers were under heavy load, and they were cleared when

the servers were drained to stop receiving production load.

After the failures were closed as false alarms and the servers

were released back to the production fleet, these failures were

likely to be triggered again soon.

One example of these transient failures is PROCHOT [8],

[9], a signal originally designed to indicate processor or mem-

ory overheating, and as a result throttles processor frequency.



Fig. 2. Percentage of failures ending in each branch from the previous stage.

In practice, there are several other conditions that could trigger

PROCHOT as well, but we will not discuss those situations

due to the limited length of this paper. We present one scenario

as a typical example for such issues at scale: In the proces-

sor/memory overheating scenario, PROCHOT is usually de-

tected on a server running heavy workload, potentially because

the thermal compound has worn out over time. After the server

is drained before the remediation starts, the processor/memory

is no longer generating excessive heat. When FBAR runs

MachineChecker it does not detect PROCHOT anymore, and

closes the failure as a false alarm. Out of all the servers that

had PROCHOT failures that were closed as false alarms, 30%

of them had detected PROCHOT again in less than 30 days.

As PROCHOT failures are usually cleared during remediation,

the servers would be stuck in this loop of processor/memory

overheating, drained for remediation, released to production by

FBAR as false alarms, and processor overheating again. This

loop impacts the server availability. Other examples of tran-

sient failures include memory correctable/uncorrectable errors

and network Cyclic Redundancy Check (CRC) errors. Similar

to PROCHOT, these memory and network errors mostly occur

only when the server is running heavy load, and therefore may

not be detected when FBAR runs MachineChecker again to

verify the failure.

To handle these transient failures effectively, we run

a set of processor, memory, and network benchmarks to

create synthetic loads for reproducing the transient fail-

ures during remediation. The benchmarks we included are

CoreMark [10], stream-scaling [11], MPrime [12], stress-

apptest [13], SPEC CPU2006 [14], and iperf3 [15]. For

memory correctable/uncorrectable errors, we found that stres-

sapptest could effectively reproduce all detected errors within

3 hours for 256GB RAM. The required runtime increases

for larger memory capacity. iperf3 has been very effective in

reproducing all CRC errors detected by MachineChecker. For

PROCHOT failures, we could only reproduce approximately

65% of the failures because not all PROCHOT failures are

actually caused by the heavy load on the servers, and using

MPrime to drive processor utilization to 100% was found to

be the most effective approach for reproducing PROCHOT.

We continuously optimize the collection and ordering of the

benchmarks, in order to evolve our base benchmarks for the

production scenarios of different failure modes.

In addition to transient errors, we have also found that

some error reporting mechanisms could impact the server

performance. One example is that when events are being

logged to the System Event Log (SEL), System Management

Interrupts (SMIs) are created for the system to enter System

Management Mode (SMM), where all but one processor cores

are temporarily disabled until the interrupt is cleared [16],

[17]. Since memory correctable errors are more frequent and

not as critical as the other events logged in SEL, we are

switching to use Error Detection And Correction (EDAC) [18]

for monitoring memory correctable errors.

IV. MACHINE LEARNING ENHANCED ANOMALY

DETECTION

To monitor for anomalous behaviors in the remediation flow,

we set up anomaly detection on the time series based on the

percentages marked in Fig. 2 using common methodologies

including Holt-Winters, exponential, normal distribution, and

Gaussian mixture models [19]. An example of such anomaly

would be a spike in the proportion of failures closed by

FBAR as false alarms when we introduce a new type of

server check in MachineChecker. In addition to pre-defined

static thresholds, our anomaly detection system also checks

if the data points are outside of the predictive thresholds,

which are learned from the time series using machine learning.

This anomaly detection is able to filter out the seasonality

component of the data when detecting anomalies. Fig. 3 shows

an example of the time series (blue line), static thresholds

(horizontal red lines) and predictive thresholds (the band that

adapts to the time series), and the violations (the vertical

bands) that would trigger anomaly alerts, based on the server

reboot rate for a specific service.

Deploying the automatic alerting based on the anomaly

detections helps us scale the monitoring to hundreds of

hardware health metrics, at a granular level (e.g. per service,

server model, or datacenter), with immediate notifications.

In addition to hardware remediation results, the automatic

anomaly detection has been helping us detect early syndromes

in hardware health metrics such as unexpected reboots, System

Event Log (SEL) events, and hardware failure alerts, to triage

the issues as soon as possible.

V. MACHINE LEARNING FOR UNDIAGNOSED REPAIR

TICKETS

When FBAR and Cyborg both agree that a repair ticket is

required for fixing the server, a repair ticket is created in the

ticketing system. Most of the time, a repair ticket is created

with an attached repair action for datacenter technicians to



Fig. 3. Server reboot rate for a specific service.

follow and fix the issue. However, not all repair tickets are

created with repair actions. Given the various failure modes

and the continuous introduction of new hardware and software

in our fleet, there are failures for which we do not have a

corresponding repair action in the system, and would rely on

manual debug of the issue. The repair tickets for these failures

would be created without repair actions, and are therefore

undiagnosed tickets.

Since undiagnosed tickets are created without repair actions,

we have to start debugging the issue based on the logs col-

lected in the remediation flow, i.e. logs from MachineChecker,

FBAR, and Cyborg. This manual debugging process usually

takes much more time than the repair for diagnosed tickets and

often requires escalations for further investigation. To reduce

the manual debugging time for the undiagnosed tickets, we

deploy machine learning to learn from closed repair tickets,

and recommend repair actions for new undiagnosed tickets

based on how similar tickets have been closed in the past.

We use the fastText [6] library developed by Facebook AI

Research (FAIR) for building the machine learning model.

fastText trains and yields very competitive results compared

to traditional text classification models in far less time, and its

natural language processing ability fits our problem perfectly

since the features that describe the tickets, i.e. the logs in

MachineChecker, FBAR, and Cyborg, are largely unstructured

raw text. Formulated in machine learning language, our prob-

lem becomes: Using the raw text logs as features, learn from

the closed tickets in the past and predict the repair actions for

new undiagnosed tickets. The well-supported machine learning

framework [5] inside Facebook helped us quickly build and

deploy the fastText model.

Overall, when we recommend up to 5 repair actions for

each undiagnosed ticket, the recommendations could cover the

correct repairs for between 50% to 80% of the undiagnosed

tickets, which significantly reduces the manual debugging time

required for these tickets. The prediction accuracy varies over

time as we introduce new server checks and failure modes,

so the prediction results are being continuously monitored

and the model is retrained based on a new collection of

closed repair tickets when the prediction accuracy drops. We

also investigate the prediction accuracy for each failure mode

to provide feedback to upstream tooling for improving the

server checks and logging, e.g. emphasizing the keywords and

relevant failure messages in the log for a specific failure mode.

VI. CONCLUSION

In this paper we present the current remediation flow and the

difficulties in capturing transient failures such as PROCHOT

and memory/network failures. New hardware and software

introduce new failure types, which lead to new challenges

in hardware remediation. While we are actively working on

improving our remediation flow, we would also like to share

the experience we had in hardware remediation at scale with

researchers for new opportunities in this field.

Our machine learning deployment in hardware remediation

also demonstrated promising results in providing insightful

recommendations for debugging server issues. The natural lan-

guage processing ability of fastText allows us to use unstruc-

tured raw text log as the input feature. The prediction results

help us analyze the diagnostics and logging for different failure

modes, and provide actionable feedback for improvements in

upstream tooling. We focus on continuously optimizing our

hardware remediation flow and using machine learning has

improved our ability to operate at scale.

REFERENCES

[1] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
European Conference on Computer Systems (EuroSys), Apr. 2015.

[2] M. Isard, “Autopilot: Automatic data center management,” in ACM

SIGOPS Operating System Review, Apr. 2007.
[3] A. Power, “Making facebook self-healing,” https://www.facebook.com/

notes/facebook-engineering/making-facebook-self-

healing/10150275248698920/, 2011.
[4] R. Komorn, “Making facebook self-healing: Automating

proactive rack maintenance,” https://code.facebook.com/posts/

629906427171799/making-facebook-self-healing-automating-proactive-

rack-maintenance/, 2016.
[5] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,

M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in International

Symposium on High-Performance Computer Architecture (HPCA), Feb.
2018.

[6] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv:1607.01759, 2016.

[7] R. Komorn, “Python in production engineering,”
https://code.facebook.com/posts/1040181199381023/python-in-

production-engineering/, 2016.
[8] Intel, “Cpu monitoring with dts/peci,” 2010.
[9] Intel, “Intel 64 and ia-32 architectures software developer manuals,”

2016.
[10] https://www.eembc.org/coremark.
[11] https://github.com/gregs1104/stream-scaling.
[12] https://www.mersenne.org/download.
[13] https://github.com/stressapptest/stressapptest.
[14] https://www.spec.org/.
[15] https://iperf.fr.
[16] Intel, “System event log (sel) troubleshooting guide,” Rev 3.2, 2017.
[17] B. Delgado and K. L. Karavanic, “Performance implications of system

management mode,” in IEEE International Symposium on Workload

Characterization (IISWC), Sep. 2013.
[18] http://bluesmoke.sourceforge.net/.
[19] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Forecasting and

Time Series Analysis. McGraw-Hill, 1990.


