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Abstract
A wide range of applications in speech and audio signal pro-
cessing incorporate a model of room reverberation based on
the spatial covariance matrix (SCM). Typically, a diffuse sound
field model is used, but although the diffuse model simplifies
formulations, it may lead to limited accuracy in realistic sound
fields, resulting in potential degradation in performance. While
some extensions to the diffuse field SCM recently have been
presented, accurate modeling for real sound fields remains an
open problem. In this paper, a method for estimating the SCM
of reverberant speech is proposed, based on the selection of
time-frequency bins dominated by reverberation. The method is
data-based and estimates the SCM for a specific acoustic scene.
It is therefore applicable to realistic reverberant fields. An ap-
plication of the proposed method to optimal beamforming for
speech enhancement is presented, using the plane wave density
function in the spherical harmonics (SH) domain. It is shown
that the use of the proposed SCM outperforms the commonly
used diffuse field SCM, suggesting the method is more success-
ful in capturing the statistics of the late part of the reverberation.
Index Terms: Spatial correlation matrix, reverberant speech,
spherical arrays, minimum-variance distortionless response

1. Introduction
A wide range of applications in speech and audio signal pro-
cessing, such as speech enhancement, beamforming, speech
dereverberation and spatial audio coding, incorporate speech
signals in reverberant environments. Many of the methods de-
veloped for these applications require modeling of room rever-
beration. A common statistical tool for describing reverber-
ant sound fields is the spatial covariance matrix (SCM), also
named the power spectral density (PSD) matrix [1]. For ex-
ample, the design of informed spatial filters for source separa-
tion [2, 3, 4, 5], dereverberation and enhancement [1, 6, 7] is
based on the SCM. In spatial audio coding, the SCM is used for
parametric encoding of the reverberant sound field component
[8, 9, 10]. Furthermore, in acoustic scene analysis, the direct-
to-reverberant ratio (DRR) is typically estimated by using the
structure of the SCM of the direct sound and the reverberant
field components [11, 12, 13].

The SCM contains the narrowband second-order spatial
statistics of the signal, which encodes information about the
spatial distribution and spatial correlation of the sound field. A
diffuse field model for the sound field is commonly used [1], as
it leads to mathematical tractability and simple analytical for-
mulations. The diffuse model incorporates an assumption of
spherical isotropy, which is sometimes replaced with cylindri-
cal isotropy [6]. Nevertheless, the model and its inherent as-

sumptions of isotropy and lack of directional correlation may be
inaccurate in practice, e.g. due to differences in the absorption
of room boundaries or asymmetry in room geometry [14, 15].
These inaccuracies may lead to errors in the SCM, as demon-
strated in this paper, thereby potentially degrading the perfor-
mance of the corresponding methods. Although there are a few
examples in the literature for the use of non-diffuse models for
the SCM [4, 16], a general SCM estimation framework that can
represent realistic sound fields is not yet available.

In this paper, a data-based method for estimating the SCM
of an arbitrary reverberant sound field, which is not necessar-
ily diffuse, is presented. The method operates in the time-
frequency (TF) domain, identifying reverberant TF bins that are
then used for the SCM estimation. The method’s performance
is demonstrated by a simple application of minimum variance
distortionless response (MVDR) beamforming for dereverbera-
tion, using the plane wave density function signals in the spher-
ical harmonics (SH) domain. The method is shown to outper-
form the baseline method based on the diffuse field assumption,
but the gap from oracle performance highlights the need for im-
proved classification of reverberant TF bins.

2. Signal Model
The signal model employed in this work assumes a single
speaker in a reverberant room, with sound pressure signals cap-
tured by a microphone array. The Q microphone signals are
presented in the short-time Fourier transform (STFT) domain,
such that x(k, n) = [X1(k, n), . . . , XQ(k, n)]T , where k and
n are the frequency and time-frame indices, respectively. The
signals are decomposed into three components, using a para-
metric model, which is commonly used in speech enhancement
frameworks [1, 3]:

x(k, n) = xe(k, n) + xr(k, n) + v(k, n) (1)

where xe(k, n) represents the signal due to the early part of
the room impulse response (RIR), xr(k, n) represents the late
reverberation, and v(k, n) is an additive noise signal. The early
part is formulated as xe(k, n) = g(k)s(k, n), where s(k, n) is
the source signal as measured at some reference point (e.g. the
array center), and g(k) is the acoustic transfer-function (ATF)
vector, incorporating the direct sound, or the direct sound and
early room reflections. Note that g(k) is assumed to be known,
and its estimation is beyond the scope of this paper. If g(k)
models the direct sound, it can be computed by estimating the
direction-of-arrival (DOA). Otherwise, it has to be estimated in
other ways (see [17] as an example).

The SCMs of the different signal components are formu-



lated as:

E
[
xe(k, n)xe(k, n)H

]
= σ2

s(k, n)g(k)g(k)H (2)

E
[
xr(k, n)xr(k, n)H

]
= σ2

r(k, n)Γ(k) (3)

E
[
v(k, n)v(k, n)H

]
= Σv(k) (4)

where E [·] is the expectation operator, and σ2
s(k, n) and

σ2
r(k, n) are non-negative scalars representing the power of the

early and reverberant signal components. The reverberation
SCM is given by a time-invariant matrix Γ(k), scaled by the
time-varying coefficient σ2

r(k, n), representing the change in
the reverberation signal power over time. Note that the mod-
eling of Γ(k) and g(k) as time-invariant is based on the sta-
tionarity of the acoustic scene, with constant source and array
positions. Σv(k) is assumed to be time-invariant as well. Due
to the short temporal autocorrelation of speech, xe(k, n) and
xr(k, n) are assumed to be uncorrelated. Assuming also that
the noise is uncorrelated with the source, then:

E
[
x(k, n)x(k, n)H

]
=

σ2
s(k, n)g(k)g(k)H + σ2

r(k, n)Γ(k) + Σv(k)
(5)

The focus of this paper is the matrix Γ(k), which will be re-
ferred to as the reverberation normalized spatial covariance ma-
trix (RNSCM). This matrix encodes the structure of the rever-
beration SCM, and is usually assumed to be known, mostly by
assuming an ideal diffuse field.

A common representation of a reverberant sound field is
the plane wave amplitude density (PWD) function, denoted
by a(k, n,Ω) [18]. k and n are the frequency and time in-
dices respectively, Ω ∈ S2 represents a direction in 3D space,
and S2 is the unit sphere. The PWD function can be repre-
sented in the SH domain, using a set of SH coefficients, de-
noted by anm [18]. In the following, the microphone signals
are replaced by these PWD coefficients in the SH domain, i.e.
x(k, n) , [a00(k, n), . . . , aNN (k, n)]T , where a finite SH or-
der N is used, leading to Q = (N + 1)2 coefficients. This as-
sumption may require the use of a spherical microphone array
[18], but it is believed that the method and results of this work
could be generalized to other arrays configurations.

3. Validity of the Diffuse Model Assumption
A diffuse field is commonly described by an infinite number of
plane waves of equal magnitude, arriving uniformly from all di-
rections with random phase [19]. Under these certain assump-
tions, the RNSCM of the PWD function in the SH domain is
given by Γdiff(k) = I [8].

The validity of this diffuse model in representing real sound
fields is examined using real data from the ACE challenge [20],
which contains recorded impulse responses of various rooms.
The data was recorded by the MH Acoustics Eigenmike, a
32-channel spherical microphone array. Two rooms from this
database were employed, with parameters shown in table 1. The
first 50 ms of each RIR were truncated, keeping only the late re-
verberation part of the RIR. Each truncated RIR was convolved
with 5 seconds of white noise. Then, the order 3 SH coefficients
of the PWD function were computed using the robust-PWD al-
gorithm [21], after filtering the signal to a frequency band cen-
tered at 3000 Hz, with a bandwidth of 100 Hz. The SCM from
Eq. (3), denoted by R, and the directional variance of the sound

field, E
[
|a(fk,Ω)|2

]
, were computed from the measured PWD

signals by time averaging. The validity of the diffuse model
was investigated by computing the projection error of R on the
diffuse RNSCM, using:

ε ,
||R− 1

Q
tr(R) · I||F
||R||F

(6)

where || · ||F is the Frobenius norm and tr (·) is the trace opera-
tor.

The results are shown in Figure 1. The non-isotropic distri-
bution of the field can be observed, as more energy is concen-
trated in the horizontal plane. Also, the error ε is relatively high
(around 0.5), which shows the inaccuracy of the diffuse field
model, providing motivation for using more accurate models.

Table 1: Room parameters from ACE challenge data, including
mean T60 and DRR

Room Dimensions [m] T60 [s] DRR [dB]
1 5.1× 4.5× 3.2 0.57 1.6
2 6.9× 9.7× 3 0.66 3.3

(a) Room 1 (ε = 0.45) (b) Room 2 (ε = 0.49)

Figure 1: E
[
|a(k,Ω)|2

]
and diffuse projection error ε of the

late reverberation of the two rooms (ACE challenge data)

4. Proposed Method
The proposed method estimates the RNSCM, Γ(k), based on a
subset of TF bins that is classified as highly reverberant, ignor-
ing the other bins. For this classification, a measure is proposed
for quantifying reverberation in each TF bin. This measure is
referred to as the reverberant field dominance (RFD), denoted
by γ(k, n). Assuming v(k, n) ≡ 0 for simplicity, TF bins for
which the RFD measure is high enough, satisfy:

x(k, n) ≈ xr(k, n) (7)

The set of TF bins with a sufficiently high RFD is denoted as:

ARFD ,
{

(k, n) | γ(k, n) > γ0

}
(8)

Defining a weight function w(k, n), the proposed RNSCM es-
timator is formulated as:

Γ̂(k) ,

∑
(k,n)∈ARFD

w(k, n)x(k, n)x(k, n)H

||
∑

(k,n)∈ARFD
w(k, n)x(k, n)x(k, n)H ||F

(9)

Note that ||Γ̂(k)||F = 1. The weight function is chosen to be
w(k, n) = 1 to simplify the discussion, and the choice of the
threshold γ0 depends on the specific RFD measure, as detailed
in section 5.



In this paper, two RFD measures are proposed and exam-
ined. First, a measure based on the early-to-late reverberation
ratio, the RFD-ELR, is proposed:

γELR(k, n) , −10 log

(
|Xe-ref(k, n)|2

|Xr-ref(k, n)|2

)
(10)

where Xe-ref(k, n) and Xr-ref(k, n) are the early and reverberant
components of the signal at a reference point, calculated sepa-
rately by using the RIR. Note that this data is not directly ac-
cessible in practice. However, since the estimation is performed
with the observed data only, the usage of this measure can show
the estimation potential and the existence of bins with relevant
information for the RNSCM, as demonstrated in section 5. Note
that γELR is higher when the ELR is lower, i.e. when the early
component is less dominant. Also note that in the case where
the early component models the direct sound, the ELR reduces
to the DRR measure.

Secondly, a more practical RFD measure, that does not re-
quire the RIR, is proposed. This measure is based on a transfer
function vector similarity test, the RFD-TFVS:

γTFVS(k, n) ,

1−

n0∑
n′=–n0

k0∑
k′=–k0

|x(k + k′, n+ n′)Hg(k + k′)|2

n0∑
n′=–n0

k0∑
k′=–k0

||x(k + k′, n+ n′)||2 · ||g(k + k′)||2

(11)

where n0, k0 are parameters controlling the amount of time and
frequency averaging, respectively. This measure quantifies the
similarity between a TF bin and its neighborhood to the transfer
function vector, and is normalized such that 0 ≤ γTFVS ≤ 1.
When there is less similarity, higher values are obtained, sug-
gesting that the reverberant part is more dominant.

The estimation process relies on the existence of bins with
dominant reverberation energy, which depends on the nature of
the RIR and the source signal. In the case of speech signals, the
non-stationarity in time leads to onset and offset time segments,
with the latter giving rise to reverberation-dominant segments.
Such behavior may require that the tail of the RIR does not de-
cay too fast (i.e. T60 is high enough).

5. Experimental Study
The performance of the proposed method is demonstrated by
an application of MVDR beamforming to dereverberation of
speech.

5.1. Setup

An acoustic scene of a single speaker in a reverberant room was
simulated. A room of dimensions 10 × 8 × 3 m and T60 = 1s
was chosen, and the source and array positions were randomly
drawn such that the steady-state DRR was -8 dB. The RIR was
simulated by the image method [22], providing directly the SH
coefficients of the PWD function, with SH order N = 3, i.e.
Q = 16 coefficients, and a sampling frequency of 16 kHz.
The signal x was then obtained by convolving the RIR with a
speech signal of 5 seconds length. STFT was performed using
a Hanning window of 512 samples, 25% hop size and FFT size
of 1024. This simulation process was repeated 50 times, each
time drawing different source and array positions and different
speech signals, leading to 50 generated acoustic scenes with the
same DRR and T60.

5.2. Methodology

In each simulation, MVDR beamforming was employed with
the aim of reducing the reverberant signal component, and the
results were evaluated as detailed next. Since the interference
is composed of reverberation only, the MVDR beamformer is
given by [23]:

w(k)H ,
g(k)HΓ(k)−1

g(k)HΓ(k)−1g(k)
(12)

where the output signal is y(k, n) = w(k)Hx(k, n). Gener-
ally speaking, if the RNSCM is more accurate, then better per-
formance is expected. Therefore, the performance of 4 differ-
ent RNSCMs was compared: diffuse RNSCM, estimated RN-
SCM using RFD-DRR and RFD-TFVS measures, and oracle
RNSCM.

The diffuse RNSCM is signal independent and given by
Γdiff(k) = I. The other RNSCMs were computed for each
simulation, using the reverberant speech. The estimated RN-
SCM was computed according to (9). First, TF bins with low
energy were ignored in both RFD measures, by taking into ac-
count only bins with an energy level higher than the median.
The RFD-DRR was calculated according to (10), using the sig-
nal at the array center, and γ0 was set to 15, which is equivalent
to choosing bins with DRR below -15 dB. The RFD-TFVS was
calculated according to (11), with n0, k0 taken to be equiva-
lent to averaging over 30ms and 100Hz, and γ0 was adjusted
such that 20% of the bins were chosen. The oracle RNSCM
was computed by Γoracle(k) ,

∑
n xr(k, n)xr(k, n)H using

all bins, as xr(k, n) can be calculated separately using the RIR.
Moreover, in all the simulations the ATF vector g(k) was as-
sumed to model the direct part only, and was calculated accord-
ing to the DOA, which was assumed to be known. Therefore,
the early reflections were included in xr(k, n) in practice.

In each simulation, the performance was evaluated
by the frequency-weighted segmental signal-to-noise ratio
(fwSegSNR) [24] and the PESQ [25] measures, using the direct
sound as the reference signal. The difference in each measure
was calculated, comparing the beamformer output signal, and
the input signal at the array center, given by the first entry of x,
which contains the a00 coefficient. Then, the final results were
computed by averaging all simulations.

5.3. Results and Discussion

Performance in terms of ∆fwSegSNR and ∆PESQ is presented
in Figure 2. As can be seen, for both measures the diffuse model
yields the worst performance, while the oracle RNSCM yields
the best performance. This is expected, since the diffuse RN-
SCM is a scene-invariant model, while the oracle RNSCM is
tailored to the specific scene, and computed directly using the
true reverberant signal, which cannot be separately observed in
practice. Moreover, the relatively large performance gap, may
indicate that the reverberation is not perfectly diffuse. Com-
pared to these, the RFD method performs better than the dif-
fuse case and worse than the oracle case, implying that the esti-
mated RNSCM manages to incorporate some non-diffuse char-
acteristics of the reverberation. In addition, the RFD-DRR out-
performs the RFD-TFVS. However, recall that this measure is
based on the true DRR, which has to be estimated in practice.
An example of the TF bins selected by each RFD measure is
shown in Figure 3. As can be seen, many of the bins selected by
the RFD-TFVS are also selected by the RFD-DRR. However,
due to the calculation method of the RFD-TFVS, the selected



Figure 2: ∆fwSegSNR and ∆PESQ for all three methods and
the oracle reference

areas it yields are more smooth in the TF domain, which leads
to selecting bins with higher DRR as well. Note that compared
to the RFD-DRR, fewer bins are selected by the RFD-TFVS,
due to the different thresholds, which were adjusted separately
such that each measure will yield the best performance for the
given data.

For further detailed analysis, Figure 4 shows an example
of the RIR at the output of the MVDR beamformer for each
method. Note that these are the same beamformers that were
computed based on the speech signals. It can be observed that
the beamformers that use the estimated RNSCM based on the
RFD-DRR and RFD-TFVS attenuate better the late reverbera-
tion, compared to the diffuse RNSCM case. This result veri-
fies that the observed improvement in Figure 2 is due to better
attenuation of the late reverberation. Moreover, it seems that

RFD-DRR measure

RFD-TFVS measure

Figure 3: An example of the selected TF bins (marked in red)
for the SCM estimation, using the two different RFD measures

Original RIR at array center Diffuse

RFD-DRR RFD-TFVS

Oracle

Figure 4: An example of the RIRs at the beamformer output,
using different RNSCMs, showing only the first 0.3 s

the oracle-based MVDR attenuates better the early reflections,
compared to the RFD-DRR and RFD-TFVS, which may ex-
plain the performance gap between them.

6. Conclusion
In this work, a data-based approach for modeling the SCM of
reverberant speech was presented. The method estimates the
SCM by using TF bins with dominant reverberation, and it is
apparently more effective in modeling the late reverberation
compared to a diffuse field based model. A simple applica-
tion of MVDR beamforming was presented, confirming the ex-
istence of vital information in reverberant speech signals, that
can be exploited to more accurately estimate the SCM of the
reverberant part. Future work will focus on incorporating the
early reflections into the estimation framework, and examining
the SCM estimation performance under noisy conditions. Ad-
ditional bin-selection methods will also be examined, in order
to reduce the performance gap from the oracle.
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