
Bandwidth-Optimized Parallel Algorithms for Sparse
Matrix-Matrix Multiplication using Propagation Blocking

Zhixiang Gu∗‡, Jose Moreira†, David Edelsohn†, Ariful Azad∗
E-mail:gzxultra@fb.com,jmoreira@us.ibm.com,edelsohn@us.ibm.com,azad@iu.edu

∗Indiana University Bloomington, †IBM Corporation, ‡Facebook Inc.

Abstract
Sparse matrix-matrix multiplication (SpGEMM) is a widely used

kernel in various graph, scientific computing and machine learning
algorithms. It is well known that SpGEMM is a memory-bound
operation, and its peak performance is expected to be bound by
the memory bandwidth. Yet, existing algorithms fail to saturate the
memory bandwidth, resulting in suboptimal performance under the
Roofline model. In this paper, we characterize existing SpGEMM
algorithms based on their memory access patterns and develop
practical lower and upper bounds for SpGEMM performance. We
then develop an SpGEMM algorithm based on the outer product.
The newly developed algorithm called PB-SpGEMM saturates mem-
ory bandwidth by using the propagation blocking technique and by
performing in-cache sorting and merging. For many practical ma-
trices, PB-SpGEMM runs 20%-50% faster than the state-of-the-art
heap and hash SpGEMM algorithms on modern multicore proces-
sors. Most importantly, PB-SpGEMM attains performance predicted
by the Roofline model, and its performance remains stable with
respect to matrix size and sparsity.

ACM Reference Format:
ZhixiangGu∗‡, JoseMoreira†, David Edelsohn†, Ariful Azad∗. 2020. Bandwidth-
Optimized Parallel Algorithms for Sparse Matrix-Matrix Multiplication us-
ing Propagation Blocking. In Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’20), July 15–17, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3350755.3400216

1 Introduction
Sparse matrix-matrix multiplication (SpGEMM) is a widely-used

kernel in many graph analytics, scientific computing, and machine
learning algorithms. In graph analytics, SpGEMM is used in be-
tweenness centrality [9], clustering coefficients, triangle count-
ing [2], multi-source breadth-first search [15], colored intersec-
tion search [19], and cycle detection [30] algorithms. In scientific
computing, SpGEMM is used in algebraic multigrid [5] and linear
solvers. Many machine learning tasks like dimensionality reduc-
tion (e.g., NMF, PCA [13]), spectral clustering [18], and Markov
clustering [3]) rely on an efficient SpGEMM algorithm as well.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00
https://doi.org/10.1145/3350755.3400216

In most data analytics applications, SpGEMM has very low arith-
metic intensity (AI) measured by the ratio of total floating-point
operations to total data movement. For example, when multiplying
two Erdős-Rényi random matrices with 𝑑 nonzeros per column
(matrices with 𝑑 nonzeros uniformly distributed in each column) ,
an algorithm has an AI of just 1

16 flops/byte (see Sec. 2.3). At this
arithmetic intensity, SpGEMM is a memory-bound operation, and
SpGEMM’s peak performance has an upper bound of 𝛽 ∗𝐴𝐼 , where
𝛽 is the memory bandwidth. Assuming 50GB/s bandwidth available
on a multicore processor, the estimated peak performance can be as
high as 50/16 = 3.13 GFLOPS (billions of floating point operations
per second). However, state-of-the art parallel algorithms based on
heap and hash merging [24] attain no more than 500 MFLOPS for
random matrices on a socket of an Intel Skylate processor. No prior
work clearly explained these observed performances of SpGEMM
algorithms as no standard performance model has been developed
to understand SpGEMM’s performance.

In this paper, we rely on the Roofline model [29] and develop
lower and upper performance bounds for SpGEMM algorithms. In
developing practical lower bounds on AI, we considered the fact
that an SpGEMM may read data more than once. Even with a tight
lower bound on AI, an algorithm can attain peak performance (that
is 𝛽 ∗ 𝐴𝐼) only if it (a) saturates the memory bandwidth, (b) does
not have a high latency cost, and (c) makes use of full cache lines of
data. We show that these requirements are not satisfied by current
column-by-column algorithms, resulting in a performance that is
lower than the peak attainable FLOPS.

Here, we develop a new algorithm based on the outer product of
matrices. The goal of this algorithm is to eliminate irregular data ac-
cesses, increase bandwidth utilization, and attain the performance
predicted by the Roofline model. Our algorithm is built upon the
expansion-sort-compress paradigm [7, 10]. Given two𝑛×𝑛matrices,
this algorithm performs 𝑛 outer products to generate intermediate
tuples of row index, column index, and the multiplied value. These
tuples are then sorted, and duplicate row and column indices are
merged to get the final product. To ensure efficient bandwidth uti-
lization, we store intermediate tuples into partially-sorted bins so
that each bin can be sorted and merged independently. This tech-
nique of binning intermediate data for better bandwidth utilization
is called propagation blocking (PB) [6]. Prior work has used propa-
gation blocking to improve the bandwidth utilization as well as the
overall performance of sparse matrix-vector multiplications [6, 26].
Here we use propagation blocking to regularize data movements in
SpGEMM. Hence, our algorithm is named as PB-SpGEMM.

All three phases of PB-SpGEMM (expand, sort, and compress
or merge) stream data from memory. Hence, every phase has no
significant latency overhead, utilizes full cache lines, and attains a

https://doi.org/10.1145/3350755.3400216
https://doi.org/10.1145/3350755.3400216
https://doi.org/10.1145/3350755.3400216

bandwidth close to the STREAM benchmark. Therefore, given the
bandwidth of a system and input matrices, PB-SpGEMM’s perfor-
mance matches the prediction of the Roofline model.

Similar to any expansion-sort-compress algorithm, PB-SpGEMM
has to store flops intermediate tuples, where flops is the number of
multiplications needed by SpGEMM. This can lead to significant
data movements when the compression factor (the ratio of flops to
nonzeros in the output) is greater than four. However, most practical
SpGEMM operations have small compression factors. For example,
when squaringmatrices from the SuiteSparseMatrix Collection [11],
more than 80% of SpGEMMs have a compression factor less than 3
and about 99% have a compression factor less than 6 [21]. Hence, for
most practical scenarios, PB-SpGEMM performs predictably better
than existing heap and hash algorithms. For multiplications with
compression factor greater than four, PB-SpGEMM’s performance
is still predictable, but it can run slower than the alternatives.

We summarize the key contributions of this paper below:

(1) We develop a Roofline performance model for SpGEMM
algorithms. This model can reveal the limitations of existing
column-by-column SpGEMM algorithms.

(2) We develop an outer-product based SpGEMM algorithm
called PB-SpGEMM. We use propagation blocking, in-cache
sorting and merging for better bandwidth utilization.

(3) Different phases of PB-SpGEMM utilize bandwidth close to
the STREAM benchmark. Given the bandwidth of a system
and input matrices, PB-SpGEMM’s performance matches the
prediction from the Roofline model.

(4) For SpGEMMs with compression factor less than four, PB-
SpGEMM is 30% to 50% faster than previous state-of-the-art
algorithms for multicore processors.

Our implementation of PB-SpGEMM is publicly available at
Bitbucket: https://bitbucket.org/azadcse/pb-spgemm/.

2 A Performance Model for SpGEMM

2.1 Notations

Given two sparse matricesA∈R𝑚×𝑘 andB∈R𝑘×𝑛 , SpGEMM com-
putes another potentially sparse matrix C∈R𝑚×𝑛 . A(:, 𝑗) denotes
𝑗th column of A, and A(𝑖, 𝑗) denotes 𝑖th entry in the 𝑗th column.
In our analysis, we consider 𝑛-by-𝑛 matrices for simplicity. We use
Erdős-Rényi (ER) random matrices throughout the paper. An ER
matrix with 𝑑 nonzeros per column has 𝑑 nonzeros uniformly dis-
tributed in each column. Among many representations for sparse
matrices, we consider three standard data structures in this paper:
Compressed Sparse Row (CSR), Compressed Sparse Column (CSC),
and Coordinate format (COO). See Langr and Tvrdik [20] for a
comprehensive discussion on sparse matrix storage formats.

Given a matrix A, nnz(A) denotes the number of nonzeros in A,
and 𝑑 (𝐴) = nnz(A)

𝑛 denotes average nonzeros in a row or column.
In computing C=AB, flops denotes the number of multiplications
needed. Throughout the paper, floating point operations only de-
note multiplications. The compression factor (cf) denotes the ratio
of flops to nonzeros in the output matrix: cf= flops

nnz(C) . Since at least
one multiplication is needed for every output nonzero, cf≥1.

Input Access
Column wise Outer Product

Output Heap/Hash/SPA [1, 12, 24, 28] [8]
Formation ESC [10, 21] [27], this

Table 1: Classification of SpGEMM algorithms based on ac-
cess patterns of input and output matrices. This paper falls
into the lower right cell.

=

Merge

x

Multiply

C"

C A B

Figure 1: An illustration of column SpGEMM algorithm.
To generate C(:, 5), the algorithm selects 2nd, 4th and 7th
columns of A (shown in red) based on the nonzeros in B(:, 5)
(shown in blue). The selected columns are multiplied by
corresponding entries in B(:, 5), forming entries in Ĉ(:, 5)
(shown in yellow). Duplicate entries in Ĉ(:, 5) are merged to
generate C(:, 5) (shown in green). The merging strategy dif-
fers in different column SpGEMM algorithms.

2.2 Classes of SpGEMM algorithms categorized
by data access patterns

To compute C=AB, most algorithms also manipulate an ex-
panded matrix Ĉ∈R𝑚×𝑛 that contains flops unmerged entries. The
final output C can be obtained by merging entries in Ĉ with the
same row and column indices. Therefore, if we primarily focus on
data accesses, SpGEMM algorithms have two distinct phases: (a)
input matrices are accessed to form Ĉ and (b) duplicate entries in
Ĉ are merged to form C. Here, merging duplicate entries means
adding multiplied values with the same row and column indices.
For input accesses, we have two options: (1) access A and B column-
by-column (or equivalently row-by-row) [1, 10, 12, 24, 28], and (2)
access A column-by-column and access B row-by-row for outer
product [8, 27]. For output formations, we have many options. Prior
work used the expand-sort-compress strategy [10, 21, 27] and ac-
cumulators based on heap [1], hash table [24], and a dense vector
called SPA [14, 28]. Table 1 summarizes prior work based on their
data access patterns. Next, we briefly summarize major classes of
SpGEMM algorithms and discuss their data access patterns.

ColumnSpGEMMalgorithms based on theheap/hash/SPA
accumulator. Some algorithms materialize only one column of Ĉ,
merge duplicate entries in that column and generate the corre-
sponding column of C. Since column-by-column and row-by-row
algorithms have similar computational patterns, we only discuss
column SpGEMM algorithms in this paper. An illustration of the
column SpGEMM algorithm is shown in Fig. 1, where C(:, 5) is
generated by merging a subset of columns in A determined by
nonzeros in B(:, 5). Most column-by-column algorithms are based

Figure 2: An illustration of outer product SpGEMM algorithm. Each multiplication between a column from A and a corre-
sponding row from B generate a sub 1-rank matrix, those sub 1-rank matrices added up yield the final result C

No of Accesses Streamed Access Cache Line Utilization

Algorithm A B Ĉ C A B Ĉ C A B Ĉ C

Column SpGEMM (Heap/Hash/SPA) 𝑑 1 0∗ 1 × ✓ ✓ ✓ × (when 𝑑 < 8) ✓ ✓ ✓
ESC (column-wise) 𝑑 1 2 1 × ✓ × ✓ × (when 𝑑 < 8) ✓ ✓ ✓
ESC (outer product) 1 1 2 1 ✓ ✓ ✓∗∗ ✓ ✓ ✓ ✓ ✓

* Column SpGEMM generates one column of Ĉ at a time. ** Using blocking techniques discussed in this paper.
Table 2: Data access patterns in different SpGEMM algorithms whenmultiplying two ERmatrices with 𝑑 nonzeros per column.
If an algorithm does not stream data, it has high latency cost.

on Gustavson’s algorithm [17], and they differ from one another
based on how they merge entries in Ĉ(:, 𝑗) to obtain C(:, 𝑗). Prior
work have used heap [1], hash table [25], or a dense vector called
SPA [14] for merging columns. A common characteristic of all
column-by-column algorithms is that they read from B and write
to C one column at a time. However, columns of A may be read
irregularly several times based on the nonzero pattern of B.

We explain the access pattern of A when multiplying two ER
matrices with 𝑑 nonzeros per column. In the worst case, each col-
umn of A is read 𝑑 times from memory because columns of A are
accessed randomly without any spatial locality. Thus, we read A
𝑑 times over the execution of the algorithm. Second, if we store
matrices in the CSC format, column SpGEMM algorithms have
good spatial locality for B, Ĉ and C, but not for A. Hence, we pay
heavy latency costs for irregular accesses of A’s columns. Third, if
a column of A has very few entries (e.g., when 𝑑 ≈ 1), we read a
column of A in a cache line, but the whole cache line is not used.
Consequently, column SpGEMMs waste memory bandwidth for
very sparse matrtices. The first row of Table 2 summarizes the data
access patterns in column SpGEMM algorithms. Similarly, a row-
by-row algorithm (when matrices are stored in the CSR format) has
good spatial locality for A, Ĉ and C, but not for B.

The Expand-Sort-Compress (ESC) algorithms. Algorithms
based on the ESC technique generate full Ĉ before merging du-
plicate entries. The original ESC algorithm [10] developed for
GPUs generates Ĉ(:, 𝑖) using B(:, 𝑖). similar to the first step of
column SpGEMM algorithm shown in Fig. 1. After the entire Ĉ
is constructed, flops tuples in Ĉ are sorted and merged to gener-
ate the final output. Since sorting can be efficiently performed on
GPUs, ESC SpGEMM may perform better than other algorithms on
GPUs [10, 21]. The column ESC algorithm has access patterns forA,
B, and C similar to the column SpGEMM algorithm. Additionally,
Ĉ is accessed twice (one write after multiplication and one read
before merging). The second row of Table 2 summarizes the data
access patterns in the column ESC algorithms.

Previous work [10] tried to eliminate reading and writing Ĉ
from memory by partitioning A by rows and multiplying each
partition with B. Thus, this approach generates one partition of Ĉ
at a time, which can fit in cache when a large number of partitions
is used. However, the partitioned ESC algorithm needs to read B
several times and accesses parts of A irregularly in each partition.
Hence, the effectiveness of partitioning depends on the number of
partitions and nonzero structures of input matrices.

Outer product algorithms. Fig. 2 shows an illustration of the
outer product algorithm. In this formulation, 𝐴(:, 𝑖) is multiplied
with 𝐵(𝑖, :) to form a rank-1 outer product matrix. The rank-1 ma-
trices can be merged by using a heap or using ESC. A heap can
be used to merge the outer product of 𝐴(:, 𝑖) and 𝐵(𝑖, :) with the
current output after every iteration [8]. However, this algorithm
is too expensive as it requires 𝑛 merging operations. Hence, we do
not elaborate this algorithm further.

The rank-1 matrices from outer product can also bemerged using
the ESC strategy. In this case, input matrices are streamed only once.
Hence, the outer product can fully utilize cache lines when reading
inputs. To sort and merge unmerged tuples in Ĉ, we need to read
them from memory. This can significantly increase the memory
traffic. Nonetheless, with an efficient blocking technique discussed
in this paper, we can stream Ĉ whenever it is accessed. Hence, we
can utilize full cache lines and saturate memory bandwidth to offset
increased data accesses. The last row of Table 2 summarizes the
data access patterns in the outer-product-based ESC algorithm.

2.3 Arithmetic Intensity (AI) of SpGEMM.
AI is the ratio of total floating-point operations to total data

movement (bytes). To compute C=AB, one must read A and B from
memory, and write C to memory. Assume that on average, we need
𝑏 bytes to store a nonzero. Then,

AI ≤ nnz(𝐶) ∗ cf
[nnz(𝐴) + nnz(𝐵) + nnz(𝐶)] ∗ 𝑏 ≤

cf
𝑏
. (1)

0.125

0.25

0.5

1

2

4

8

 1/128 1/64 1/32 1/16 1/8 1/4A
tta

in
ab

le
 P

er
fo

rm
an

ce
 (G

FL
O

P
S

)

Arithmatic Intensity (AI)
Sp

GE
M

M
up

pe
r b

ou
nd

O
ut

er
 Sp

GE
M

M

Co
lu

m
n

Sp
GE

M
M

𝜷∗𝑨
𝑰

Figure 3: Using the Rooflinemodel to estimate performance
when multiplying two Erdős-Rényi matrices on a single-
socket Intel Skylake processor. Memory bandwidth 𝛽 is
50GB/s as measured by the STREAM benchmark.

If we use 4 bytes for indices and 8 bytes for values, then 𝑏 is 16 bytes
(assuming that matrices are stored in the COO format). Here, cf is a
property of input matrices and it varies from 1 to 8 for most practical
sparse matrices [21]. Even in the best scenario when we read and
write matrices just once, the arithmetic intensity of SpGEMM is very
low, often less than one. Let’s consider multiplying two ER matrices
𝐴 and 𝐵, since cf for ER matrix is close to 1 in expectation [4],
according to our model, AI will be around 1

16 flops/byte. At this AI,
SpGEMM’s performance is bound by the memory bandwidth.

Peak performance of an SpGEMM algorithm. Suppose, a
smart algorithm achieves the best AI of cf

𝑏
. Let 𝛽 be the memory

bandwidth (BW) of the system measured by the STREAM bench-
mark. Then, the performance measured by FLOPS is as follows:

FLOPS ≤ 𝛽
cf
𝑏
. (2)

Hence, the peak FLOPS for a given problem on a given architecture
can be at most 𝛽 cf

𝑏
assuming that SpGEMM is bandwidth bound.

For example, on an Intel Skylake processor with 50GB/s memory
bandwidth, the peak performance for multiplying ER matrices can
be at most 50 ∗ 1/16 = 3.13 GFLOPS as shown in Fig. 3. However,
state-of-the-art column SpGEMM algorithms achieve less than 20%
of this peak performance as discussed in a recent paper [24].

The primary reasons behind the suboptimal performance of
SpGEMM algorithms are: (1) algorithms read/write data multiple
times, (2) algorithms access data at random memory locations, (3)
algorithms may not fully utilize cache lines. The first problem is
inherent to SpGEMM and cannot be completely overcome when in-
put matrices are unstructured. The irregular data access can under
utilize bandwidth, impeding the performance of SpGEMM when
the compression factor is small. In this paper, we address this irreg-
ular access problem and develop an algorithm where all steps of
SpGEMM utilize full memory bandwidth. Nevertheless, Equation 1
seems an upper bound that no existing algorithm can attain. Next,
we consider a more practical bound on AI.

Amore practical boundonAI for SpGEMM.A column SpGEMM
algorithm reads the first input matrix several times depending on
the nonzero pattern of B. To obtain a lower bound for column

SpGEMM,we assume that the accesses ofA have no temporal or spa-
tial locality, and all accesses ofA incur memory traffic. Hence, in the
worst case, the amount of data read from𝐴 is flops∗𝑏 = nnz(𝐶)∗cf∗𝑏
bytes. Hence AI for column SpGEMM is expressed as follows:

AI (Col SpGEMM) ≥ nnz(𝐶) ∗ cf
[nnz(𝐶) ∗ cf + nnz(𝐵) + nnz(𝐶)] ∗ 𝑏

≥ cf
(2 + 𝑐 𝑓)𝑏 . (3)

The outer product based algorithm based on the ESC strategy
generates all unmerged tuples in Ĉ, writes all nnz(Ĉ) = flops tuples
in memory, reads them again for sorting and merging. Hence, in
the worst case, ESC-based algorithms perform additional 2 ∗ flops
memory red-write operations, giving us the following bound.

AI (Outer ESC) ≥ nnz(𝐶) ∗ cf
[nnz(A) + nnz(B) + 2 ∗ nnz(Ĉ) + nnz(C)] ∗ 𝑏

=
nnz(𝐶) ∗ cf

[nnz(𝐴) + nnz(𝐵) + 2 ∗ flops + nnz(𝐶)] ∗ 𝑏

≥ cf
(3 + 2cf)𝑏 . (4)

Fig. 3 shows the lower bounds on AI for various settings of
SpGEMM based on Eq. 1, 3, 4. In this example, we consider ER
matrices with cf = 1 and 𝑏 = 16 bytes. The lowest value of AI from
Eq. 3 is 1/48 and from is 1/80. Fig. 3 then shows the corresponding
attainable performance (𝛽 ∗AI) for a system with 𝛽 = 50GB/s. Thus,
column SpGEMM should attain at least 1 GFLOPS and the outer
ESC algorithm should attain close to 625 MFLOPS.

Our experimental results show that column SpGEMMs attain up
to 500 MFLOPS for ER matrices. There are two reasons behind the
performance of column SpGEMMs. First, in the worst case, elements
of A are accessed from nnz(B) random locations incurring huge
latency overhead. Second, for very sparse matrices, portion of cache
lines are wasted, reducing the effective bandwidth. Because of the
random accesses in one input matrix, column SpGEMM does not
attain the theoretical peak performance shown in Fig. 3. By contrast,
the newly-developed PB-SpGEMM algorithm always utilizes the
full memory bandwidth. Hence, even with a lower theoretical peak
(based on Eq. 4), PB-SpGEMM performs better on matrices with
low compression factor.

3 The PB-SpGEMM Algorithm
3.1 Overview of the PB-SpGEMM algorithm

Algorithm 1 provides a high-level description of an SpGEMM
algorithm based on the ESC scheme. In the symbolic step, we es-
timate flops for the current multiplication and allocate memory
for unmerged tuples in Ĉ. Then, multiplied tuples are formed and
stored in Ĉ, which is then sorted and merged to form 𝐶 .

Our algorithm follows the exact same principle, but uses outer
products and propagation blocking for efficient bandwidth utiliza-
tion. Fig. 4 explains the propagation blocking idea based on two
4 × 4 matrices and two bins. After we expand tuples, we partially
order them in two bins, where the first bin stores rowid 0 and 1,
and the second bin stores rowid 2 and 3. If these bins fit in L2 cache,
sorting and merging can be performed efficiently in cache by dif-
ferent threads. In the expansion step, if we directly write a tuple

(0,0,3)
(1,1,12)
(1,3,18)

(1,1,6)
(1,3,7)

(1,0,8)
(1,1,10)

(3,1,2)
(3,3,3)
(2,1,24)
(2,3,28)

×
3

6 2 1
4

1

1
2 3

4 5
6 7

A (CSC) B (CSR) Bin 1 Bin 2

(0,0,3)
(1,0,8)
(1,1,6)

(1,3,18)
(1,3,7)

(1,1,10)
(1,1,12)

(2,1,24)
(2,3,28)
(3,1,2)
(3,3,3)

(0,0,3)
(1,0,8)
(1,1,28)

(2,3,28)
(3,1,2)

(1,3,25)

(2,1,24)

(3,3,3)

Expand
(using PB)

Bin 1 Bin 2 Bin 1 Bin 2

3

8 28 25

24 28

2 3

Sort
(each bin)

Merge
(each bin)

Convert
(CSC/CSR)

C

Figure 4: An example of PB-SpGEMM multiplying two 4×4 matrices with two bins, the first bin blocks propagation of tuples
with rowid 0 and 1, the second bin blocks rowid 2 and 3. Sorting and merging are performed independently in each bin.

Figure 5: Using thread-private local bins to utilize cache
lines. If 𝑛𝑏𝑖𝑛𝑠 is the total number of global bins, each thread
also creates 𝑛𝑏𝑖𝑛𝑠 number of small local bins to store tuples
as they are generated. When a local bin is full, tuples inside
will be flushed to the corresponding global bin. This exam-
ple is using two local bins per thread and two global bins.

to its designated global bin, we may not fully utilize the cache line.
Hence, each thread also maintains small local bins that are filled
in cache before flushing to global bins in memory. The use of local
bins is illustrated in Fig. 5. Hence, our algorithm has several tunable
parameters, including (a) nbins: number of global or local bins, and
(b) Lbinwidth: the width of local bins. We experimentally select
these parameters as will be discussed in the experimental section.

Algorithm 2 described the PB-SpGEMM algorithm. To facilitate
outer product operations, input matrices A and B are passed as
CSC and CSR formats, respectively. Here, we store C in CSR format,
but it can be easily stored in CSC without any additional overhead.
Thus, PB-SpGEM can generate output in a desired format needed
by iterative applications. Similar to Algorithm 1, PB-SpGEMM has
four phases: (a) Symbolic (line 1), (b) Expand (lines 5-18), (c) Sort
(line 20), and (d) Compress (line 21). However, Algorithm 2 differs
from previous ESC algorithms in two crucial ways: (1) we use outer
product to stream data from input matrices, (2) we use propagation
blocking to organize the expandedmatrix into bins so that all phases
of the algorithm saturate the memory bandwidth. We additionally
perform a post-processing step (line 22) to convert the output to
CSR format. Next, we discuss these phases in detail.

3.2 Symbolic Phase
In the symbolic phase, we estimate the memory requirement

for Ĉ, estimate the number of bins and allocate space for global
bins (Gbin). Algorithm 3 describes the symbolic step. We compute
flops for the current multiplication using an outer-product style
computation. The loop in Line 2 accesses A column by column and
B row by row. If there is a nonzero entry in A(𝑟𝑜𝑤𝑖𝑑, 𝑖), it must be

Algorithm 1: ESC-SpGEMM algorithm
Input: A , B
Output: C

1 Ĉ←Symbolic (A, B) ⊲ Create space for Ĉ;
2 Ĉ← Expand (A, B) ⊲ Create unmerged tuples ;
3 Sort (Ĉ) ⊲ perform radix sort using (rowid, colid) as keys;
4 C← Compress (Ĉ) ⊲ merge duplicated tuples ;

Algorithm 2: PB-SpGEMM algorithm

Input: A∈R𝑚×𝑘 in CSC, B∈R𝑘×𝑛 in CSR, nbins
Output: C∈R𝑚×𝑛 in CSR

1 GBin← Symbolic(A,B) ⊲ expanded tuples (Ĉ) partitioned
into 𝑛𝑏𝑖𝑛𝑠 global bins;

2 Gbinwidth← ⌊𝑚/nbins⌋ ⊲ Global bin width ;
3 Lbinwidth← 512 ⊲ Local bin width, default set to 512 bytes ;
4 LBin← Create a 3D array of size nthreads × nbins ×

Lbinwidth ⊲ LBin[𝑇𝑖] is local bin, private for thread 𝑇𝑖 ,
nthreads is the number of threads ;

5 for 𝑖 ← 1 to 𝑘 in parallel do
6 𝑇𝑖 ← The thread executing the 𝑖th iteration ;
7 for (rowid, i, aval) ∈ A(:, 𝑖) do
8 for (i, colid, bval) ∈ B(𝑖 :,) do
9 binid← ⌊rowid / Gbinwidth⌋ ⊲ the last bin

holds excess tuples;
10 if size(LBin[𝑇𝑖][binid]) = Lbinwidth then
11 MemCopy (GBin[binid], LBin[𝑇𝑖][binid]) ;
12 LBin[𝑇𝑖][binid]← 𝜙 ;
13 mval← aval × bval ;
14 Append (LBin[𝑇𝑖][binid], (rowid, colid, mval));

15 for all thread 𝑇𝑖 in parallel do
16 for binid← 1 to 𝑛𝑏𝑖𝑛𝑠 do
17 if size(LBin[𝑇𝑖][binid]) ≠ 0 then
18 MemCopy (GBin[binid], LBin[𝑇𝑖][binid]) ;

19 for binid← 1 to 𝑛𝑏𝑖𝑛𝑠 in parallel do
20 GBin[binid]← Sort (GBin[binid]) ⊲ perform radix sort

in the 𝑖th global bin using (rowid, colid) as keys;
21 GBin[binid]← Compress (GBin[binid]) ⊲ merge

duplicated tuples by two-pointer method;
22 C← ConvertCSR(𝐺𝐵𝑖𝑛);

multiplied by all nonzeros in the 𝑖th row of B. Hence, line 5 adds
nnz(B(𝑖, :))×nnz(A(:, 𝑖)) to the flops count. After we compute flops,

Algorithm 3: Symbolic Phase (Static Schedule)
Input: A in CSC, B in CSR
Output: Gbin, nbins

1 flops← 0;
2 for 𝑖 ← 1 to 𝑘 in parallel do
3 nnz(B(𝑖, :)) ← B.𝑟𝑜𝑤𝑝𝑡𝑟 [𝑖 + 1] - B.𝑟𝑜𝑤𝑝𝑡𝑟 [𝑖];
4 nnz(A(:, 𝑖)) ← A.𝑐𝑜𝑙𝑝𝑡𝑟 [𝑖 + 1] - A.𝑐𝑜𝑙𝑝𝑡𝑟 [𝑖];
5 flops + = nnz(B(𝑖, :)) × nnz(A(:, 𝑖))
6 nbins← flops / L2_CACHE_SIZE ;
7 Gbin←MemAlloc(flops) ⊲ allocate shared array to store

tuples, no initialization needed

we compute the number bins (line 6) so that each global bin fits in
the L2 cache in the sorting and merging phase. We then allocate
memory for global bins (line 7). Algorithm 3 needs only 𝑂 (𝑛) time
and attains higher memory bandwidth by streaming just row and
column pointer arrays of B and A, respectively.

Note that Algorithm 3 is much simpler than symbolic steps used
in column SpGEMM algorithms that need to estimate nnz(C). An
outer product algorithm can also be developed without a symbolic
phase. For example, a linked-list can be used to dynamically append
expanded tuples [27]. However, the dynamic memory allocations
in parallel sections could result in poor performance.

3.3 Expand
Lines 5-18 in Algorithm 2 describes the expand phase of PB-

SpGEMM. In the expand phase, a thread reads A(; , 𝑖) and B(𝑖, :)
and performs their outer product. The binid is computed by rowid
of the multiplied tuple (rowid comes from the rowid in A(:, 𝑖)). The
newly-formed tuple is appended to its designated local bin in line
14. Once a local bin is full, it is flushed to the corresponding global
bin (line 10-12). After the multiplication, there still could be some
tuples left in the local bins because bins were not full at termination.
Lines 15-18 send the partially full local bins to global bins.

With the local binning, we always write tuples in multiple of
cache lines. We make sure the number of local bins and the size of
local bins are small. Typically, we create 1024 bins and 512 bytes
per local bin so that all local bins for a thread easily fit in the cache.

3.4 Sorting
After the multiplication and propagation blocking phase, the

expanded matrix Ĉ is stored in the COO format, partitioned into
several bins. Then, we sort Ĉ to bring tuples with the same (rowid,
colid) pair close to one another for merging in the next phase. Here,
each bin sorts tuples independently in parallel because bins do not
share tuples with the same rowid.

The sorting algorithm uses the (rowid, colid) pairs as keys and
the multiplied values as payloads. For this purpose, we use an in-
place radix sort (similar to American flag sort [23]) that groups the
keys by individual bytes sharing the same significant byte position.
In the worst case, this in-place radix sort needsΘ(𝑏) passes over the
data, where 𝑏 is the number of bytes needed to store a key. Hence,
Radix sort can be faster than comparison-based sorting when keys
are stored in fewer bytes.

Preparing integer keys for Radix sort. In our algorithm, we
use 4-byte integers for row and column indices. We concatenate

the rowid and colid to form a combined 8-byte integer key for radix
sort. With 8-byte keys, radix sort may need 8 passes over the data,
which can incur significant data transfers. We can reduce the key
space by using the fact that bins are already grouped by consecutive
row indices. For example, if the input is a 1M × 1M matrix and we
create 1K bins to block the propagation, the rowids of tuples within
the same bin will be in adjacent 1k, then we only need 10 bits to
represent the remainder rather than a full 32-bit integer, and we
still have 32-10=22 bits to store colid. Furthermore, if we assume
that matrices have at most 1M rows and columns, we can use 20
bits for colid and 20-10=10 bits for rowid (assuming 1K bins). Hence,
in most practical cases, we can potentially squeeze keys into 4-byte
integers, needing four passes over the data for sorting.

In-cache sorting. Since we sort Ĉ containing flops tuples, four
passes over the data directly from memory can be the performance
bottleneck. Fortunately, bins can help in this case if tuples in a bin
fit in L3 or L2 cache. In many practical problems, we can indeed
fit a bin into L2 cache. For example, consider an ER matrix A with
1M rows, 1M columns and 4M nonzeros. When computing A2, we
generate 16M tuples in expectation. If 1K bins are used, each bin
will contain 16K tuples. If we use 4 byte keys (as described in the
previous paragraph) and 8 byte payloads, we need 192KB memory
to store all tuples in a bin. This can easily fit in L2 cache of most
modern processors. Multiplications with high compression ratios
and matrices with denser rows can create problems for some bins
as tuples may not fit in L2 cache. In these cases, we either use
more bins or create bins with variable ranges of rows. Hence, our
algorithm reads a bin from memory and perform radix sort on data
stored in cache. The sorted data can then be compressed while it is
still in the cache. Overall, the sorting phase reads (𝑏 ∗ flops) bytes.

3.5 Compression
After we sort each bin, tuples with the same (rowid, colid) pair

are stored in adjacent locations. In the compression step, we sum
numeric values from tuples with the same (rowid, colid). Similar to
sorting, compression can be performed independently in each bin.

As tuples are already sorted within a bin, compression is done
by scanning the tuples in the sorted order. We implement this
using two in-place pointers, which only walk the array once. The
first pointer (𝑝1) walks through the array, the second pointer (𝑝2)
maintains the location to be merged. Every time when 𝑝1 points
to a new location it checks with 𝑝2, if the keys of the two tuples
are the same, simply add the numeric value of the first tuple to the
second, if not, we move 𝑝2 to the next location and copy the tuple2
there, keep doing this until the 𝑝1 reach the end of the array.

Table 2 summarizes the computational complexity, bandwidth
and latency costs, in-cache operations and parallelism schemes for
all phases of PB-SpGEMM.

4 Experiment Setup
4.1 Software

We evaluate the performance of PB-SpGEMM against some state-
of-the-art column SpGEMM algorithms, namely HeapSpGEMM,
HashSpGEMM and HashVecSpGEMM. All of these algorithms have
memory access patterns of a typical column SpGEMM algorithm
discussed earlier.

Phase Comp. Complexity Bandwidth cost Latency In-cache operations Parallelism

Expand 𝑂 (flops) reading (𝑏 ∗ (nnz(A) + nnz(B))) bytes Negligible manipulating local bins cols of A and
writing (𝑏 ∗ flops) bytes rows of B per thread

Sort 𝑂 (flops) reading (𝑏 ∗ flops) bytes Negligible shuffling (4 ∗ 𝑏 ∗ flops) bytes bins per thread

Compress 𝑂 (flops) writing (𝑏 ∗ nnz(C)) bytes Negligible read/write (𝑏 ∗ flops) bytes bins per thread
Table 3: Computational complexity and data access patterns in different phases of PB-SpGEMM.

Skylake-SP POWER9
CPU Model Intel Xeon Platinum 8160 IBM POWER9
Architecture x86_64 ppc64le
#Sockets 2 2
#Cores/socket 24 20
Clock 2.1GHz 3.8GHz
L2 cache 1024KB/core 512KB/two cores
L3 cache 33792KB/socket 10240KB/two cores
Memory Size 250GB 1TB
Bandwidth 100GB/s 250GB/s
Table 4: The configuration of hardware used for evaluation

Copy Scale Add Triad

single socket 47.40 46.85 54.00 57.04
dual socket 97.73 87.43 107.00 108.42

Table 5: Streambenchmark result of the evaluation platform

• HeapSpGEMM uses heaps to merge columns [1]. To multiply
two 𝑛 × 𝑛 ER matrices with 𝑑 average nonzeros per column,
HeapSpGEMM complexity is 𝑂 (𝑛𝑑2 log𝑑), where the log𝑑 term
comes frommanipulating heaps. Each column ofC can be formed
in parallel using thread-private heaps.
• HashSpGEMM uses a hash table to merge columns[24, 25]. Its
complexity is 𝑂 (𝑛𝑑2) for ER matrices assuming that hash ta-
bles have limited collisions. Each column of C can be formed in
parallel using thread-private hash tables.
• HashVecSpGEMM is a variant of hash algorithm, which utilizes
vector registers for hash probing [24]. HashVecSpGEMM may
preform better when the collision in the hash table is high.
Previous work [24] has shown that the optimized heap and hash

algorithms largely outperform Intel MKL and Kokkos-kernel [12].
Considering this, we will not include those algorithms and software
in our evaluation. All implementations are compiled by GCC-8.2.0,
with flags "-fopenmp" "-O3" "-m64" "-march=native" enabled.

4.2 Hardware
In our experiments, we use a dual-socket Intel Skylake system

and an IBM POWER9 system as described in Table 4. Since most
of our experiments are conducted on the Skylake processor, we ex-
amine its memory system carefully using the STREAM benchmark
[22]. Table 5 shows the sustainable memory bandwidth for Copy,
Scale, Add and Triad benchmarks on single and dual sockets of the
Skylake system. Hence, we expect that PB-SpGEMM should attain
∼ 55 GB/s on a single socket and ∼ 105 GB/s on two sockets of Sky-
lake. While PB-SpGEMM indeed attains ∼ 55 GB/s in every phase,
its dual socket performance falls short of STREAM benchmark.
Hence, we primarily focus the single-socket performance because

Graph n(A) nnz(A) d(A) flops nnz(C) cf
2cubes_sphere 101.5K 1.6M 16.23 27.5M 9.0M 3.06
amazon0505 410.2K 3.4M 8.18 31.9M 16.1M 1.98
cage12 130.2K 2.0M 15.61 34.6M 15.2M 2.14
cant 62.5K 4.0M 64.17 269.5M 17.4M 15.45
hood 220.5K 9.9M 44.87 562.0M 34.2M 16.41
m133_b3 200.2K 800.8K 4.00 3.2M 3.2M 1.01
majorbasis 160.0K 1.8M 10.94 19.2M 8.2M 2.33
mc2depi 525.8K 2.1M 3.99 8.4M 5.2M 1.6
offshore 259.8K 4.2M 16.33 71.3M 69.8M 3.05
patents_main 240.5K 560.9K 2.33 2.6M 2.3M 1.14
scircuit 171.0K 958.9K 5.61 8.7M 5.2M 1.66
web-Google 916.4K 5.1M 5.57 60.7M 29.7M 2.04

Table 6: A list of real-world graphs used in our evaluation

(a) Local bin width (b) The number of bins

Figure 6: Impact of bin width and the number of bins, data
based on ER matrices with scale 20 and edge factor 4.

memory bandwidth is harder to predict in Non-Uniform Memory
Access (NUMA) domains. We also show some results with both
sockets and explain dual socket performance in Sec. 5.5. When ex-
perimenting with a single socket, we set "OMP_PLACES" to "cores",
"OMP_PROC_BIND" to "close", and restrict the memory allocation
to NUMA node 0 by using "numactl –membind=0".

4.3 Dataset
We followed a recent paper [24] to select test matrices.We use the

R-MAT recursive matrix generator to generate synthetic matrices.
RMAT has four parameters 𝑎, 𝑏, 𝑐, and 𝑑 . ER matrices are generated
with a=b=c=d=0.25, and Graph-500 matrices are generated with
a=0.57, b=c=0.19, d=0.05. Here, we refer to the latter graphs as
RMAT. For random graphs, edge factor denotes the average number
of nonzeros in a row or column. A matrix of scale 𝑘 has 2𝑘 rows
and columns. We also use 12 real-world matrices from SuiteSparse
Matrix Collection [11] as shown in Table 6. In our experiments,
we randomly generate two random matrices and multiply them
or multiply a real matrix with itself. These computations cover
some representative applications such as Markov clustering [3] and
triangle counting [2]. If an input matrix fit in cache, then column
SpGEMM is expected to perform better than PB-SpGEMM. Hence,
we did not explore multiplying rectangular matrices.

(a) Performance scaling with matrix density (b) Sustained bandwidth
Figure 7: Performance and bandwidth evaluation with ER matrices on a single socket (24 cores) from Skylake.

Figure 8: Performance evaluation with ER matrices on a single socket (20 cores) from Power9.

5 Results
5.1 Select parameters of PB-SpGEMM

In the expand phase, local bins are used to improve data locality,
the propagation of tuples will be blocked into small bins, and they
are moved to global shared memory. A local bin should be large
enough to have good utilization of a cache line so that it can be
sent to global bins without wasting memory bandwidth. Further-
more, the total size of local bins per thread should be smaller than
the L2 cache. Hence, number of bins and local bin width are two
parameters upon which the performance of PB-SpGEMM depends.
Fig. 6a shows our experiment where we vary the width of local
bins to observe its impact on the performance of the expand phase.
Smaller local bins do not utilize full cache lines, resulting in reduced
sustained bandwidth. Based on this experiment, we used 512 bytes
for every thread-private bin in all experiments in the paper.

The number of bins (𝑛𝑏𝑖𝑛𝑠), on the other hand, is a tradeoff be-
tween the expand and sort phases. Recall that sorting is performed
independently in each bin. Hence, increasing the number of bins
ensures that tuples in a global bin fit in the cache. However, increas-
ing the number of bins also reduces the average bin size, which
may reduce the bandwidth utilization of the expand phase. Fig. 6b
shows the impact of𝑛𝑏𝑖𝑛𝑠 over the expand and sorting phases. With
more bins, radix sort can be entirely performed in L2 cache. Hence,
in-cache sorting bandwidth can be as high as 200 GB/s. Hence, the
number of bins is determined by L2/L3 cache size and total number
of flop, and for most practical matrices, we use 1K or 2K bins.

5.2 Overall performance of PB-SpGEMM
At first we discuss the overall performance of PB-SpGEMM with

respect to state-of-the-art column SpGEMM algorithms. Here, we
consider both ER, RMAT, and real matrices as discussed in Sec 4.3.

Performance with ER random matrices. Fig. 7a compares
the performance of PB-SpGEMM, HeapSpGEMM, HashSpGEMM,
and HashVec-SpGEMMwith ER matrices of various scales and edge
factors on a single socket of the Skylake server. Here, we multiply

two ER matrices with the same scale and edge factor. For a given
scale, the performance of PB-SpGEMM is stable (between 700 and
800 MFLOPS) and is better than column SpGEMM algorithms for
all edge factors considered. This performance of PB-SpGEMM can
be explained by Fig. 7b that reports the sustained bandwidth of PB-
SpGEMM. We observed that the sustained bandwidth on a single
socket is between 40 and 50 GB/s, which are close to the STREAM
benchmark. Since ER matrices have cf = 1, the lower bound on
AI is 1

80 flops/byte according to Eq. 4. Hence, the performance of
PB-SpGEMM should be at least 40 ∗ 1

80 = 500 MFLOPS when the
sustained bandwidth is 40 GB/s and at least 50 ∗ 1

80 = 625 MFLOPS
when the sustained bandwidth is 50 GB/s. Fig. 7a confirms that PB-
SpGEMM’s performance remains close to this lower bound estimate.
By comparison, hash and heap algorithms have lower performance
primarily because of their irregular memory accesses. However, as
we increase the edge factor, the performance of column SpGEMM
may increase because of increased utilization of cache lines.

Similar performance is observed on the Power9 system as shown
in Fig. 8. As observed on Skylake, PB-SpGEMM performs better
than column SpGEMM algorithms and its performance remains
relatively stable for various matrix size and sparsity.

Performance with RMAT random matrices. Fig. 9a com-
pares the performance of SpGEMM algorithms with RMATmatrices
of various scales and edge factors on a single socket of the Skylake
server. Here, we multiply two RMAT matrices with the same scale
and edge factor. As with the ER matrices, the performance of PB-
SpGEMM remains between 700 and 900 MFLOPS and is generally
better than column SpGEMM algorithms. However, Fig. 9b shows
that PB-SpGEMM attains lower sustained bandwidth between 30
and 40 GB/s. The reason behind this lower than STREAM band-
width is the skewed degree distributions in RMATmatrices, resulted
in variable-size bins. Load imbalance in different bins makes the
expansion phase less bandwidth efficient.

Similar performance is observed on the Power9 system as shown
in Fig. 10. As observed on Skylake, PB-SpGEMM performs better

(a) Performance scaling with matrix density (b) Sustainable bandwidth

Figure 9: Performance and bandwidth evaluation with RMAT matrices on a single socket (24 cores) from Skylake.

Figure 10: Performance evaluation with RMAT matrices on a single socket (20 cores) from Power9.

Figure 11: Performance of SpGEMM when multiplying real matrices on a single socket of Skylake. From left to right, we sort
matrices in the ascending order of the compression factor. Blue triangles denote the sustained bandwidth of PB-SpGEMM.

than column SpGEMM algorithms and its performance remains
relatively stable for various matrix size and sparsity.

Performance with real matrices. Fig. 11 shows the perfor-
mance of SpGEMMalgorithmswhen squaring real matrices on a sin-
gle socket of the Skylake server. As before, the sustained bandwidth
of PB-SpGEMM is between 47 and 55 GB/s and its performance
is relatively stable. In Fig. 11, we sort matrices in the ascending
order of the compression factor (from left to right). PB-SpGEMM
is generally faster than its peers except for the last two matrices
(cant and hood) that have very high compression factors.

5.3 Scalability
Fig. 12 shows the strong scaling of SpGEMM algorithms from

1 to 24 threads within a socket of the Skylake processor. We ob-
serve that PB-SpGEMM runs faster than column SpGEMM on all
concurrencies. All SpGEMM algorithms scale well within a socket.

On 24 cores, PB-SpGEMM attains about 16× speedup for ER ma-
trices and 10× speedup for RMAT matrices. For RMAT matrices,
PB-SpGEMM does not scale well on high thread counts because of
the load imbalance caused by highly skewed nonzero distributions.

To improve the load balance, we used variable length bins tai-
lored for irregular matrices. Consider a scale-free matrix which
follows a strong inverse power law, if we assign the same num-
ber of rows to bins, the first one or two bins will be holding most
flops. To solve this, we first perform a prefix sum counting the
number of flops by row, which enables us to assign variable rows
to bins while keeping the number of flops evenly distributed across
bins. Our implementation used a simple lookup table for row-bin
inference, it came with a cost, so we observed relatively lower effec-
tive bandwidth as per Fig. 9(b), but it did give us reasonably good
performance advantage over the others.

Figure 12: Scalability on ER (left) and R-MAT matrices
(right). Both are scale 16 matrices with edge factor of 16.

Figure 13: Scalability breakdownonER (left) andR-MATma-
trices (right). Both are scale 16 matrices with edge factor 16.

5.4 Breakdown of performance
Generally, expand and sort consume a major fraction of PB-

SpGEMM’s execution time. For ER matrices, expand takes 50%,
sort takes 30% and compress takes 15% of the total runtime. For
RMAT, the ratio is as follows: expand: 40%, sort: 40%, compress: 15%.
RMAT matrices typically need more bins and variable load per bin,
which require more time in sorting. Fig. 13 shows the scalability
of different steps of PB-SpGEMM. In-cache sorting scales linearly
as expected. However, the expand step stops scaling linearly when
the memory bandwidth is nearly saturated.

5.5 Dual-socket Performance
Thus far, we have only considered the performance of SpGEMM

algorithms on a single socket of Skylake and Power9 processors.
Fig. 14 shows the performance of SpGEMM algorithms using both
sockets of the Skylake processor. PB-SpGEMM still runs faster
for ER matrices, but runs slightly slower than heap algorithm
for RMAT matrices. This lower-than-expected performance of PB-
SpGEMM on NUMA systems is due to inter-socket communication
contentions. If a bin is allocated on socket-1 in the expand phase and
sorted by a thread from socket-2, the performance of PB-SpGEMM
depends on cross-socket memory bandwidth. We checked cross-
socket memory bandwidth empirically by placing data on a socket
and accessing it from the other socket in a STREAM copy kernel.
Table 7 shows the local and remote access bandwidth and latency.
Memory latency was measured by Intel Memory Latency Checker.
We observe that cross-socket access is much slower than local ac-
cess. Since PB-SpGEMM’s performance relies on saturating the
memory bandwidth, it is affected by the cross-socket bandwidth.
Note that column SpGEMM algorithms are not significantly affected
by the cross-socket bandwidth because they generate one column
at a time, where the active column usually stays in cache.

In the Master’s thesis [16] of the first author, we improved the
dual socket performance by partitioning A into two 𝑛

2 × 𝑛 matri-
ces and multiply each part with B independently in two sockets.

Figure 14: Multi-socket performance of SpGEMM algo-
rithms on the Skylake system.

NUMA socket 0 NUMA socket 1

NUMA socket 0 50.26GB/s and 88.1ns 33.36GB/s and 147.4ns
NUMA socket 1 34.06GB/s and 146.7ns 50.12GB/s and 88.3ns
Table 7: NUMA local and cross-socket memory bandwidth
and latency on Skylake

This partitioned PB-SpGEMM partially mitigates the cross-socket
bandwidth problem, but it does not perform uniformly well for all
matrices due to the additional cost of reading B more than once.

6 Conclusions
With the rise of sparse and irregular data, SpGEMM has emerged

as an important operation in many scientific domains. Over the
past decade, the state-of-the-art of parallel SpGEMM algorithms
has progressed significantly. However, understanding the perfor-
mance of SpGEMM algorithms remains a challenge without an
established performance model. Relying on the fact that SpGEMM
is a bandwidth-bound operation, we used the Roofline model to de-
velop bounds for SpGEMM algorithms based on column-by-column
merging and the expand-sort-compress strategy. We conclude the
paper with the following key findings:

(1) We can estimate the arithmetic intensity (AI) of an SpGEMM
algorithm based on the compression factor of the multiplication
and number of bytes needed to store each nonzero.

(2) The attainable performance of an algorithm is (𝐴𝐼 ∗ 𝛽), where 𝛽
is the memory bandwidth. This peak performance can only be
attained if the algorithm saturates the bandwidth. We showed
that existing column SpGEMM algorithms do not attain peak
performance according to the Roofline model because of irreg-
ular data accesses and underutilization of cache lines.

(3) We develop a new algorithm based on outer product of matrices.
This algorithm called PB-SpGEMM uses propagation blocking
to group multiplied tuples into bins and then sort and merge
tuples independently in each bin.

(4) PB-SpGEMM approximately saturates the memory bandwidth
in all of its three phases and attains performance as predicted
by the Roofline model.

(5) On a single socket, PB-SpGEMM performs better than the best
column SpGEMM algorithms for multiplications with compres-
sion factors less than four.

(6) For multiplications with compression factors greater than four,
HashSpGEMM is the best performer.

References
[1] Ariful Azad, Grey Ballard, Aydin Buluç, James Demmel, Laura Grigori, Oded

Schwartz, Sivan Toledo, and Samuel Williams. Exploiting multiple levels of
parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific
Computing, 38(6):C624–C651, 2016.

[2] Ariful Azad, Aydın Buluç, and John Gilbert. Parallel triangle counting and
enumeration using matrix algebra. In IPDPSW, 2015.

[3] Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C Kyrpides,
and Aydin Buluç. HipMCL: A high-performance parallel implementation of the
markov clustering algorithm for large-scale networks. Nucleic acids research,
2018.

[4] Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz,
Oded Schwartz, and Sivan Toledo. Communication optimal parallel multiplica-
tion of sparse random matrices. In Proceedings of the twenty-fifth annual ACM
symposium on Parallelism in algorithms and architectures, pages 222–231, 2013.

[5] Grey Ballard, Christopher Siefert, and Jonathan Hu. Reducing communication
costs for sparse matrix multiplication within algebraic multigrid. SIAM Journal
on Scientific Computing, 38(3):C203–C231, 2016.

[6] Scott Beamer, Krste Asanović, and David Patterson. Reducing pagerank com-
munication via propagation blocking. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 820–831. IEEE, 2017.

[7] Nathan Bell, Steven Dalton, and Luke N Olson. Exposing Fine-Grained Paral-
lelism in Algebraic Multigrid Methods. SIAM Journal on Scientific Computing,
34(4):C123–C152, 2012.

[8] Aydin Buluc and John R Gilbert. On the representation and multiplication of
hypersparse matrices. In 2008 IEEE International Symposium on Parallel and
Distributed Processing, pages 1–11. IEEE, 2008.

[9] Aydin Buluç and John Gilbert. On the representation and multiplication of
hypersparse matrices. In 2008 IEEE International Symposium on Parallel and
Distributed Processing, pages 1–11, 04 2008.

[10] Steven Dalton, Luke Olson, and Nathan Bell. Optimizing sparse matrix—matrix
multiplication for the GPU. ACM Transactions on Mathematical Software (TOMS),
41(4):25, 2015.

[11] Timothy ADavis and Yifan Hu. The University of Florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[12] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. Performance-
portable sparse matrix-matrix multiplication for many-core architectures. In
IPDPSW, pages 693–702. IEEE, 2017.

[13] Xu Feng, Yuyang Xie, Mingye Song, Wenjian Yu, and Jie Tang. Fast randomized
pca for sparse data. In ACML, 2018.

[14] John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB:
Design and implementation. SIAM Journal on Matrix Analysis and Applications,
13(1):333–356, 1992.

[15] John R. Gilbert, Steve Reinhardt, and Viral B. Shah. High performance graph
algorithms from parallel sparse matrices. In PARA, pages 260–269, 2007.

[16] Zhixiang Gu. Bandwidth-optimized parallel SpGEMM algorithms using propaga-
tion blocking. Master’s thesis, Indiana University, 2019.

[17] Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplication and
permuted transposition. ACM TOMS, 4(3):250–269, 1978.

[18] Yu Jin and Joseph JáJá. A high performance implementation of spectral clustering
on cpu-gpu platforms. 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 825–834, 2016.

[19] Haim Kaplan, Micha Sharir, and Elad Verbin. Colored intersection searching via
sparse rectangular matrix multiplication. In Proceedings of the Twenty-second
Annual Symposium on Computational Geometry, SCG ’06, pages 52–60. ACM,
2006.

[20] Daniel Langr and Pavel Tvrdik. Evaluation criteria for sparse matrix storage
formats. IEEE Transactions on parallel and distributed systems, 27(2):428–440,
2015.

[21] Junhong Liu, Xin He, Weifeng Liu, and Guangming Tan. Register-aware opti-
mizations for parallel sparse matrix–matrix multiplication. International Journal
of Parallel Programming, 47(3):403–417, 2019.

[22] John D. McCalpin. Stream: Sustainable memory bandwidth in high performance
computers. Technical report, University of Virginia, 1991-2007.

[23] Peter M McIlroy, Keith Bostic, and M Douglas McIlroy. Engineering radix sort.
Computing systems, 6(1):5–27, 1993.

[24] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. Performance
optimization, modeling and analysis of sparse matrix-matrix products on multi-
core and many-core processors. Parallel Computing, 90:102545, 2019.

[25] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. High-performance and
memory-saving sparse general matrix-matrix multiplication for NVIDIA Pascal
GPU. In ICPP, pages 101–110. IEEE, 2017.

[26] Muhammet Mustafa Ozdal. Improving efficiency of parallel vertex-centric algo-
rithms for irregular graphs. IEEE Transactions on Parallel and Distributed Systems,
30(10):2265–2282, 2019.

[27] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim,
D. Blaauw, T. Mudge, and R. Dreslinski. Outerspace: An outer product based

sparse matrix multiplication accelerator. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2018.

[28] Md Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram,
Jongsoo Park, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das,
Sergey G Pudov, Vadim O Pirogov, and Pradeep Dubey. Parallel efficient sparse
matrix-matrix multiplication on multicore platforms. In ISC, pages 48–57.
Springer, 2015.

[29] SamuelWilliams, AndrewWaterman, andDavid Patterson. Roofline: an insightful
visual performance model for multicore architectures. Communications of the
ACM, 52(4):65–76, 2009.

[30] Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular
matrix multiplication and dynamic programming. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 2004.

	Abstract
	1 Introduction
	2 A Performance Model for SpGEMM
	2.1 Notations
	2.2 Classes of SpGEMM algorithms categorized by data access patterns
	2.3 Arithmetic Intensity (AI) of SpGEMM.

	3 The PB-SpGEMM Algorithm
	3.1 Overview of the PB-SpGEMM algorithm
	3.2 Symbolic Phase
	3.3 Expand
	3.4 Sorting
	3.5 Compression

	4 Experiment Setup
	4.1 Software
	4.2 Hardware
	4.3 Dataset

	5 Results
	5.1 Select parameters of PB-SpGEMM
	5.2 Overall performance of PB-SpGEMM
	5.3 Scalability
	5.4 Breakdown of performance
	5.5 Dual-socket Performance

	6 Conclusions
	References

